首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The small Mr Rab4-like GTPase, RabD, localizes to the endosomal pathway and the contractile vacuole membrane system in Dictyostelium discoideum. Stably transformed cell lines overexpressing a dominant negative functioning RabD internalized fluid phase marker at 50% of the rate of wild-type cells. Mutant cells were also slower at recycling internalized fluid. Microscopic and biochemical approaches indicated that the transport of fluid to large postlysosome vacuoles was delayed in mutant cells, resulting in an accumulation in acidic smaller vesicles, probably lysosomes. Also, RabD N121I-expressing cell lines missorted a small but significant percentage of newly synthesized lysosomal alpha-mannosidase precursor polypeptides. However, the majority of the newly synthesized alpha-mannosidase was transported with normal kinetics and correctly delivered to lysosomes. Subcellular fractionation and immunofluorescent microscopy indicated that in mutant cells contractile vacuole membrane proteins were associated with compartments morphologically distinct from the normal reticular network. Osmotic tests revealed that the contractile vacuole functioned inefficiently in mutant cells. Our results suggest that RabD regulates membrane traffic along the endosomal pathway, and that this GTPase may play a role in regulating the structure and function of the contractile vacuole system by facilitating communication with the endosomal pathway.  相似文献   

2.
The transport and sorting of soluble and membrane-associated macromolecules arriving at endosomal compartments require a complex set of Rab proteins. Rab22a has been localized to the endocytic compartment; however, very little is known about the function of Rab22a and inconsistent results have been reported in studies performed in different cell lines. To characterize the function of Rab22a in endocytic transport, the wild-type protein (Rab22a WT), a hydrolysis-deficient mutant (Rab22a Q64L), and a mutant with reduced affinity for GTP (Rab22a S19N) were expressed in CHO cells. None of the three Rab22a constructs affected the transport of rhodamine-dextran to lysosomes, the digestion of internalized proteins, or the lysosomal localization of cathepsin D. In contrast with the mild effect of Rab22a on the endosome-lysosome route, cells expressing Rab22a WT and Rab22a Q64L presented a strong delay in the retrograde transport of cholera toxin from endosomes to the Golgi apparatus. Moreover, these cells accumulated the cation independent mannose 6-phosphate receptor in endosomes. These observations indicate that Rab22a can affect the trafficking from endosomes to the Golgi apparatus probably by promoting fusion among endosomes and impairing the proper segregation of membrane domains required for targeting to the trans-Golgi network (TGN).  相似文献   

3.
Nahm MY  Kim SW  Yun D  Lee SY  Cho MJ  Bahk JD 《Plant & cell physiology》2003,44(12):1341-1349
Rab7 is a small GTP-binding protein important in early to late endosome/lysosome vesicular transport in mammalian cells. We have isolated a Rab7 cDNA clone, OsRab7, from a cold-treated rice cDNA library by the subtraction screening method. The cDNA encodes a polypeptide of 206 amino acids with a calculated molecular mass of about 23 kDa. Its predicted amino acid sequence shows significantly high identity with the sequences of other Rab7 proteins. His-tagged OsRab7 bound to radiolabeled GTPgammaS in a specific and stoichiometric manner. Biochemical and structural properties of the Rab7 wild type (WT) protein were compared to those of Q67L and T22N mutants. The detergent 3-([3-cholamidopropyl]dimethylammonio)-1-propane sulfonate (CHAPS) increased the guanine nucleotide binding and hydrolysis activities of Rab7WT. The OsRab7Q67L mutant showed much lower GTPase activity compared to the WT protein untreated with CHAPS, and the T22N mutant showed no GTP binding activity at all. The OsRab7Q67L mutant was constitutively active for guanine nucleotide binding while the T22N mutant (dominant negative) showed no guanine nucleotide binding activity. When bound to GTP, the Rab7WT and the Q67L mutants were protected from tryptic proteolysis. The cleavage pattern of the Rab7T22N mutant, however, was not affected by GTP addition. Northern and Western blot analyses suggested that OsRab7 is distributed in various tissues of rice. Furthermore, expression of a rice Rab7 gene was differentially regulated by various environmental stimuli such as cold, NaCl, dehydration, and ABA. In addition, subcellular localization of OsRab7 was investigated in the Arabidopsis protoplasts by a double-labeling experiment using GFP-fused OsRab7 and FM4-64. GFP-OsRab7 is localized to the vacuolar membrane, suggesting that OsRab7 is implicated in a vesicular transport to the vacuole in plant cells.  相似文献   

