首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We proposed a new molecular imprinting procedure based on molecular integration for the purpose of cell capture. We selected the cell-adhesive protein fibronectin (FN) as the imprinting protein for preparing templates and evaluated selective cell adhesion on the FN imprinting substrate. Silica beads with a diameter of 15 μm were used as the stamp matrix and FN molecules were adsorbed as a monolayer. The FN recognition sites were constructed by integrating a surfactant as the ligand and immobilizing it with new biocompatible photoreactive phospholipid polymer composed of 2-methacryloyloxyethyl phosphorylcholine (MPC) units. As control substrates, imprinting procedures were carried out using albumin (BSA imprinting substrate) and without imprinting protein (non-imprinting substrate). The binding of FN from the cell culture medium with the fetal calf serum was achieved on the FN imprinting substrate, and induced the cell adhesion. On the other hand, on the non-imprinted and BSA imprinting substrates, the FN scarcely bound from the cell culture medium, and subsequent cell adhesion could not be observed on the substrate. These results indicate that the FN binding sites were well constructed by arranging the ligand surfactant to a suitable position and immobilized by the photoreactive MPC polymer. The MPC polymer prevented the nonspecific adsorption of proteins from the cell culture medium. We concluded that this procedure is convenient and can be potentially used for the preparation of surfaces for cell engineering devices.  相似文献   

2.
We examined the effect of dicarboxylic acids having 0 to 6 hydrocarbons and their corresponding monocarboxylic or tricarboxylic acids in changing the osmotic fragility (OF) in rat red blood cells (RBCs). Malonic, succinic, glutaric and adipic acids, which are dicarboxylic acids with 1, 2, 3 and 4 straight hydrocarbons located between two carboxylic groups, decreased the OF in a concentration-dependent manner. Other long-chain dicarboxylic acids did not change the OF in rat RBCs. The benzoic acid derivatives, isophthalic and terephthalic acids, but not phthalic acid, decreased the OF in a concentration-dependent manner. Benzene-1,2,3-tricarboxylic acid, but not benzene-1,3,5-tricarboxylic acid, also decreased the OF in rat RBCs. On the other hand, monocarboxylic acids possessing 2 to 7 straight hydrocarbons and benzoic acid increased the OF in rat RBCs. In short-chain dicarboxylic acids, a limited number of hydrocarbons between the two carboxylic groups are thought to form a V- or U-shaped structure and interact with phospholipids in the RBC membrane. In benzene dicarboxylic and tricarboxylic acids, a part of benzene nucleus between the two carboxylic groups is thought to enter the plasma membrane and act on acyl-chain in phospholipids in the RBC membrane. For dicarboxylic and tricarboxylic acids, limited numbers of hydrocarbons in molecules are speculated to enter the RBC membrane with the hydrophilic carboxylic groups remaining outside, stabilizing the structure of the cell membrane and resulting in an increase in osmotic resistance in rat RBCs.  相似文献   

3.
4.
The influence of Cu2+ ions on the physical properties of resealed human erythrocyte membranes was studied by fluorescence spectroscopy. A net ordering effect was observed at the hydrophobic–hydrophilic interface both in the bulk as well as in the lipid–protein boundary. The explanation for this result was found by X-ray diffraction performed in multilayers of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE), representative of phospholipid classes located in the outer and inner monolayers of the human erythrocyte membrane, respectively. Cu2+ did not significatively affect the structure of DMPE; however, DMPC polar head and hydrocarbon chain arrangements were perturbed at low but reordered at high Cu2+ concentrations. These effects were respectively explained in terms of a limited and extended interaction between Cu2+ ions and DMPC PO4 groups. Thus, the ordering effect in the erythrocyte membrane could be based on the interaction of this cation with phosphatidylcholine phosphate groups located in its outer leaflet. This binding, besides producing a decrease of membrane fluidity, might also induce a change in its electric field. These two effects should affect the activity of membrane proteins, particularly of ion channels. In fact, it was found that increasing concentrations of Cu2+ ions applied to either the mucosal or serosal surface of the isolated toad skin elicited a dose-dependent decrease of the short-circuit current (SCC) and of the potential difference (PD). These results lead to the conclusion that Cu2+ ions inhibited Na+ transport across the epithelial cell membranes.  相似文献   

