首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

The deposition of self-assembled amyloidogenic proteins is associated with multiple diseases, including Alzheimer's disease, Parkinson's disease and type 2 diabetes mellitus. The toxic misfolding and self-assembling of amyloidogenic proteins are believed to underlie protein misfolding diseases. Novel drug candidates targeting self-assembled amyloidogenic proteins represent a potential therapeutic approach for protein misfolding diseases.

Scope of review

In this perspective review, we provide an overview of the recent progress in identifying inhibitors that block the aggregation of amyloidogenic proteins and the clinical applications thereof.

Major conclusions

Compounds such as polyphenols, certain short peptides, and monomer- or oligomer-specific antibodies, can interfere with the self-assembly of amyloidogenic proteins, prevent the formation of oligomers, amyloid fibrils and the consequent cytotoxicity.

General significance

Some inhibitors have been tested in clinical trials for treating protein misfolding diseases. Inhibitors that target the aggregation of amyloidogenic proteins bring new hope to therapy for protein misfolding diseases.  相似文献   

2.

Background

Aggregation of amyloid-beta (Aβ) has been proposed as the main cause of Alzheimer's disease (AD). Vitamin K deficiency has been linked to the pathogenesis of AD. Therefore, 15 synthesized vitamin K3 (VK3) analogues were studied for their anti-amyloidogenic activity.

Methods

Biological and spectroscopic assays were used to characterize the effect of VK3 analogues on amyloidogenic properties of Aβ, such as aggregation, free radical formation, and cell viability. Molecular dynamics simulation was used to calculate the binding affinity and mode of VK3 analogue binding to Aβ.

Results

Both numerical and experimental results showed that several VK3 analogues, including VK3-6, VK3-8, VK3-9, VK3-10, and VK3-224 could effectively inhibit Aβ aggregation and conformational conversion. The calculated inhibition constants were in the μM range for VK3-10, VK3-6, and VK3-9 which was similar to the IC50 of curcumin. Cell viability assays indicated that VK3-9 could effectively reduce free radicals and had a protective effect on cytotoxicity induced by Aβ.

Conclusions

The results clearly demonstrated that VK3 analogues could effectively inhibit Aβ aggregation and protect cells against Aβ induced toxicity. Modified VK3 analogues can possibly be developed as effective anti-amyloidogenic drugs for the treatment of AD.

General significance

VK3 analogues effectively inhibit Aβ aggregation and are highly potent as anti-amyloidogenic drugs for therapeutic treatment of AD.  相似文献   

3.

Background

Prokaryotic lectins offer significant advantages over eukaryotic lectins for the development of enhanced glycoselective tools. Amenability to recombinant expression in Escherichia coli simplifies their production and presents opportunities for further genetic manipulation to create novel recombinant prokaryotic lectins (RPLs) with altered or enhanced carbohydrate binding properties. This study explored the potential of the α-galactophilic PA-IL lectin from Pseudomonas aeruginosa for use as a scaffold structure for the generation of novel RPLs.

Method

Specific amino acid residues in the carbohydrate binding site of a recombinant PA-IL protein were randomly substituted by site-directed mutagenesis. The resulting expression clones were then functionally screened to identify clones expressing rPA-IL proteins with altered carbohydrate binding properties.

Results

This study generated RPLs exhibiting diverse carbohydrate binding activities including specificity and high affinity for β-linked galactose and N-acetyl-lactosamine (LacNAc) displayed by N-linked glycans on glycoprotein targets. Key amino acid substitutions were identified and linked with specific carbohydrate binding activities. Ultimately, the utility of these novel RPLs for glycoprotein analysis and for selective fractionation and isolation of glycoproteins and their glycoforms was demonstrated.

Conclusions

The carbohydrate binding properties of the PA-IL protein can be significantly altered using site-directed mutagenesis strategies to generate novel RPLs with diverse carbohydrate binding properties.