4.
Junctional complexes such as tight junctions (TJ) and adherens junctions are required for maintaining cell surface asymmetry and polarized transport in epithelial cells. We have shown that Rab13 is recruited to junctional complexes from a cytosolic pool after cell-cell contact formation. In this study, we investigate the role of Rab13 in modulating TJ structure and functions in epithelial MDCK cells. We generate stable MDCK cell lines expressing inactive (T22N mutant) and constitutively active (Q67L mutant) Rab13 as GFP-Rab13 chimeras. Expression of GFP-Rab13Q67L delayed the formation of electrically tight epithelial monolayers as monitored by transepithelial electrical resistance (TER) and induced the leakage of small nonionic tracers from the apical domain. It also disrupted the TJ fence diffusion barrier. Freeze-fracture EM analysis revealed that tight junctional structures did not form a continuous belt but rather a discontinuous series of stranded clusters. Immunofluorescence studies showed that the expression of Rab13Q67L delayed the localization of the TJ transmembrane protein, claudin1, at the cell surface. In contrast, the inactive Rab13T22N mutant did not disrupt TJ functions, TJ strand architecture nor claudin1 localization. Our data revealed that Rab13 plays an important role in regulating both the structure and function of tight junctions.  相似文献   

5.
To explore the role of GTPases in endocytosis, we developed an assay using Xenopus oocytes injected with recombinant proteins to follow the uptake of the fluid phase marker HRP. HRP uptake was inhibited in cells injected with GTPγS or incubated with aluminum fluoride, suggesting a general role for GTPases in endocytosis. Injection of Rab5 into oocytes, as well as Rab5:Q79L, a mutant with decreased GTPase activity, increased HRP uptake. Injection of Rab5:S34N, the dominant-negative mutant, inhibited HRP uptake. Injection of N-ethylmaleimide–sensitive factor (NSF) stimulated HRP uptake, and ATPase-defective NSF mutants inhibited HRP uptake when coinjected with Rab5:Q79L, confirming a requirement for NSF in endocytosis. Surprisingly, injection of Rab7:WT stimulated both uptake and degradation/activation of HRP. The latter appears to be due to enhanced transport to a late endosomal/prelysosomal degradative compartment that is monensin sensitive. Enhancement of uptake by Rab7 appears to function via an Rab5-sensitive pathway in oocytes since the stimulatory effect of Rab7 was blocked by coinjection of Rab5:S34N. Stimulation of uptake by Rab5 was blocked by Rab5:S34N but not by Rab7:T22N. Our results suggest that Rab7, while functioning downstream of Rab5, may be rate limiting for endocytosis in oocytes.  相似文献   

