首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
2.
3.
 The mechanism of early dorso-ventral axis specification in zebrafish embryos is not well understood. While β-catenin has been clearly implicated as a determinant of the axis, the factors upstream and downstream of β-catenin in this system are not defined. Unlike in Xenopus, where a sperm-induced cortical rotation is used to localize β-catenin on the future dorsal side of the embryo, zebrafish do not have an obviously similar morphogenetic movement. Recently, a GSK-3 (Glycogen Synthase Kinase-3) binding protein (GBP) was identified as a novel member of the Wnt pathway required for maternal dorsal axis formation in Xenopus. GBP stabilizes β-catenin levels by inhibiting GSK-3 and potentially provides a link between cortical rotation and β-catenin regulation. Since zebrafish may use a different mechanism for regulating β-catenin, we asked whether zebrafish also express a maternal GBP. We report the isolation of the zebrafish GBP gene and show that it is maternally expressed and is present as mRNA ubiquitously throughout early embryonic development. Over-expression of zebrafish GBP in frogs and fish leads to hyper-dorsalized phenotypes, similar to the effects resulting from over-expression of β-catenin, indicating that components upstream of β-catenin are conserved between amphibians and teleosts. We also examined whether Tcf (T cell factor) functions in zebrafish embryos. As in frogs, ectopic expression of a dominant negative form of XTcf-3 ventralizes zebrafish embryos. In addition, ectopic β-catenin expression activates the promoter of the Tcf-dependent gene siamois, indicating that the step immediately downstream of β-catenin is also conserved between fish and frogs. Received: 23 July 1998 / Accepted: 2 September 1998  相似文献   

4.
5.
dead end (dnd) was identified in zebrafish as a gene encoding an RNA-binding protein essential for primordial germ cell (PGC) development and gametogenesis in vertebrates. The adult dnd RNA expression has been restricted to the ovary in Xenopus or to the testis in mouse. Its protein product is nuclear in chicken germ cells but both cytosolic and nuclear in mouse cell cultures. Here we report the cloning and expression pattern of Odnd, the medakafish (Oryzias latipes) dnd gene. Sequence comparison, gene structure, linkage analysis and expression demonstrate that Odnd encodes the medaka Dnd orthologue. A systematic comparison of Dnd proteins from five fishes and tetrapod representatives led to the identification of five previously unidentified conserved regions besides the RNA recognition motif. The Odnd RNA is maternally supplied and preferentially segregated with PGCs. Its adult expression occurs in both sexes and is restricted to germ cells. In the testis, Odnd is abundant in spermatogonia and meiotic cells but absent in sperm. In the ovary, Odnd RNA persists throughout oogenesis. Furthermore, we developed a dual color fluorescent in situ hybridization procedure allowing for precise comparisons of expression and distribution patterns between two genes in medaka embryos and adult tissues. Importantly, this procedure co-localized Odnd and Ovasa in testicular germ cells and PGCs. Surprisingly, by cell transfection and embryo RNA injection we show that ODnd is cytoplasmic in cell cultures, cleavage embryos and PGCs. Therefore, medaka dnd encodes a cytoplasmic protein and identifies embryonic and adult germ cells of both sexes.  相似文献   

6.
The monoamine serotonin (5-HT) exerts key neuromodulatory activities in all animal phyla, but the development and function of the serotonergic system is still incompletely understood. The zebrafish Danio rerio is an excellent model to approach this question since it is amenable to a combination of genetic, molecular and embryological studies. In order to characterize the organization of serotonergic neurons in the zebrafish we cloned two cDNAs encoding distinct forms of tryptophan hydroxylase (Tph), the rate-limiting enzyme in serotonin synthesis. We report here the pattern of expression of these two genes in relation with immunoreactive TH and 5-HT nuclei in the developing zebrafish embryo and early larva. tphD1 expression starts at 22 h post-fertilization (hpf) in the epiphysis and in basal spinal cells. Expression persists in the epiphysis until at least 4 days (dpf). Between 48 hpf and 3 dpf, tphD1 expression is initiated in retinal amacrine cells and in restricted preoptic and posterior tubercular nuclei within the basal diencephalon. At 3 and 4 dpf, tphD1 expression is newly initiated in the caudal hypothalamus and in branchial arches-associated neurons. tphD2 mRNA is detected transiently (between 30 somites and 32 hpf) in a restricted preoptic nucleus. All sites of tphD1 or D2 expression within the anterior central nervous system are also immunoreactive for 5-HT, but are not positive for TH. However, neither tphD gene is expressed in raphe nuclei, suggesting that additional tph gene(s) exist in zebrafish to account for 5-HT synthesis in that location. The co-expression of tphD1, tphD2 and 5-HT in the zebrafish diencephalon appears in striking contrast to the situation in mammals, where diencephalic serotonin results from re-uptake rather than from local production.  相似文献   