General significance

The novel RPLs reported would find a broad range of applications in glycobiology, diagnostics and in the analysis of biotherapeutics. The ability to readily produce these RPLs in gram quantities could enable them to find larger scale applications for glycoprotein or biotherapeutic purification.  相似文献   

4.

Background

Green tea is a rich source of polyphenols, mainly catechins (flavanols), which significantly contribute to the beneficial health effects of green tea in the prevention and treatment of various diseases. In this study the effects of four green tea catechins on protein ERp57, also known as protein disulfide isomerase isoform A3 (PDIA3), have been investigated in an in vitro model.

Methods

The interaction of catechins with ERp57 was explored by fluorescence quenching and surface plasmon resonance techniques and their effect on ERp57 activities was investigated.

Results

A higher affinity was observed for galloylated cathechins, which bind close to the thioredoxin-like redox-sensitive active sites of the protein, with a preference for the oxidized form. The effects of these catechins on ERp57 properties were also investigated and a moderate inhibition of the reductase activity of ERp57 was observed as well as a strong inhibition of ERp57 DNA binding activity.

Conclusions

Considering the high affinity of galloylated catechins for ERp57 and their capability to inhibit ERp57 binding to other macromolecular ligands, some effects of catechins interaction with this protein on eukaryotic cells may be expected.

General significance

This study provides information to better understand the molecular mechanisms underlying the biological activities of catechins and to design new polyphenol-based ERp57-specific inhibitors.  相似文献   

5.

Background

Owing to recent discoveries of many hydrogen sulfide-mediated physiological processes, sulfide biology is in the focus of scientific research. However, the promiscuous chemical properties of sulfide pose complications for biological studies, which led to accumulation of controversial observations in the literature.

Scope of review

We intend to provide an overview of fundamental thermodynamic and kinetic features of sulfide redox- and coordination-chemical reactions and protonation equilibria in relation to its biological functions. In light of these chemical properties we review the strengths and limitations of the most commonly used sulfide detection methods and recently developed fluorescent probes. We also give a personal perspective on blood and tissue sulfide measurements based on proposed biomolecule–sulfide interactions and point out important chemical aspects of handling sulfide reagent solutions.

Major conclusions

The diverse chemistries of sulfide detection methods resulted in orders of magnitude differences in measured physiological sulfide levels. Investigations that were aimed to dissect the underlying molecular reasons responsible for these controversies made the important recognition that there are large sulfide reserves in biological systems. These sulfide pools are tightly regulated in a dynamic manner and they are likely to play a major role in regulation of endogenous-sulfide-mediated biological functions and avoiding toxic side effects.

General significance

Working with sulfide is challenging, because it requires considerable amounts of chemical knowledge to adequately handle reagent sulfide solutions and interpret biological observations. Therefore, we propose that a rigorous chemical approach could aid the reconciliation of the increasing number of controversies in sulfide biology. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.  相似文献   

6.

Background

Bladder cancer has the peculiarity of shedding neoplastic cells and their components in urine representing a valuable opportunity to detect diagnostic markers. Using a semi-quantitative method we previously demonstrated that the levels of Tyr-phosphorylated proteins (TPPs) are highly increased in bladder cancer tissues and that soluble TPPs can also be detected in patient's urine samples. Although the preliminary evaluation showed very promising specificity and sensitivity, insufficient accuracy and very low throughput of the method halted the diagnostic evaluation of the new marker. To overcome this problem we developed a quantitative methodology with high sensitivity and accuracy to measure TPPs in urine.

Methods

The Immobilized Metal Affinity Chromatography (IMAC) was miniaturized in a 96 well format. Luminescence, visible and infrared fluorescence antibody-based detection methods were comparatively evaluated.

Results

Due to their low abundance we evidenced that both phosphoprotein enrichment step and very sensitive detection methods are required to detect TPPs in urine samples. To pursue high throughput, reproducibility and cost containment, which are required for bladder cancer screening programs, we coupled the pre-analytical IMAC procedure with high sensitive detection phases (infrared fluorescence or chemiluminescence) in an automated platform.