6.
Leishmania secretes a large number of its effectors to the extracellular milieu. However, regulation of the secretory pathway in Leishmania is not well characterized. Here, we report the cloning, expression, and characterization of the Rab1 homologue from Leishmania. We have found that LdRab1 localizes in Golgi in Leishmania. To understand the role of LdRab1 in the secretory pathway of Leishmania, we have generated transgenic parasites overexpressing GFP-LdRab1:WT, GFP-LdRab1:Q67L (a GTPase-deficient dominant positive mutant of Rab1), and GFP-LdRab1:S22N (a GDP-locked dominant negative mutant of Rab1). Surprisingly, our results have shown that overexpression of GFP-LdRab1:Q67L or GFP-LdRab1:S22N does not disrupt the trafficking and localization of hemoglobin receptor in Leishmania. To determine whether the Rab1-dependent secretory pathway is conserved in parasites, we have analyzed the role of LdRab1 in the secretion of secretory acid phosphatase and Ldgp63 in Leishmania. Our results have shown that overexpression of GFP-LdRab1:Q67L or GFP-LdRab1:S22N significantly inhibits the secretion of secretory acid phosphatase by Leishmania. We have also found that overexpression of GFP-LdRab1:Q67L or GFP-LdRab1:S22N retains RFP-Ldgp63 in Golgi and blocks the secretion of Ldgp63, whereas the trafficking of RFP-Ldgp63 in GFP-LdRab1:WT-expressing cells is unaltered in comparison with control cells. Taken together, our results have shown that the Rab1-regulated secretory pathway is well conserved, and hemoglobin receptor trafficking follows an Rab1-independent secretory pathway in Leishmania.  相似文献   

7.
Hmunc13 is a cytosolic diacylglycerol (DAG)-binding protein, which is upregulated in renal cortical tubule and mesangial cells by hyperglycemia. In response to DAG activation, hmunc13 translocates to the Golgi. To investigate how this may relate to its function, we used a bacterial two-hybrid screen to look for hmunc13-interacting proteins. Full-length Rab34 was specifically isolated from a human kidney cDNA library. Co-expression of the two proteins confirmed Rab34 as a Golgi-associated protein, which was immunoprecipitated from cell lysates by hmunc13. Glutathione S-transferase fusion proteins of WT, Q111L (GTP bound), and T66N (GDP bound) mutants were created, and their GTP-binding activity verified by radioactive overlay assay. Binding of hmunc13 was observed with Q111L, barely detectable with T66N and enhanced with Rab34WT loaded with GTPgammaS compared with GDP loaded. Deletion of munc homolgy domain (MHD)-2, eliminated the hmunc13/Rab34 interaction. The Q111L mutant localized to the Golgi apparatus, but T66N was cytosolic. Localization of both mutants and Rab34WT was unchanged by DAG activation. The data suggest that DAG activation of hmunc13 causes it to be translocated to the Golgi, where it binds to GTP-bound Rab34 via MHD-2. Because Rab34 is known to regulate intracellular lysosome positioning, we propose that hmunc13 serves as an effector of Rab34, mediating lysosome-Golgi trafficking.  相似文献   

8.
Upon entry into mammalian cells, the intracellular pathogen Brucella abortus resides within a membrane-bound compartment, the Brucella -containing vacuole (BCV), the maturation of which is controlled by the bacterium to generate a replicative organelle derived from the endoplasmic reticulum (ER). Prior to reaching the ER, Brucella is believed to ensure its intracellular survival by inhibiting fusion of the intermediate BCV with late endosomes and lysosomes, although such BCVs are acidic and accumulate the lysosomal-associated membrane protein (LAMP-1). Here, we have further examined the nature of intermediate BCVs using confocal microscopy and live cell imaging. We show that BCVs rapidly acquire several late endocytic markers, including the guanosine triphosphatase Rab7 and its effector Rab-interacting lysosomal protein (RILP), and are accessible to fluid-phase markers either delivered to the whole endocytic pathway or preloaded to lysosomes, indicating that BCVs interact with late endosomes and lysosomes. Consistently, intermediate BCVs are acidic and display proteolytic activity up to 12 h post-infection. Expression of dominant-negative Rab7 or overexpression of RILP significantly impaired the ability of bacteria to convert their vacuole into an ER-derived organelle and replicate, indicating that BCV maturation requires interactions with functional late endosomal/lysosomal compartments. In cells expressing dominant-negative Rab7[T22N], BCVs remained acidic, yet displayed decreased fusion with lysosomes. Taken together, these results demonstrate that BCVs traffic along the endocytic pathway and fuse with lysosomes, and such fusion events are required for further maturation of BCVs into an ER-derived replicative organelle.  相似文献   