7.
The monoamine serotonin (5-HT) exerts key neuromodulatory activities in all animal phyla, but the development and function of the serotonergic system is still incompletely understood. The zebrafish Danio rerio is an excellent model to approach this question since it is amenable to a combination of genetic, molecular and embryological studies. In order to characterize the organization of serotonergic neurons in the zebrafish we cloned two cDNAs encoding distinct forms of tryptophan hydroxylase (Tph), the rate-limiting enzyme in serotonin synthesis. We report here the pattern of expression of these two genes in relation with immunoreactive TH and 5-HT nuclei in the developing zebrafish embryo and early larva. tphD1 expression starts at 22 h post-fertilization (hpf) in the epiphysis and in basal spinal cells. Expression persists in the epiphysis until at least 4 days (dpf). Between 48 hpf and 3 dpf, tphD1 expression is initiated in retinal amacrine cells and in restricted preoptic and posterior tubercular nuclei within the basal diencephalon. At 3 and 4 dpf, tphD1 expression is newly initiated in the caudal hypothalamus and in branchial arches-associated neurons. tphD2 mRNA is detected transiently (between 30 somites and 32 hpf) in a restricted preoptic nucleus. All sites of tphD1 or D2 expression within the anterior central nervous system are also immunoreactive for 5-HT, but are not positive for TH. However, neither tphD gene is expressed in raphe nuclei, suggesting that additional tph gene(s) exist in zebrafish to account for 5-HT synthesis in that location. The co-expression of tphD1, tphD2 and 5-HT in the zebrafish diencephalon appears in striking contrast to the situation in mammals, where diencephalic serotonin results from re-uptake rather than from local production.  相似文献   

8.
9.
The Xenopus LIM homeodomain (LIM-HD) protein, Xlim-1, is expressed in the Spemann organizer and cooperates with its positive regulator, Ldb1, to activate organizer gene expression. While this activation is presumably mediated through Xlim-1/Ldb1 tetramer formation, the mechanisms regulating proper Xlim-1/Ldb1 stoichiometry remains largely unknown. We isolated the Xenopus ortholog (XRnf12) of the RING finger protein Rnf12/RLIM and explored its functional interactions with Xlim-1 and Ldb1. Although XRnf12 functions as a E3 ubiquitin ligase for Ldb1 and causes proteasome-dependent degradation of Ldb1, we found that co-expression of a high level of Xlim-1 suppresses Ldb1 degradation by XRnf12. This suppression requires both the LIM domains of Xlim-1 and the LIM interaction domain of Ldb1, suggesting that Ldb1, when bound to Xlim-1, escapes degradation by XRnf12. We further show that a high level of Ldb1 suppresses the organizer activity of Xlim-1/Ldb1, suggesting that excess Ldb1 molecules disturb Xlim-1/Ldb1 stoichiometry. Consistent with this, Ldb1 overexpression in the dorsal marginal zone suppresses expression of several organizer genes including postulated Xlim-1 targets, and importantly, this suppression is rescued by co-expression of XRnf12. These data suggest that XRnf12 confers proper Ldb1 protein levels and Xlim-1/Ldb1 stoichiometry for their functions in the organizer. Together with the similarity in the expression pattern of Ldb1 and XRnf12 throughout early embryogenesis, we propose Rnf12/RLIM as a specific regulator of Ldb1 to ensure its proper interactions with LIM-HD proteins and possibly other Ldb1-interacting proteins in the organizer as well as in other tissues.  相似文献   

10.
Aquaculture farming may benefit from genetically engineering fish to tolerate environmental stress. Here, we used the vector pCVCG expressing the Vitreoscilla hemoglobin (vhb) gene driven by the common carp β-actin promoter to create stable transgenic zebrafish. The survival rate of the 7-day-old F2 transgenic fish was significantly greater than that of the sibling controls under 2.5% O2 (dissolved oxygen (DO), 0.91 mg/l). Meanwhile, we investigated the relative expression levels of several marker genes (hypoxia-inducible factor alpha 1, heat shock cognate 70-kDa protein, erythropoietin, beta and alpha globin genes, lactate dehydrogenase, catalase, superoxide dismutase, and glutathione peroxidase) of transgenic fish and siblings after hypoxia exposure for 156 h. The expression profiles of the vhb transgenic zebrafish revealed that VHb could partially alleviate the hypoxia stress response to improve the survival rate of the fish. These results suggest that that vhb gene may be an efficient candidate for genetically modifying hypoxia tolerance in fish.  相似文献   

11.
We have identified Zkrml2, a novel homologue of the segmentation gene Krml/val in zebrafish (Danio rerio). Zkrml2 shows 72% and 92% identity in its basic leucine zipper domain with mouse Krml1 and zebrafish val, respectively. Zkrml2 is expressed coincident with MyoD throughout the somites starting at the three somite stage, becomes restricted to the dermomyotome, and subsequently disappears. Transient expression is also detected in the reticulospinal and oculomotor neurons. Zkrml2 maps to the Oregon linkage group 11 (Boston Linkage group 14) with no mapped zebrafish mutations nearby.  相似文献   

