共查询到20条相似文献,搜索用时 0 毫秒
1.
Welsh DT 《FEMS microbiology reviews》2000,24(3):263-290
The osmoadaptation of most micro-organisms involves the accumulation of K(+) ions and one or more of a restricted range of low molecular mass organic solutes, collectively termed 'compatible solutes'. These solutes are accumulated to high intracellular concentrations, in order to balance the osmotic pressure of the growth medium and maintain cell turgor pressure, which provides the driving force for cell extension growth. In this review, I discuss the alternative roles which compatible solutes may also play as intracellular reserves of carbon, energy and nitrogen, and as more general stress metabolites involved in protection of cells against other environmental stresses including heat, desiccation and freezing. Thus, the evolutionary selection for the accumulation of a specific compatible solute may not depend solely upon its function during osmoadaptation, but also upon the secondary benefits its accumulation provides, such as increased tolerance of other environmental stresses prevalent in the organism's niche or even anti-herbivory or dispersal functions in the case of dimethylsulfoniopropionate (DMSP). In the second part of the review, I discuss the ecological consequences of the release of compatible solutes to the environment, where they can provide sources of compatible solutes, carbon, nitrogen and energy for other members of the micro-flora. Finally, at the global scale the metabolism of specific compatible solutes (betaines and DMSP) in brackish water, marine and hypersaline environments may influence global climate, due to the production of the trace gases, methane and dimethylsulfide (DMS) and in the case of DMS, also couple the marine and terrestrial sulfur cycles. 相似文献
2.
Abstract Natural abundance 13 C NMR spectroscopy has identified sucrose and trehalose as the principle compatible solutes accumulated by non-halophilic purple and green sulphur bacteria respectively, in response to osmotic stress. Synthesis of glycine betaine as a compatible solute was rare in non-halophilic phototrophic sulphur bacteria and appears to be limited almost exclusively to halotolerant isolates, although all isolates tested were able to accumulate exogenous glycine betaine from the growth medium in response to osmotic stress. These data support the hypothesis that the degree of halotolerance of a microorganism may be due, at least in part, to the metabolic effects of the compatible solute(s) accumulated. 相似文献
3.
Eukaryotes able to withstand desiccation enter a state of suspended animation known as anhydrobiosis, which is thought to require accumulation of the non-reducing disaccharides trehalose (animals, fungi) and sucrose (plants), acting as water replacement molecules and vitrifying agents. We now show that clonal populations of bdelloid rotifers Philodina roseola and Adineta vaga exhibit excellent desiccation tolerance, but that trehalose and other disaccharides are absent from carbohydrate extracts of dried animals. Furthermore, trehalose synthase genes (tps) were not found in rotifer genomes. This first observation of animal anhydrobiosis without trehalose challenges our current understanding of the phenomenon and calls for a re-evaluation of existing models. 相似文献
4.
Induction of macrophage apoptosis by Bordetella pertussis adenylate cyclase-hemolysin 总被引:2,自引:0,他引:2
Abstract The addition of 1 mM glycine betaine to the growth medium of Chromatium sp. NCIMB 8379 relieved growth inhibition caused by exposure to supra-optimal Nad concentrations. Intracellular glycine betaine concentrations were dependent upon the NaCl concentration of the growth medium up to 3 M exogenous Nad. Kinetic data for the accumulation of [methyl-14 C]-glycine betaine demonstrated that Chromatium sp. NCIMB 8379 possesses a constitutively expressed active transport system for glycine betaine. The transport system was saturable with respect to glycine betaine concentration and exhibited typical Michaelis-Menten type kinetics: K m = 24 μ M, V max = 306 nmol min−1 mg protein−1 at an external NaCl concentration of 1 M. The rate of glycine betaine transport decreased progressively with increasing growth medium NaCl concentration. This transport system may represent an adaptive response to growth in high osmolarity environments in this halotolerant isolate, allowing accumulation of glycine betaine from the external cell environment or recycling synthesised glycine betaine which has passively diffused from the cell. 相似文献
5.