Conclusions

A high throughput method for measuring with high sensitivity TPP levels in urine samples is now available for large clinical trial for the establishment of the diagnostic and predictive power of TPPs as bladder cancer marker.

General significance

The new assay represents the first quantitative and high throughput method for the measurement of TPPs in urine.  相似文献   

7.

Background

Peroxiredoxins (Prxs) are a class of abundant thiol peroxidases that degrade hydroperoxides to water. Prxs are sensitive to oxidation, and it is hypothesized that they also act as redox sensors. The accumulation of oxidized Prxs may indicate disruption of cellular redox homeostasis.

Scope of review

This review discusses the biochemical properties of the Prxs that make them suitable as endogenous biomarkers of oxidative stress, and describes the methodology available for measuring Prx oxidation in biological systems.

Major conclusions

Two Prx oxidation products accumulate in cells under increased oxidative stress: an intermolecular disulfide and a hyperoxidized form. Methodologies are available for measuring both of these redox states, and oxidation has been reported in cells and tissues under oxidative stress from external or internal sources.

General significance

Monitoring the oxidation state of Prxs provides insight into disturbances of cellular redox homeostasis, and complements the use of exogenous probes of oxidative stress. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.  相似文献   

8.

Background

The “cerato-platanin family” consists of fungal-secreted proteins that are involved in various stages of the host–fungus interaction and act as phytotoxins, elicitors of defense responses and allergens. Cerato-platanin (CP) is a moderately hydrophobic protein secreted and localized in the cell wall of Ceratocystis platani, the causal agent of a severe disease of Platanus. These properties make CP like the hydrophobins: these are self-assembling proteins that form a surface coating which is involved in the formation of aerial hyphae and in adherence to surfaces.

Methods

CP aggregation was monitored by ThT, circular dichroism, and AFM. The eliciting activity of CP aggregates was assayed on leaves and cells.

Results

The CP self-assembles forming amyloid-like aggregates via a nucleated growth mechanism which is joined up with a cleavage of the N-terminus. The ovoidal shape and the lack of a clear transition toward an all-β structure distinguish these aggregates from typical amyloid fibrils. Moreover, CP aggregates interact with hydrophobic surfaces and enhance the hypersensitive response of Platanus.

Conclusion and general significance

CP forms “ordered aggregates” for which the soluble prefibrillar structures are the end point of the aggregation process, and do not evolve to insoluble fibrils. An involvement in host–microbe interaction is also suggested.  相似文献   

9.

Background

Protein S-nitrosation is an important post-translational modification altering protein function. Interaction of nitric oxide with thiols is an active area of research, and is one of the mechanisms by which NO exerts its biological effects. Biotin switch assay is the method, which has been developed to identify S-nitrosated proteins. The major concern with biotin switch assay includes reducing disulfide which may lead to false positives. We report a modification of the biotin switch assay where sinapinic acid is utilized instead of ascorbate to eliminate potential artifacts in the detection of S-nitrosated proteins.

Methods

The denitrosation ability of sinapinic acid was assessed by monitoring either the NO or NO2- released by chemiluminescent NO detection or by the griess assay, respectively. DTNB assay was used to compare disulfide reduction by ascorbate and sinapinic acid. Sinapinic acid and ascorbate were compared in the biotin switch detection of S-nitrosoproteins in RAW 264.7 cells ± S-nitrosocysteine (CysNO) exposure.

Results

We show that sinapinic acid has the ability to denitrosate S-nitrosothiols at pH 7.0 and denitrate plus denitrosate at pHs 8 and 8.5. Unlike ascorbate, sinapinic acid degrades S-nitrosothiols, but it does not reduce disulfide bridges.

Conclusions

Sinapinic acid denitrosate RSNO and does not reduce disulfides. Thus can readily replace ascorbate in detection of S-nitrosated proteins in biotin switch assay.

General significance

The work described is important in view of protein S-nitrosation. In this study we provide an important modification that eliminates artifacts in widely used technique for detecting the S-nitrosoproteome, the biotin switch assay.  相似文献   

10.