9.
Toxoplasma gondii relies on protein secretion from specialized organelles for invasion of host cells and establishment of a parasitophorous vacuole. We identify T. gondii Rab6 as a regulator of protein transport between post-Golgi dense granule organelles and the Golgi. Toxoplasma Rab6 was localized to cisternal rims of the late Golgi and trans-Golgi network, associated transport vesicles, and microdomains of dense granule and endosomal membranes. Overexpression of wild-type Rab6 or GTP-activated Rab6(Q70L) rerouted soluble dense granule secretory proteins to the Golgi and endoplasmic reticulum and augmented the effect of brefeldin A on Golgi resorption to the endoplasmic reticulum. Parasites expressing a nucleotide-free (Rab6(N124I)) or a GDP-bound (Rab6(T25N)) mutant accumulated dense granule proteins in the Golgi and associated transport vesicles and displayed reduced secretion of GRA4 and a delay in glycosylation of GRA2. Activated Rab6 on Golgi membranes colocalized with centrin during mitosis, and parasite clones expressing Rab6 mutants displayed a partial shift in cytokinesis from endodyogeny (formation of two daughter cells) to endopolygeny (multiple daughter cells). We propose that Toxoplasma Rab6 regulates retrograde transport from post-Golgi secretory granules to the parasite Golgi.  相似文献   

10.
Semliki forest virus (SFV) is internalized by clathrin-mediated endocytosis, and transported via early endosomes to late endosomes and lysosomes. The intracellular pathway taken by individual fluorescently labeled SFV particles was followed using immunofluorescence in untransfected cells, and by video-enhanced, triple-color fluorescence microscopy in live cells transfected with GFP- and RFP-tagged Rab5, Rab7, Rab4, and Arf1. The viruses progressed from Rab5-positive early endosomes to a population of early endosomes (about 10% of total) that contained both Rab5 and Rab7. SFV were sequestered in the Rab7 domains, and they were sorted away from the early endosomes when these domains detached as separate transport carriers devoid of Rab5, Rab4, EEA1, Arf1, and transferrin. The process was independent of Arf1 and the acidic pH in early endosomes. Nocodazole treatment showed that the release of transport carriers was assisted by microtubules. Expression of constitutively inactive Rab7T22N resulted in accumulation of SFV in early endosomes. We concluded that Rab7 is recruited to early endosomes, where it forms distinct domains that mediate cargo sorting as well as the formation of late-endosome-targeted transport vesicles.  相似文献   

11.
Activated insulin receptors recruit various intracellular proteins leading to signal generation and endocytic trafficking. Although activated receptors are rapidly internalized into the endocytic compartment and subsequently degraded in lysosomes, the linkage between insulin receptor signaling and endocytosis is not well understood. This study utilizes both overexpression and depletion of Rab5 proteins to show that they play a critical role in both insulin-stimulated fluid phase and receptor-mediated endocytosis. Specifically, Rab5:WT and Rab5:Q79L (a GTP-hydrolysis defective mutant) enhance both types of endocytosis in response to insulin, while Rab5:S34N (a GTP-binding defective mutant) has the opposite effect. Morphological analysis indicates that both Rab5 and insulin receptor are found on early endosomes, but not at the plasma membrane. In addition, expression of Rab5:WT and Rab5:Q79L enhance both Erk1/2 and Akt activation without affecting JN- and p38-kinase activities, while the expression of Rab5:S34N blocks both Erk1/2 and Akt activation. Consistent with these observations, DNA synthesis is also altered by the expression of Rab5:S34N. Taken together, these results demonstrate that Rab5 is required for insulin receptor membrane trafficking and signaling.  相似文献   