Fourier-transform infrared spectroscopy (FTIR) was used to study the hydrogen-bonding interactions that take place in vitrified carbohydrates of different chain lengths. The band position of the OH stretching band (vOH) and the shift in band position as a function of temperature were determined from the FTIR spectra as indicators for the length and strength of intermolecular hydrogen bonds, respectively. Differential scanning calorimetry (DSC) was used to corroborate the FTIR studies and to measure the change in heat capacity (delta C(p)) that is associated with the glass transition. We found that with increasing T(g), the band position of vOH increases, the wavenumber-temperature coefficient of vOH in the glassy state, WTC(g), increases, whereas (delta C(p) decreases. The positive correlation that was found between vOH and the glass transition temperature, T(g), indicates that the length of the hydrogen bonds increases with increasing T(g). The increase in WTC(g) with increasing T(g) indicates that the average strength of hydrogen bonding decreases with increasing T(g). This implies that oligo- and polysaccharides (high T(g)) have a greater degree of freedom to rearrange hydrogen bonds during temperature changes than monosaccharides (low T(g)). Interestingly, WTC(g) and delta C(p) showed a negative linear correlation, indicating that the change in heat capacity during the glass transition is associated with the strength of the hydrogen-bonding network in the glassy state. Furthermore, we report that introduction of poly-L-lysine in glassy sugar matrices decreases the average length of hydrogen bonds, irrespective of the size of the carbohydrate. Palmitoyl-oleoyl-phosphatidylcholine (POPC) vesicles were found to only interact with small sugars and not with dextran. 相似文献
6.
甜菜碱提高植物抗寒性的机理及其应用 总被引:3,自引:1,他引:3
甜菜碱是植物重要的渗透调节物质,在低温等逆境条件下,许多植物细胞中迅速积累甜菜碱以维持细胞的渗透平衡.对近几年来甜菜碱提高植物抗寒性的机理研究及其应用,包括甜菜碱的生物合成途径、低温胁迫下甜菜碱对植物的保护机理、甜菜碱合成酶基因的转化及外源甜菜碱在植物抗寒中的应用进行了综述. 相似文献
7.
Takao Furuki Tatsuya Niwa Hideki Taguchi Rie Hatanaka Takahiro Kikawada Minoru Sakurai 《Biochemistry and Biophysics Reports》2019
We tested whether a short model peptide derived from a group 3 late embryogenesis abundant (G3LEA) protein is able to maintain the fluorescence activity of a red fluorescent protein, mKate2, in the dry state. The fluorescence intensity of mKate2 alone decreased gradually through repeated dehydration-rehydration treatments. However, in the presence of the LEA model peptide, the peak intensity was maintained almost perfectly during such stress treatments, which implies that the three dimensional structure of the active site of mKate2 was protected even under severe desiccation conditions. For comparison, similar experiments were performed with other additives such as a native G3LEA protein, trehalose and BSA, all of whose protective abilities were lower than that of the LEA model peptide. 相似文献
8.
9.
Acquisition of desiccation tolerance in soybeans 总被引:10,自引:0,他引:10
The entry into a desiccation-tolerant state is a major developmental component of seed maturation. Development of desiccation tolerance of embryonic axes of soybean [Glycine max (L.) Merrill cv. Chippewa 64] was studied by measuring changes in electrolyte leakage. germination and relative growth rate after axes were rapidly air-dried to various water contents. Axes acquired the full capacity for germination at 34 days after flowering (DAF). and reached physiological maturity (maximum dry weight) at 48 DAF. When dried to water content h = 0. 08 (g water g−1 dry weight). few axes germinated before 42 DAF. but more than 90% germinated after 48 DAF. However, electrolyte leakage of rehydrated axes showed a linear decline from 30 to 55 DAF. For developing axes there was a critical water content or desiccation threshold. which could be estimated by using the electrolyte leakage method. The threshold of desiccation tolerance decreased gradually from h = 1. 10 to 0. 18 as axes matured from 28 to 55 DAF. The development of desiccation tolerance continued after physiological maturity at 48 DAF. We conclude that the acquisition of desiccation tolerance of soybean axes is a gradual event, rather than an abrupt transition. 相似文献
10.
Estimating the relative suitability of different host plant species for herbivores is usually based on survival and growth parameters, neglecting other parameters such as resistance traits. Adding further complexity, host plant suitability may depend on environmental temperature. We here use the oligophagous pierid butterfly Pieris napi to investigate effects of temperature (during both the larval and the adult stage) and larval host plant species (Alliaria petiolata, Cardamine pratensis and Sinapis alba) on life history and adult stress resistance traits (resistance to desiccation and starvation). Environmental temperature affected all developmental traits: at the lower temperature development time and body mass increased. Temperature also affected adult stress resistance: desiccation and starvation resistance were higher at the lower adult temperature. When the same temperatures were used during larval development, effects on adult stress resistance traits were in the opposite direction. Host plants affected life history (larger body mass and faster development in larvae fed S. alba) and stress resistance traits (best performance in larvae fed A. petiolata) differently. Thus, the relative suitability of a host plant depended on the trait of the herbivore that is focused on and may be subject to local selection pressures. Although interactions with temperature were present for all traits, effect sizes were generally small. 相似文献
11.