5.
The time-dependent accumulation of phosphatidyldimethylethanolamine in formaldehyde-induced vesicles obtained from a somatic cell hybrid line was investigated. From a number of considerations including a two-fold enrichment of cholesterol and sphingomyelin it was concluded that these vesicles were derived from the cell plasma membrane.A progressive depletion of phosphatidylcholine, the major vesicle phospholipid, was observed in cells supplemented for various time periods with dimethylethanolamine. This depletion was accompanied by a concomitant increase in the amount of lipid analog.The time-dependent alteration of the phospholipid polar head group in intact cells was almost identical to that observed in isolated plasma membrane vesicles, suggesting a rapid equilibration of the de novo synthesized phospholipid with the cell surface compartment. From the initial velocity rate, the time required for the phosphatidylcholine pool to double was about 12 h.Agarose-linked phospholipase A2 was used to measure the relative composition of choline- and dimethylethanolamine-phosphoglycerides in the outer surface of vesicles prepared from cells with different degrees of polar head group substitution. The gradual appearance of lysodimethylethanolamine lipid analog in vesicles treated with phospholipase A2 suggested an asymmetric distribution of the phospholipid between the interior and the exterior part of the vesicle. This asymmetry was maximal up to about 4 h following the addition of dimethylethanolamine to the culture medium and was of a transient nature as the lipid analog accumulated on both sides of the plasma membrane. Based on these measurements a fast followed by a slow translocation component could be distinguished with apparent doubling times of 7 and 43 h for the lipid analog, respectively. As the analog becomes the predominant cellular phospholipid a significant increase in the vesicle lipid fluidity was measured.  相似文献   

6.
Modifications to the two-phase polymer gradient procedure for isolating plasma membrane from mammalian cells have resulted in greatly increased yields of purified plasma membrane. First, the cells were not treated with a membrane stabilizer (ZnCl2) prior to homogenization. This reduced the severity of homogenization required for disruption and allowed a greater proportion of the surface membrane to form large, flattened sheets that are more easily purified than the smaller fragments formed during more severe homogenization. Second, three crude fractions obtained from the homogenate (600g, 2000g, and 12,000g pellets), rather than a single, low-speed pellet (600g) containing only large sheets of membrane, were subjected to gradient centrifugation to obtain plasma membrane. This modification allowed purification of small as well as large fragments of plasmalemma and greatly increased the yield of purified membrane. Mg+2-dependent, Na+-K+-stimulated ATPase, a marker enzyme for plasma membrane, was enriched in the purified fraction by ≈17-fold relative to homogenate on a specific activity basis, and the yield of isolated plasma membrane averaged 70%, and was occasionally as high as 90%.  相似文献   

7.
Summary Auxin-induced cell elongation necessitates plasma membrane enlargement. The effect of auxin (10 M 2,4-dichlorophenoxyacetic acid) treatment on amount, composition, and rate of synthesis of plasma membrane lipids was examined. Auxin-treated and control soybean (Glycine max L.) hypocotyl segments were incubated with [14C]acetate for times ranging from 0.5 to 18 h, prior to isolation of plasma membrane by aqueous two-phase partitioning. The composition of individual plasma membrane lipids in elongating segments did not differ from the composition in treatment time-matched control segments, except that after longer auxin treatments, phospholipids had more unsaturated fatty acids. Plasma membrane phospholipid and free sterol content both increased in elongating segments. The relative proportion of sterols and phospholipids in the plasma membrane primarily depended on time after segment excision, for both auxin-treated and control segments. Auxin enhanced the rate of lipid incorporation into the plasma membrane by 6 h, and stimulated the synthesis of some phospholipids and sterols.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - ER endoplasmic reticulum - GC gas chromatography - IAA indole-3-acetic acid - PA phosphatidic acid - PC phosphatidylcholine - PE phosphatidylethanolamine - PG phosphatidylglycerol - PI phosphatidylinositol - PM plasma membrane - PS phosphatidylserine  相似文献   