12.
The clathrin heavy chain is a major component of clathrin-coated vesicles that function in selective membrane traffic in eukaryotic cells. We disrupted the clathrin heavy chain gene (chcA) in Dictyostelium discoideum to generate a stable clathrin heavy chain- deficient cell line. Measurement of pinocytosis in the clathrin-minus mutant revealed a four-to five-fold deficiency in the internalization of fluid-phase markers. Once internalized, these markers recycled to the cell surface of mutant cells at wild-type rates. We also explored the involvement of clathrin heavy chain in the trafficking of lysosomal enzymes. Pulse chase analysis revealed that clathrin-minus cells processed most alpha-mannosidase to mature forms, however, approximately 20-25% of the precursor molecules remained uncleaved, were missorted, and were rapidly secreted by the constitutive secretory pathway. The remaining intracellular alpha-mannosidase was successfully targeted to mature lysosomes. Standard secretion assays showed that the rate of secretion of alpha-mannosidase was significantly less in clathrin-minus cells compared to control cells in growth medium. Interestingly, the secretion rates of another lysosomal enzyme, acid phosphatase, were similar in clathrin-minus and wild-type cells. Like wild-type cells, clathrin-minus mutants responded to starvation conditions with increased lysosomal enzyme secretion. Our study of the mutant cells provide in vivo evidence for roles for the clathrin heavy chain in (a) the internalization of fluid from the plasma membrane; (b) sorting of hydrolase precursors from the constitutive secretory pathway to the lysosomal pathway; and (c) secretion of mature hydrolases from lysosomes to the extracellular space.  相似文献   

13.
《The Journal of cell biology》1989,109(4):1445-1456
A mutant strain of Dictyostelium discoideum, HMW570, oversecretes several lysosomal enzyme activities during growth. Using a radiolabel pulse-chase protocol, we followed the synthesis and secretion of two of these enzymes, alpha-mannosidase and beta-glucosidase. A few hours into the chase period, HMW570 had secreted 95% of its radiolabeled alpha- mannosidase and 86% of its radiolabeled beta-glucosidase as precursor polypeptides compared to the secretion of less than 10% of these forms from wild-type cells. Neither alpha-mannosidase nor beta-glucosidase in HMW570 were ever found in the lysosomal fractions of sucrose gradients consistent with HMW570 being defective in lysosomal enzyme targeting. Also, both alpha-mannosidase and beta-glucosidase precursors in the mutant strain were membrane associated as previously observed for wild- type precursors, indicating membrane association is not sufficient for lysosomal enzyme targeting. Hypersecretion of the alpha-mannosidase precursor by HMW570 was not accompanied by major alterations in N- linked oligosaccharides such as size, charge, and ratio of sulfate and phosphate esters. However, HMW570 was defective in endocytosis. A fluid phase marker, [3H]dextran, accumulated in the mutant at one-half of the rate of wild-type cells and to only one-half the normal concentration. Fractionation of cellular organelles on self-forming Percoll gradients revealed that the majority of the fluid-phase marker resided in compartments in mutant cells with a density characteristic of endosomes. In contrast, in wild-type cells [3H]dextran was predominantly located in vesicles with a density identical to secondary lysosomes. Furthermore, the residual lysosomal enzyme activity in the mutant accumulated in endosomal-like vesicles. Thus, the mutation in HMW570 may be in a gene required for both the generation of dense secondary lysosomes and the sorting of lysosomal hydrolases.  相似文献   