DENG Zhi-Jun XIANG Zhen-Yong CHENG Hong-Yan LI Yan-Jun SONG Song-Quan 《Plant Diversity》2008,30(3):355-359
The developmental changes in morphology and germinability of Jatropha curcas seeds, effects of temperature and light on seed germination , and changes in desiccation tolerance of mature seeds were studied in this paper. The results indicated that J. curcas seeds reached a physiological maturation at 58 days after anthesis, and that seed germination percentage reached a peak at physiological maturation, and then decreased. The optimal germination temperature was 25 to 30℃. J. curcas seeds were insensitive to dehydration at physiological maturation . There was not a notable effect of light on seed germination. Therefore, J. curcas seed was a non-photoblastic and orthodox seeds . 相似文献
12.
Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments 总被引:29,自引:0,他引:29
All microorganisms possess a positive turgor, and maintenance of this outward-directed pressure is essential since it is generally considered as the driving force for cell expansion. Exposure of microorganisms to high-osmolality environments triggers rapid fluxes of cell water along the osmotic gradient out of the cell, thus causing a reduction in turgor and dehydration of the cytoplasm. To counteract the outflow of water, microorganisms increase their intracellular solute pool by amassing large amounts of organic osmolytes, the so-called compatible solutes. These osmoprotectants are highly congruous with the physiology of the cell and comprise a limited number of substances including the disaccharide trehalose, the amino acid proline, and the trimethylammonium compound glycine betaine. The intracellular amassing of compatible solutes as an adaptive strategy to high-osmolality environments is evolutionarily well-conserved in Bacteria, Archaea, and Eukarya. Furthermore, the nature of the osmolytes that are accumulated during water stress is maintained across the kingdoms, reflecting fundamental constraints on the kind of solutes that are compatible with macromolecular and cellular functions. Generally, compatible solutes can be amassed by microorganisms through uptake and synthesis. Here we summarise the molecular mechanisms of compatible solute accumulation in Escherichia coli and Bacillus subtilis, model organisms for the gram-negative and gram-positive branches of bacteria. Received: 12 May 1998 / Accepted: 24 July 1998 相似文献
13.
Geographic variation is characteristic of many physiological traits at the population and species levels. However, several recent studies have suggested that population-level variation is either limited or that it is mostly a consequence of phenotypic plasticity. Here we show that there is considerable physiological inertia in cold hardiness, upper thermal tolerance limits and desiccation resistance in caterpillars of the sub-Antarctic moth Embryonopsis halticella Eaton, such that populations from two climatically different islands are physiologically very similar. Both populations are moderately chill tolerant, with no difference in the supercooling points of caterpillars (-17 to -20 degrees C). Within their host plants caterpillars of both populations freeze at substantially higher, and statistically equivalent temperatures (-9.5 to -11.5 degrees C). The populations also have similar upper lethal limits (38 degrees C), and survival times of dry conditions (6-170 h depending on mass). The previously inexplicably low freezing point of caterpillars at the climatically less severe Marion Island seems likely a consequence of physiological inertia given that the freezing point of caterpillars within their hosts is only a few degrees below absolute minima at the older, and colder, Heard Island. Lack of adaptive geographic variation in physiological traits has consequences for models of range limits, and highlights the importance of exploring phenotypic plasticity as a response to climatic variation. 相似文献
14.
Genetically related diploid strains of Saccharomyces cerevisiae that accumulate varied amounts of trehalose during starvation for nitrogen have been constructed. Strains that produced greater than 5% trehalose (dry cell weight) were more tolerant of thermal, or freeze-thaw stresses than strains that produced less than 4% trehalose. Thus trehalose appears to play a role in stress tolerance of yeast. The significance of these results is that, for the first time, a series of related, unmutated strains have been used to test the effect of trehalose on thermotolerance. Previous studies employed either heat shock treatment, or mutated strains to provide trehalose variations, and as such the contribution of the disaccharide to stress tolerance could not necessarily be separated from other factors such as heat shock proteins. 相似文献
15.
The role of ergosterol in yeast stress tolerance, together with heat shock proteins (hsps) and trehalose, was examined in a sterol auxotrophic mutant of Saccharomyces cerevisiae. Ergosterol levels paralleled viability data, with cells containing higher levels of the sterol exhibiting greater tolerances to heat and ethanol. Although the mutant synthesised hsps and accumulated trehalose upon heat shock to the same levels as the wild-type cells, these parameters did not relate to stress tolerance. These results indicate that the role of ergosterol in stress tolerance is independent of hsps or trehalose. 相似文献
16.