Background

Extracellular matrix (ECM) is a dynamic and complex environment characterized by biophysical, mechanical and biochemical properties specific for each tissue and able to regulate cell behavior. Stem cells have a key role in the maintenance and regeneration of tissues and they are located in a specific microenvironment, defined as niche.

Scope of review

We overview the progresses that have been made in elucidating stem cell niches and discuss the mechanisms by which ECM affects stem cell behavior. We also summarize the current tools and experimental models for studying ECM–stem cell interactions.

Major conclusions

ECM represents an essential player in stem cell niche, since it can directly or indirectly modulate the maintenance, proliferation, self-renewal and differentiation of stem cells. Several ECM molecules play regulatory functions for different types of stem cells, and based on its molecular composition the ECM can be deposited and finely tuned for providing the most appropriate niche for stem cells in the various tissues. Engineered biomaterials able to mimic the in vivo characteristics of stem cell niche provide suitable in vitro tools for dissecting the different roles exerted by the ECM and its molecular components on stem cell behavior.

General significance

ECM is a key component of stem cell niches and is involved in various aspects of stem cell behavior, thus having a major impact on tissue homeostasis and regeneration under physiological and pathological conditions. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.  相似文献   

11.

Background

Lectins are a diverse group of carbohydrate-binding proteins exhibiting numerous biological activities and functions.

Methods

Two-step serial carbohydrate affinity chromatography was used to isolate a lectin from the edible mushroom clouded agaric (Clitocybe nebularis). It was characterized biochemically, its gene and cDNA cloned and the deduced amino acid sequence analyzed. Its activity was tested by hemagglutination assay and carbohydrate-binding specificity determined by glycan microarray analysis. Its effect on proliferation of several human cell lines was determined by MTS assay.

Results

A homodimeric lectin with 15.9-kDa subunits agglutinates human group A, followed by B, O, and bovine erythrocytes. Hemagglutination was inhibited by glycoprotein asialofetuin and lactose. Glycan microarray analysis revealed that the lectin recognizes human blood group A determinant GalNAcα1–3(Fucα1–2)Galβ-containing carbohydrates, and GalNAcβ1–4GlcNAc (N,N'-diacetyllactosediamine). The lectin exerts antiproliferative activity specific to human leukemic T cells.

Conclusions

The protein belongs to the ricin B-like lectin superfamily, and has been designated as C. nebularis lectin (CNL). Its antiproliferative effect appears to be elicited by binding to carbohydrate receptors on human leukemic T cells.

General significance

CNL is one of the few mushroom ricin B-like lectins that have been identified and the only one so far shown to possess immunomodulatory properties.  相似文献   

12.
13.

Background

Small leucine-rich proteoglycans (SLRPs) are molecules that have signaling roles in a multitude of biological processes. In this respect, SLRPs play key roles in the evolution of a variety of diseases throughout the human body.

Scope of Review

We will critically review current developments in the roles of SLRPs in several types of disease of the kidney and lungs. Particular emphasis will be given to the roles of decorin and biglycan, the best characterized members of the SLRP gene family.

Major Conclusions

In both renal and pulmonary disorders, SLRPs are essential elements that regulate several pathophysiological processes including fibrosis, inflammation and tumor progression. Decorin has remarkable antifibrotic and antitumorigenic properties and is considered a valuable potential treatment of these diseases. Biglycan can modulate inflammatory processes in lung and renal inflammation and is a potential target in the treatment of inflammatory conditions.

General Significance

SLRPs can serve as either treatment targets or as potential treatment in renal or lung disease. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.  相似文献   

14.

Background

Nucleophosmin (NPM1, B23) is a multifunctional protein that is involved in a variety of fundamental biological processes. NPM1/B23 deregulation is implicated in the pathogenesis of several human malignancies. This protein exerts its functions through the interaction with a multiplicity of biological partners. Very recently it is has been shown that NPM1/B23 specifically recognizes DNA G-quadruplexes through its C-terminal region.