12.
It has been reported that FoxD1 plays important roles in formation of several different tissues, such as retina and kidney in vertebrates. The function of FoxD1 in muscle development is, however, unclear although it is expressed in muscle cells in zebrafish. Muscles are the major tissue in fish, which serves as a rich protein source in our diet. To further understand the function of FoxD1 in fish muscle development, here we isolated and characterized the FoxD1 gene from flounder (Paralichthys olivaceus), a valuable sea food and an important fish species in aquaculture in Asia. We analyzed its expression pattern and function in regulating myogenic regulatory factor, MyoD, one of the earliest marker of myogenic commitment. In situ hybridization revealed that FoxD1 was expressed in the tailbud, adaxial cells, posterior intestine, forebrain, midbrain and half of the retina in flounder embryos. Functional studies demonstrated that when flounder FoxD1 was over-expressed in zebrafish by microinjection, MyoD expression was decreased, suggesting that FoxD1 may be involved in myogenesis by regulating the expression of MyoD.  相似文献   

13.
The novel type I TGFβ family member receptor alk8 is expressed both maternally and zygotically. Functional characterization of alk8 was performed using microinjection studies of constitutively active (CA), kinase modified/dominant negative (DN), and truncated alk8 mRNAs. CA Alk8 expression produces ventralized embryos while DN Alk8 expression results in dorsalized phenotypes. Truncated alk8 expressing embryos display a subtle dorsalized phenotype closely resembling that of the identified zebrafish dorsalized mutant, lost-a-fin (laf). Single-strand conformation polymorphism (SSCP) analysis was used to map alk8 to zebrafish LG02 in a region demonstrating significant conserved synteny to Hsa2, and which contains the human alk2 gene, ACVRI. Altogether, these functional, gene mapping and phylogenetic analyses suggest that alk8 may be the zebrafish orthologue to human ACVRI (alk2), and therefore extend previous studies of Alk2 conducted in Xenopus.  相似文献   

14.
15.
16.
为了建立一种用于研究肌肉和心脏发育及其相关疾病的绿色荧光蛋白(enhanced green fluorescent protein,EGFP)转基因斑马鱼品系,本研究使用斑马鱼ttn.2基因编码区上游启动子序列和绿色荧光蛋白基因编码序列构建了重组表达载体,并将该载体和Tol2转座酶的加帽mRNA显微共注射入斑马鱼1-细胞期胚胎,通过荧光检测、遗传杂交筛选和分子鉴定等方法,成功建立了能稳定遗传的Tg(ttn.2:EGFP)转基因斑马鱼品系。荧光表达分析及原位杂交分析结果表明,绿色荧光信号在斑马鱼肌肉和心脏组织中特异表达模式与ttn.2基因的mRNA表达一致。通过反向PCR鉴定转基因表达载体在F1代斑马鱼品系中的随机整合位点,结果表明:No.33转基因品系的EGFP基因整合在斑马鱼的4号和11号染色体上,No.34转基因品系则整合在1号染色体上。该荧光转基因斑马鱼品系Tg(ttn.2:EGFP)的成功构建为肌肉和心脏发育以及相关疾病研究提供了一个新的理想实验模型。此外,绿色荧光强烈表达的斑马鱼品系还可以作为一种新的观赏鱼。  相似文献   

17.
18.
19.
 The Zfcth1 gene is, as the previously cloned carp cth1 gene, related to the mammalian TIS 11 family of primary response genes and encodes a protein with two putative CCCH zinc fingers. This report describes the RNA expression of this gene during oogenesis and early embryogenesis up to gastrulation in the zebrafish (Danio rerio). Maternal cth1 message is present in the ovary of 1-month-old fish and of adult fish in oocytes at all stages of maturation. In the youngest oocytes the message is localized in the cytoplasm all around the nucleus, in larger oocytes the message becomes restricted to the future animal pole of the embryo, and in mature oocytes the expression is sharply localized in the cortical layer under the micropyle. After ovulation the cth1 messenger spreads over the cytoplasmic cap and is distributed over the blastomeres during subsequent cleavages. In subsequent stages maternal expression of cth1 gradually disappears. From early epiboly stages onward embryonic cth1 expression is localized to the germ ring and the hypoblast cells in the central part of the embryonic shield. In the shield, cth1 expression largely overlaps with the area of gooscoid expression in the first involuting cells. In stages after 70% of epiboly cth1 expression diminishes and soon can no longer be detected in the embryo. Next to a developmental role in cell fate determination we propose a function for cth1 during oocyte maturation. Received: 19 October 1998 / Accepted: 16 February 1999  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号