8.
The integrity of cellular membranes is critical to the survival of insects at low temperatures, thus an advantage is conferred to insects that can adjust their composition of membrane fatty acids (FAs). Such changes contribute to homeoviscous adaption, a process that allows cellular membranes to maintain a liquid-crystalline state at temperatures that are potentially low enough to cause the membrane to enter the gel state and thereby lose its ability to maintain homeostasis. Flesh flies (Sarcophaga crassipalpis) were subjected to two experimental conditions that elicit low temperature tolerance: rapid cold-hardening and diapause. FAs were isolated and analyzed using gas chromatography-mass spectrometry. FAs changed in response to both rapid cold-hardening and diapause. In response to rapid cold-hardening (8 h at 4 degrees C), the proportion of oleic acid (18:1n-9) in pharate adults increased from 30% to 47% of the total FA pool. The proportion of almost every other FA was reduced. By entering diapause, pupae experienced an even greater increase in oleic acid proportion, to 58% of the total FA pool. Oleic acid not only promotes membrane fluidity at low temperature but also allows the cell membrane to maintain a liquid crystalline state if temperatures increase.  相似文献   

9.
Diacetylene phospholipids are presently being studied because of their potential to polymerise in vesicles, multilayers and natural biomembranes. 13C-NMR spectra and spin-lattice relaxation times have now been obtained of a diacetylene phospholipid present in a sonicated dispersion in water. Similar data have been obtained of a monoacetylene phospholipid and a saturated phospholipid. For further comparison the spectrum of a diacetylenic fatty acid in benzene-d6 was also examined and relaxation data obtained. A comparison of the various relaxation data provides an indication of the restricted motion associated with the two conjugated triple bonds of the diacetylene phospholipid within the lipid bilayer structure. A proximity interaction between diacetylene groups occurs and a conformation for the diacetylene part of the lipid in the bilayer is deduced. The 13C-NMR spectrum of a soluble phospholipid polymer in C2HCl3, obtained by ultraviolet irradiation of the diacetylene phospholipid, shows that the two conjugated triple bonds of the monomer is replaced in the polymer by an alternating double and triple bonded conjugated structure.  相似文献   

10.
Liposomes of phospholipids fully sustain the enzyme activity of the amphiphile-dependent dimers of human erythrocyte membrane acetylcholinesterase; no head group specificity exists. Diacylglycerides, glycerophosphorylcholine, or free fatty acids do not sustain the catalytic activity. It could be shown that the dimeric acetylcholinesterase with an exposed hydrophobic region can penetrate the lipid bilayer of liposomes and thus becomes stabilized by the surrounding phospholipid molecules.  相似文献   

11.
Most biological cell membranes have a microtopology that increases their surface area, including a highly ruffled surface in the case of leukocytes. Thus, molecular membrane diffusivities as measured by fluorescence recovery after photobleaching or other methods are decreased when projected onto a plane. We use a two-dimensional crested cycloid as a parameterized surface to simulate the random-walk diffusion of a molecule within a ruffled membrane. The apparent 2-D diffusivity was then calculated when the ruffled membrane is projected onto a plane. It is shown that the apparent diffusivity decreases as a function of the membrane area, to the -1.4 power.  相似文献   

12.

Background

Conjugated polymers have been developed as effective materials for interfacing prosthetic device electrodes with neural tissue. Recent focus has been on the development of conjugated polymers that contain biological components in order to improve the tissue response upon implantation of these electrodes.

Methods

Carboxylic acid-functionalized 3,4-ethylenedioxythiophene (EDOTacid) monomer was synthesized in order to covalently bind peptides to the surface of conjugated polymer films. EDOTacid was copolymerized with EDOT monomer to form stable, electrically conductive copolymer films referred to as PEDOT-PEDOTacid. The peptide GGGGRGDS was bound to PEDOT-PEDOTacid to create peptide functionalized PEDOT films.