Methods

Through a rational dissection approach of protein here we show that the intrinsically unfolded regions of NPM1/B23 significantly contribute to the binding of c-MYC G-quadruplex motif. Interestingly, the analysis of the ability of distinct NPM1/B23 fragments to bind this quadruplex led to the identifications of distinct NPM1/B23-based peptides that individually present a high affinity for this motif.

Results

These results suggest that the tight binding of NPM1/B23 to the G-quadruplex is achieved through the cooperation of both folded and unfolded regions that are individually able to bind it. The dissection of NPM1/B23 also unveils that its H1 helix is intrinsically endowed with an unusual thermal stability.

Conclusions

These findings have implications for the unfolding mechanism of NPM1/B23, for the G-quadruplex affinity of the different NPM1/B23 isoforms and for the design of peptide-based molecules able to interact with this DNA motif.

General observation

This study sheds new light in the molecular mechanism of the complex NPM1/G-quadruplex involved in acute myeloid leukemia (AML) disease.  相似文献   

15.

Background

The pH of a biological system is a crucial determinant of the structures and reactivity of its components and cellular homeostasis of H+ is critical for cell viability. Control and monitoring of cellular acidity are highly desirable for the purpose of studying biochemical processes in vivo.

Methods

The effect of photolysis of a caged strong acid, the ester 1-(2-nitrophenyl)-ethylhexadecyl sulfonate (HDNS) is used to cause a controlled drop in pH in single cells. An isolated cell is selected under the IR microscope, irradiated with near-UV light and monitored by FTIR.

Results

We demonstrate the use of FTIR spectromicroscopy to monitor light-induced acidification of the cellular medium by measuring the increased concentration of CO2 and corresponding decrease of HCO3 in the cell and in the surrounding medium.

Conclusions

We have demonstrated a method to control and accurately monitor the changes in pH of a cellular system by coupling a caged proton-releasing agent with FTIR spectromicroscopy detection. The overall implementation of photolysis and spectroscopic detection in a microscope optical configuration ensures single cell selectivity in both acidification and monitoring. We show the viability of monitoring of pH changes by FTIR spectromicroscopy with sensitivity comparable to that of glass electrodes, better than the existing methods for determining cell pH.

General significance

Reporting the effect of small variations of cellular acidity provides a major improvement in the understanding of the interplay between molecular properties as assessed in vitro and cell physiology.  相似文献   

16.

Background

Diabetes is a growing worldwide problem that is strongly associated with atherosclerosis. Screening and intervention for diabetes in the earliest stages are advocated for the prevention of diabetic complications and cardiovascular disease.

Scope of review

This review gives a background of and discusses the potential clinical utility of glycated albumin (GA) in diabetes.

Major conclusions

GA is a ketoamine formed via a non-enzymatic glycation reaction of serum albumin and it reflects mean glycemia over two to three weeks. GA can be used for patients with anemia or hemoglobinopathies for whom the clinically measured hemoglobin A1c level may be inaccurate. Because both serum and plasma samples can be used, GA can be analyzed from the same samples as common biological markers. GA is a useful marker for the screening of diabetes in a medical evaluation. It can be also used to determine the effectiveness of treatment before initiating or changing medications for diabetic patients. GA is potentially an atherogenic protein in the development of diabetic atherosclerosis.

General significance

GA measurement is useful as part of a routine examination to screen for both diabetes and atherosclerosis. This article is part of a Special Issue entitled Serum Albumin.  相似文献   

17.

Background

Testis-specific chaperone calmegin is required for the generation of normal spermatozoa. Calmegin is known to be a homologue of endoplasmic reticulum (ER) residing lectin chaperone calnexin. Although functional similarity between calnexin and calmegin has been predicted, detailed information concerned with substrate recognition by calmegin, such as glycan specificity, chaperone function and binding affinity, are obscure.

Methods

In this study, biochemical properties of calmegin and calnexin were compared using synthetic glycans and glycosylated or non-glycosylated proteins as substrates.