14.
Rab GTPases play an important regulatory role in early endocytosis. We recently demonstrated that epitope-tagged Rab15 (HArab15) co-localizes with Rab4, -5, and -11 on early endosomal membranes in CHO cells (Zuk, P. A., and Elferink, L. A. (1999) J. Biol. Chem. 274, 22303-22312). To characterize the role of Rab15 in endocytosis, we prepared functional mutants of HArab15 and examined their effects on early endocytic trafficking. Wild-type HArab15 and its constitutively active, GTP-bound mutant (Q67L) reduce fluid phase and receptor-mediated endocytosis without affecting the rate of recycling from early endosomal compartments. Inhibition of early endocytosis appears to be due to a reduction in the rate of homotypic early endosome fusion. Conversely, mutations that constitutively inactivate HArab15 stimulate early endocytosis and the homotypic fusion of early endosomes in vitro. Unlike active forms of HArab15, constitutively inactive HArab15 mutants also affect recycling from early endosomal compartments. Moreover, the two constitutively inactive mutants, GDP-bound HArab15-T22N and the non-nucleotide binding mutant HArab15-N121I, differentially regulate the transit of fluid phase and receptor-mediated endocytic tracers through early/sorting endosomes. Together, these data suggest that HArab15 may counteract the reported stimulatory effect of Rab5 on early endocytosis. Consistent with this, overexpression of constitutively active HArab15-Q67L attenuates Rab5-stimulated endocytosis, whereas Rab5-stimulated endocytosis is augmented in cells overexpressing a constitutively inactive HArab15 mutant defective in guanine nucleotide binding (N121I). Our data indicate that HArab15 differentially regulates distinct steps in membrane trafficking through early/sorting and pericentriolar recycling endosomes.  相似文献   

15.
rab4 is a ras-like GTP-binding protein that associates with early endosomes in a cell cycle-dependent fashion. To determine its role during endocytosis, we generated stable cell lines that overexpressed mutant or wild-type rab4. By measuring endocytosis, transport to lysosomes, and recycling, we found that overexpression of wild-type rab4 had differential effects on the endocytic pathway. Although initial rates of internalization and degradation were not inhibited, the transfectants exhibited a 3-fold decrease in fluid phase endocytosis as well as an alteration in transferrin receptor (Tfn-R) recycling. Wild-type rab4 caused a redistribution of Tfn-R's from endosomes to the plasma membrane. It also blocked iron discharge by preventing the delivery of Tfn to acidic early endosomes, instead causing Tfn accumulation in a population of nonacidic vesicles and tubules. rab4 thus appears to control the function or formation of endosomes involved in recycling.  相似文献   

16.
17.
The human prostacyclin receptor (hIP) undergoes rapid agonist-induced internalization by largely unknown mechanism(s). Herein the involvement of Rab5 in regulating cicaprost-induced internalization of the hIP expressed in human embryonic kidney 293 cells was investigated. Over-expression of Rab5a significantly increased agonist-induced hIP internalization. Additionally, the hIP co-localized to Rab5a-containing endocytic vesicles in response to cicaprost stimulation and there was a coincident net translocation of Rab5 from the cytosol/soluble fraction of the cell. Co-immunoprecipitation studies confirmed a direct physical interaction between the hIP and Rab5a that was augmented by cicaprost. Whilst the dominant negative Rab5a(S34N) did not show decreased interaction with the hIP or fully impair internalization, it prevented hIP sorting to endocytic vesicles. Moreover, the GTPase deficient Rab5a(Q79L) significantly increased internalization and co-localized with the hIP in enlarged endocytic vesicles. While deletion of the carboxyl terminal (C)-tail domain of the hIP did not inhibit agonist-induced internalization, co-localization or co-immunoprecipitation with Rab5a per se, receptor trafficking was altered suggesting that it contains structural determinant(s) for hIP sorting post Rab5-mediated endocytosis. Taken together, data herein and in endothelial EA.hy 926 cells demonstrate a direct role for Rab5a in agonist-internalization and trafficking of the hIP and increases knowledge of the factors regulating prostacyclin signaling.  相似文献   