Results

The PEDOT-PEDOTacid-peptide films increased the adhesion of primary rat motor neurons between 3 and 9 times higher than controls, thus demonstrating that the peptide maintained its biological activity.

Conclusions

The EDOT-acid monomer can be used to create functionalized PEDOT-PEDOTacid copolymer films that can have controlled bioactivity.

General Significance

PEDOT-PEDOTacid-peptide films have the potential to control the behavior of neurons and vastly improve the performance of implanted electrodes. This article is part of a Special Issue entitled Organic Bioelectronics—Novel Applications in Biomedicine.  相似文献   

13.
Role of pulse shape in cell membrane electropermeabilization   总被引:2,自引:0,他引:2  
The role of the amplitude, number, and duration of unipolar rectangular electric pulses in cell membrane electropermeabilization in vitro has been the subject of several studies. With respect to unipolar rectangular pulses, an improved efficiency has been reported for several modifications of the pulse shape: separate bipolar pulses, continuous bipolar waveforms, and sine-modulated pulses. In this paper, we present the results of a systematic study of the role of pulse shape in permeabilization, cell death, and molecular uptake. We have first compared the efficiency of 1-ms unipolar pulses with rise- and falltimes ranging from 2 to 100 μs, observing no statistically significant difference. We then compared the efficiency of triangular, sine, and rectangular bipolar pulses, and finally the efficiency of sine-modulated unipolar pulses with different percentages of modulation. We show that the results of these experiments can be explained on the basis of the time during which the pulse amplitude exceeds a certain critical value.  相似文献   

14.
An earlier model in which uptake of essential nutrients for which the cell is auxotrophic, regulates cell division, is discussed in the light of new experimental findings, specifically the purification of a new type of transport-inhibitory protein from rat liver and the properties of the protein. The possible role of such proteins in malignant transformation is also discussed.  相似文献   

15.
Hg对油菜叶细胞膜的损伤及细胞的自身保护作用   总被引:24,自引:7,他引:24  
砂基培养50d的油菜幼苗,用不同浓度的HgCl2溶液灌溉后,研究叶细胞膜结构与功能及细胞保护系统的变化。结果表明,0.5mg·L-1Hg污灌叶细胞膜结构与功能未见明显变化,细胞保护系统亦无变化;浓度大于1mg·L-1时,叶组织细胞膜脂质过氧化水平升高,膜结构损伤,膜透性增大。1~10mg·L-1Hg污灌,组织蛋白质含量升高,SOD、POD、CAT活性表现出不同程度的升高,细胞呈现出积极性自身保护作用;50mg·L-1Hg污灌,组织蛋白质含量下降,SOD、POD、CAT活性持续下降,细胞自身积极性保护作用消失,说明细胞自身保护系统只能在一定范围内起积极保护作用。  相似文献   

16.
Abstract Membrane ATPase of marine alkali-tolerant bacterium Vibrio alginolyticus has been studied. The ATPase was inhibited by diethylstilbestrol, DCCD, NBD-Cl and sodium azide, but it was insensitive to vanadate. The ATPase was solubilized by EDTA-treatment and partially purified by ion exchange chromatography. Two major polypeptides with molecular weights of 55 kDa and 58 kDa were found in this preparation. The molecular weight of the soluble ATPase was estimated to be 360 kDa. These data indicate, that the ATPase of Vibrio alginolyticus is likely to belong to F0–F1 type.  相似文献   

17.
Membrane damage is one of the main reasons for reduced motility and fertility of sperm cells during cryopreservation. Using a model system of sperm cryopreservation developed in our laboratory, we have investigated the detailed changes due to cryopreservation in the plasma membrane lipid composition of the goat epididymal sperm cells. Total lipid and its components, i.e., neutral lipids, glycolipids and phospholipids decreased significantly after cryopreservation. Among neutral lipids sterols, steryl esters and 1-O-alkyl-2,3-diacyl glycerols decreased appreciably, while among phospholipids, major loss was observed for phosphatidyl choline and phosphatidyl ethanolamine. Unsaturated fatty acids bound to the phospholipids diminished while the percentage of saturated acids increased. The cholesterol:phospholipid ratio enhanced and the amount of hydrocarbon, which was unusually high, increased further on cryopreservation. The data indicates that profound increase of the hydrophobicity of the cell membrane is one of the major mechanisms by which spermatozoa acquire potential to resist or combat stress factors like cryodamage. The results are compatible with the view that for survival against cryodamage, sperm cells modulate the structure of their outer membrane by shedding off preferentially some hydrophilic lipid constituents of the cell membrane.  相似文献   