Results

Whereas their amino acid sequences are quite similar to each other, a certain difference in secondary structures was indicated by circular dichroism (CD) spectrum. While both of them inhibited protein heat-aggregation to a similar extent, calnexin exhibited a higher ability to facilitate protein folding. Similarly to calnexin, calmegin preferentially recognizes monoglucosylated glycans such as Glc1Man9GlcNAc2 (G1M9). While the surface hydrophobicity of calmegin was higher than that of calnexin, calnexin showed stronger binding to substrate. We reasoned that lectin activity, in addition to hydrophobic interaction, contributes to this strong affinity between calnexin and substrate.

Conclusions

Although their similarity in carbohydrate binding specificities is high, there seems to be some differences in the mode of substrate recognition between calmegin and calnexin.

General significance

Properties of calmegin as a lectin-chaperone were revealed in comparison with calnexin.  相似文献   

18.
19.

Background

An exciting direction in nanomedicine would be to analyze how living cells respond to conducting polymers. Their application for tissue regeneration may advance the performance of drug eluting stents by addressing the delayed stent re-endothelialization and late stent thrombosis.

Methods

The suitability of poly (3, 4-ethylenedioxythiophene) (PEDOT) thin films for stents to promote cell adhesion and proliferation is tested in correlation with doping and physicochemical properties. PEDOT doped either with poly (styrenesulfonate) (PSS) or tosylate anion (TOS) was used for films' fabrication by spin coating and vapor phase polymerization respectively. PEGylation of PEDOT: TOS for reduced immunogenicity and biofunctionalization of PEDOT: PSS with RGD peptides for induced cell proliferation was further applied. Atomic Force Microscopy and Spectroscopic Ellipsometry were implemented for nanotopographical, structural, optical and conductivity measurements in parallel with wettability and protein adsorption studies. Direct and extract testing of cell viability and proliferation of L929 fibroblasts on PEDOT samples by MTT assay in line with SEM studies follow.

Results

All PEDOT thin films are cytocompatible and promote human serum albumin adsorption. PEDOT:TOS films were found superior regarding cell adhesion as compared to controls. Their nanotopography and hydrophilicity are significant factors that influence cytocompatibility. PEGylation of PEDOT:TOS increases their conductivity and hydrophilicity with similar results on cell viability with bare PEDOT:TOS. The biofunctionalized PEDOT:PSS thin films show enhanced cell proliferation.

Conclusions

The application of PEDOT polymers has evolved as a new perspective to advance stents.

General significance

In this work, nanomedicine involving nanotools and novel nanomaterials merges with bioelectronics to stimulate tissue regeneration for cardiovascular implants. This article is part of a Special Issue entitled Organic Bioelectronics — Novel Applications in Biomedicine.  相似文献   

20.

Background

Chondrocytes respond to biomechanical and bioelectrochemical stimuli by secreting appropriate extracellular matrix proteins that enable the tissue to withstand the large forces it experiences. Although biomechanical aspects of cartilage are well described, little is known of the bioelectrochemical responses. The focus of this study is to identify bioelectrical characteristics of human costal cartilage cells using dielectric spectroscopy.

Methods

Dielectric spectroscopy allows non-invasive probing of biological cells. An in house computer program is developed to extract dielectric properties of human costal cartilage cells from raw cell suspension impedance data measured by a microfluidic device. The dielectric properties of chondrocytes are compared with other cell types in order to comparatively assess the electrical nature of chondrocytes.

Results

The results suggest that electrical cell membrane characteristics of chondrocyte cells are close to cardiomyoblast cells, cells known to possess an array of active ion channels. The blocking effect of the non-specific ion channel blocker gadolinium is tested on chondrocytes with a significant reduction in both membrane capacitance and conductance.

Conclusions

We have utilized a microfluidic chamber to mimic biomechanical events through changes in bioelectrochemistry and described the dielectric properties of chondrocytes to be closer to cells derived from electrically excitably tissues.

General significance

The study describes dielectric characterization of human costal chondrocyte cells using physical tools, where results and methodology can be used to identify potential anomalies in bioelectrochemical responses that may lead to cartilage disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号