18.
Rab7 is a small Rab GTPase that regulates vesicular traffic from early to late endosomal stages of the endocytic pathway. Here we report the cloning and characterization of a novel Rab7-like GTPase, which shares highest homology with Rab7 and thus is designated as Rab7b. Northern blot analysis shows that Rab7b mRNA is expressed in human heart, placenta, lung, skeletal muscle, and peripheral blood leukocyte. RT-PCR or Western blot analysis of Rab7b expression shows that Rab7b is selectively expressed in monocytes, monocyte-derived immature dendritic cells (DCs), and promyeloid or monocytic leukemia cell lines. In the peripheral blood, Rab7b is specifically detected in CD14(+) cells, but not in CD4(+), CD8(+), CD19(+) or CD56(+) cells. When immature DCs are matured with lipopolysaccharide (LPS), Rab7b expression is gradually downregulated, while Rab7b is upregulated when monocytes are activated by LPS treatments. In acute promyelocytic leukemia (APL) HL-60 and NB4 cell lines, Rab7b expression is upregulated after phorbol myristate acetate (PMA)-induced monocytic differentiation. By immunofluorescence confocal microscopy, we demonstrate that Rab7b is associated with lysosomal organelles. Our data suggest that Rab7b is a lysosome-localized monocytic cell-specific small GTPase, and is involved in PMA-induced APL cell differentiation and possibly in regulation of monocyte functions.  相似文献   

19.
Rab7: a key to lysosome biogenesis   总被引:1,自引:0,他引:1       下载免费PDF全文
The molecular machinery behind lysosome biogenesis and the maintenance of the perinuclear aggregate of late endocytic structures is not well understood. A likely candidate for being part of this machinery is the small GTPase Rab7, but it is unclear whether this protein is associated with lysosomes or plays any role in the regulation of the perinuclear lysosome compartment. Previously, Rab7 has mainly been implicated in transport from early to late endosomes. We have now used a new approach to analyze the role of Rab7: transient expression of Enhanced Green Fluorescent Protein (EGFP)-tagged Rab7 wt and mutant proteins in HeLa cells. EGFP-Rab7 wt was associated with late endocytic structures, mainly lysosomes, which aggregated and fused in the perinuclear region. The size of the individual lysosomes as well as the degree of perinuclear aggregation increased with the expression levels of EGFP-Rab7 wt and, more dramatically, the active EGFP-Rab7Q67L mutant. In contrast, upon expression of the dominant-negative mutants EGFP-Rab7T22N and EGFP-Rab7N125I, which localized mainly to the cytosol, the perinuclear lysosome aggregate disappeared and lysosomes, identified by colocalization of cathepsin D and lysosome-associated membrane protein-1, became dispersed throughout the cytoplasm, they were inaccessible to endocytosed molecules such as low-density lipoprotein, and their acidity was strongly reduced, as determined by decreased accumulation of the acidotropic probe LysoTracker Red. In contrast, early endosomes associated with Rab5 and the transferrin receptor, late endosomes enriched in the cation-independent mannose 6-phosphate receptor, and the trans-Golgi network, identified by its enrichment in TGN-38, were unchanged. These data demonstrate for the first time that Rab7, controlling aggregation and fusion of late endocytic structures/lysosomes, is essential for maintenance of the perinuclear lysosome compartment.  相似文献   

20.
The small GTPases Rab4, Rab5 and Rab7 are endosomal proteins which play important roles in the regulation of various stages of endosomal trafficking. Rab4 and Rab5 have both been localized to early endosomes and have been shown to control recycling and endosomal fusion, respectively. Rab7, a marker of the late endosomal compartment, is involved in the regulation of the late endocytic pathway. Here, we compare the role of Rab4, Rab5 and Rab7 in early and late endosomal trafficking in HeLa cells monitoring ligand uptake, recycling and degradation. Expression of the Rab4 dominant negative mutant (Rab4AS22N) leads to a significant reduction in both recycling and degradation while, as expected, Rab7 mutants exclusively affect epidermal growth factor (EGF) and low density lipoprotein degradation. As also expected, expression of the dominant negative Rab5 mutant perturbs internalization kinetics and affects both recycling and degradation. Expression of Rab4WT and dominant positive mutant (Rab4AQ67L) changes dramatically the morphology of the transferrin compartment leading to the formation of membrane tubules. These transferrin positive tubules display swellings (varicosities) some of which are positive for early endosomal antigen-1 and contain EGF. We propose that the Rab4GTPase is important for the function of the early sorting endosomal compartment, affecting trafficking along both recycling and degradative pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号