18.
To study the interaction of voltage-sensitive Na+-channels with membrane lipids, the phospholipid and fatty acid composition of highly purified membrane fragments from the remarkably differentiated plasma membrane of Electrophorus electricus has been analyzed. After density gradient fractionation and carrier free electrophoresis, fractions with up to 30 pmol tetrodotoxin binding/mg protein can be obtained, which may correspond to a 50% pure preparation of the extrasynaptic part of the excitable face. Phospholipid classes and cholesterol are separated by one-dimensional thin-layer chromatography in acidic and alkaline solvent systems. The following mean molar contents are found: 40% phosphatidylcholine, 23% phosphatidylserine, 30% phosphatidylethanolamine and 7% sphingomyelin. In a series of 11 animals, significant deviations from these mean values have been observed. The fatty acid composition of the phospholipids has been determined by gas chromatography. Phosphatidylcholine contains more than 50% 16:0, and about 20% unsaturated fatty acids in the C-18 group. Compared to other plasma membrane fractions, this phospholipid is the least differentiated. By contrast, phosphatidylethanolamine and phosphatidylserine show many characteristics in different membrane fractions, especially in their unsaturated components representing more than 50%. 22:6, as the major constituent in these fractions, accounts for a quarter to a third of all fatty acids in these fractions. 18:0 is the main saturated component in these two phospholipids with abundances of typically a quarter or less of all fatty acids. Knowledge of the lipid composition of these excitable membranes may help to conserve binding and structural properties when analyzing lipid-sensitive Na+-channels in vitro. It is also useful as a guideline for systematic reconstitution studies.  相似文献   

19.
20.
BACKGROUNDThe therapeutic potential of mesenchymal stem cells (MSCs) in the form of three-dimensional spheroids has been extensively demonstrated. The underlying mechanisms for the altered cellular behavior of spheroids have also been investigated. Cell membrane fluidity is a critically important physical property for the regulation of cell behavior, but it has not been studied for the spheroid-forming cells to date.AIMTo explore the association between cell membrane fluidity and the morphological changes of MSC spheroids on the surface of biomaterials to elucidate the role of membrane fluidity during the spheroid-forming process of MSCs.METHODSWe generated three-dimensional (3D) MSC spheroids on the surface of various culture substrates including chitosan (CS), CS-hyaluronan (CS-HA), and polyvinyl alcohol (PVA) substrates. The cell membrane fluidity and cell morphological change were examined by a time-lapse recording system as well as a high-resolution 3D cellular image explorer. MSCs and normal/cancer cells were pre-stained with fluorescent dyes and co-cultured on the biomaterials to investigate the exchange of cell membrane during the formation of heterogeneous cellular spheroids.RESULTSWe discovered that vesicle-like bubbles randomly appeared on the outer layer of MSC spheroids cultured on different biomaterial surfaces. The average diameter of the vesicle-like bubbles of MSC spheroids on CS-HA at 37 °C was approximately 10 μm, smaller than that on PVA substrates (approximately 27 μm). Based on time-lapse images, these unique bubbles originated from the dynamic movement of the cell membrane during spheroid formation, which indicated an increment of membrane fluidity for MSCs cultured on these substrates. Moreover, the membrane interaction in two different types of cells with similar membrane fluidity may further induce a higher level of membrane translocation during the formation of heterogeneous spheroids. CONCLUSIONChanges in cell membrane fluidity may be a novel path to elucidate the complicated physiological alterations in 3D spheroid-forming cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号