海藻糖是一种重要的抗逆物质。大肠杆菌中otsBA操纵子编码的两种酶负责海藻糖合成。otsBA基因的表达受渗透压诱导和σs因子的调节。细胞的周质海藻糖酶(treA)将外源海藻糖分解成两个葡萄糖分子。尽管大肠杆菌中渗透压诱导合成的海藻糖并不能保护细胞抗干燥,我们将otsA单个基因通过农杆菌转入烟草时,转基因株提高了耐盐和抗干燥特性,同时在转基因烟草提取物中检测到海藻糖,证明otsA基因在烟草中表达并合成海藻糖。我们认为若将otsA基因转入其它植物,可望改善这些植物的抗干旱、耐盐碱特性和延长采摘后的保鲜期 。 相似文献
17.
Two general strategies exist for the growth and survival of prokaryotes in environments of elevated osmolarity. The 'salt in cytoplasm' approach, which requires extensive structural modifications, is restricted mainly to members of the Halobacteriaceae. All other species have convergently evolved to cope with environments of elevated osmolarity by the accumulation of a restricted range of low molecular mass molecules, termed compatible solutes owing to their compatibility with cellular processes at high internal concentrations. Herein we review the molecular mechanisms governing the accumulation of these compounds, both in Gram-positive and Gram-negative bacteria, focusing specifically on the regulation of their transport/synthesis systems and the ability of these systems to sense and respond to changes in the osmolarity of the extracellular environment. Finally, we examine the current knowledge on the role of these osmostress responsive systems in contributing to the virulence potential of a number of pathogenic bacteria. 相似文献
18.
Ma X Jamil K Macrae TH Clegg JS Russell JM Villeneuve TS Euloth M Sun Y Crowe JH Tablin F Oliver AE 《Cryobiology》2005,51(1):15-28
The ability to desiccate mammalian cells while maintaining a high degree of viability would be very important in many areas of biological science, including tissue engineering, cell transplantation, and biosensor technologies. Certain proteins and sugars found in animals capable of surviving desiccation might aid this process. We report here that human embryonic kidney (293H) cells transfected with the gene for the stress protein p26 from Artemia and loaded with trehalose showed a sharp increase in survival during air-drying. Further, we find vacuum-drying greatly improved the ability of the cells to survive, and that the physical shape and structure of the cellular sample had a large influence on recovery following rehydration. Cells suspended in a rounded droplet survived desiccation markedly better than those spread as a thin film. Finally, we used alamarBlue to monitor cellular metabolism and Hema 3 to assess colony formation after vacuum-drying. AlamarBlue fluorescence indicated that the transfected 293H cells expressing p26 (E11'L) grew much better than the control 293H cells. In fact, immediate survival and colony formation in E11'L cells increased as much as 34-fold compared with control cells when the samples were dried to a water content of 0.2 g H2O/g dry weight, as measured by gravimetric analysis. These results indicate that p26 improves cell survival following drying and rehydration, and suggest that dry storage of mammalian cells is a likely possibility in the future. 相似文献
19.
Many of the physiological adaptations evolved in terrestrial invertebrates to resist desiccation have also been shown to enhance the survival of low temperatures. In this study we have examined temporal changes in the physiology of the collembolan Folsomia candida during acclimation to mild desiccation stress (98.2% RH), and how physiological changes correlate with resistance to subsequent cold shock, heat shock and acute desiccation stress. Drought-acclimation increased the resistance to cold and acute drought but reduced the resistance to heat shock. The composition of membrane phospholipid fatty acids (PLFA) changed during acclimation resulting in a higher degree of unsaturation by the end of the 192-h acclimation period. This resembles typical membrane alterations seen in ectothermic animals exposed to cold. Only small changes were seen in the neutral lipid fraction. The temporal changes in cold resistance and drought resistance correlated well with changes in PLFA composition and accumulation of sugars and polyols (’cryoprotectives’). It is proposed that the drought-induced PLFA desaturation, combined with the membrane protecting accumulation of cryoprotectives, are important physiological adaptations providing tolerance to both desiccation and cold. 相似文献
20.
苔藓植物耐旱机制研究进展 总被引:11,自引:0,他引:11
耐旱藓类快速脱水并存活的能力可由快速建立起来的对环境变化的耐受机制来反映,保护细胞完整性的组成型机制与修复细胞损伤的诱导机制协同作用使苔藓植物渡过干旱胁迫.再水化时光合系统原初恢复非常迅速;ABA处理可显著改变PSⅡ的生理特征;基因表达的变化主要由翻译调控引起;脱水组织中贮存mRNPs既保护了mRNAs,又加快了再水化修复速度.山墙藓(Tortula ruralis)是耐旱研究较多的一个种,已建立了表达序列文库(EST),将会成为耐旱研究的重要模式植物. 相似文献