首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We used radiocarbon measurements of dissolved organic carbon (DOC) to resolve sources of riverine carbon within agriculturally dominated landscapes in California. During 2003 and 2004, average Δ14C for DOC was ?254‰ in agricultural drains in the Sacramento–San Joaquin Delta, ?218‰ in the San Joaquin River, ?175‰ in the California State Water Project and ?152‰ in the Sacramento River. The age of bulk DOC transiting the rivers of California’s Central Valley is the oldest reported for large rivers and suggests wide-spread loss of soil organic matter caused by agriculture and urbanization. Using DAX 8 adsorbent, we isolated and measured 14C concentrations in hydrophobic acid fractions (HPOA); river samples showed evidence of bomb-pulse carbon with average Δ14C of 91 and 76‰ for the San Joaquin and Sacramento Rivers, respectively, with older HPOA, ?204‰, observed in agricultural drains. An operationally defined non-HPOA fraction of DOC was observed in the San Joaquin River with seasonally computed Δ14C values of between ?275 and ?687‰; the source of this aged material was hypothesized to be physically protected organic-matter in high clay-content soils and agrochemicals (i.e., radiocarbon-dead material) applied to farmlands. Mixing models suggest that the Sacramento River contributes about 50% of the DOC load in the California State Water Project, and agricultural drains contribute approximately one-third of the load. In contrast to studies showing stabilization of soil carbon pools within one or two decades following land conversion, sustained loss of soil organic matter, occurring many decades after the initial agricultural-land conversion, was observed in California’s Central Valley.  相似文献   

2.
Condition factors and growth rates of postlarval (young-of-year) fishes in a Central California river were compared in order to determine the relative importance of floodplain and riverine habitats for rearing. Sampling took place between April and June of 2001 and 2002 in the lower Cosumnes River and its floodplain. Sacramento splittail showed higher condition and length increment in floodplain habitats of than in riverine habitats. Sacramento suckers showed differences in condition between sites, but suckers from the floodplain had lower weight increments than those from the river. The weight increment in Sacramento splittail was not significantly different between habitats. In addition, two alien species, common carp and golden shiner, had similar condition factors and growth rates. This study shows the usefulness of condition factor and growth rate in evaluating the importance of different habitats for early life history stages of fishes.  相似文献   

3.
The associations of resident fish communities with environmental variables and stream condition were evaluated at representative sites within the Sacramento River Basin, California between 1996 and 1998 using multivariate ordination techniques and by calculating six fish community metrics. In addition, the results of the current study were compared with recent studies in the San Joaquin River drainage to provide a wider perspective of the condition of resident fish communities in the Central Valley of California as a whole. Within the Sacramento drainage, species distributions were correlated with elevational and substrate size gradients; however, the elevation of a sampling site was correlated with a suite of water-quality and habitat variables that are indicative of land use effects on physio-chemical stream parameters. Four fish community metrics – percentage of native fish, percentage of intolerant fish, number of tolerant species, and percentage of fish with external anomalies – were responsive to environmental quality. Comparisons between the current study and recent studies in the San Joaquin River drainage suggested that differences in water-management practices may have significant effects on native species fish community structure. Additionally, the results of the current study suggest that index of biotic integrity-type indices can be developed for the Sacramento River Basin and possibly the entire Central Valley, California. The protection of native fish communities in the Central Valley and other arid environments continues to be a conflict between human needs for water resources and the requirements of aquatic ecosystems; preservation of these ecosystems will require innovative management strategies.  相似文献   

4.
Two microsatellite‐enriched libraries [(CAGA)n, (TAGA)n] were constructed using pooled DNA from three cyprinid species native to the Sacramento–San Joaquin Delta of California: Sacramento splittail (Pogonichthys macrolepidotus); Sacramento pikeminnow (Ptychocheilus grandis); and tui chub (Siphateles bicolor). Primers were designed for 105 loci and tested for levels of polymorphism in five cyprinid species found in the Delta: Sacramento splittail, Sacramento pikeminnow, tui chub, hitch (Lavinia exilicauda), and Sacramento blackfish (Orthodon microlepidotus). Fifty‐one loci were polymorphic for at least one species and 31 loci were polymorphic for multiple species. The number of polymorphic loci per species ranged from 16 to 26.  相似文献   

5.
Previous studies of population genetic structure of fall‐run chinook salmon (Oncorhynchus tshawytscha) in California’s Central Valley have either not focused on or have been unable to resolve intertributary differences within the San Joaquin River basin. The authors describe the isolation, the polymerase chain reaction conditions, and characterize the cross‐species amplification of 17 microsatellite loci in six species of salmonids. Fourteen of these loci are polymorphic in fall‐run chinook from the San Joaquin River drainage. These results indicate the potential utility of microsatellite markers developed for one species, for both congenerics and species within a closely related genus.  相似文献   

6.
We analysed phylogeography and population genetic variation across the range of the western pond turtle (Emys marmorata) using rapidly evolving mitochondrial and nuclear DNA sequence data. Nuclear DNA sequences from two unlinked introns displayed extremely low levels of variation, but phylogenetic analyses based on mtDNA recovered four well-supported and geographically coherent clades. These included a large Northern clade composed of populations from Washington south to San Luis Obispo County, California, west of the Coast Ranges; a San Joaquin Valley clade from the southern Great Central Valley; a geographically restricted Santa Barbara clade from a limited region in Santa Barbara and Ventura counties; and a Southern clade that occurs south of the Tehachapi Mountains and west of the Transverse Range south to Baja California, Mexico. An analysis of molecular variance (amova) based on regional hydrographic units revealed that populations from the Sacramento Valley north to Washington were virtually invariant, with no evidence of population substructure among northern river drainage basins. In other areas, E. marmorata contains considerable unrecognized variation, particularly in central and southern California and in northern Baja California, Mexico. Our northern clade is congruent with the distribution of the subspecies Emys marmorata marmorata (Washington-central California). However, no clade is congruent with the distribution of the southern subspecies Emys marmorata pallida from central California-Baja. Thus, recognition of the current subspecies split is not warranted, based on the available genetic evidence. Our amova and phylogenetic results, in conjunction with a growing comparative database for other codistributed aquatic taxa, confirm the occurrence of genetic breaks across the Tehachapi Mountains and Transverse Range bounding the southern end of the Great Central Valley, and point to southern California as a rich source of cryptic genetic variation.  相似文献   

7.
We used compound-specific isotope analysis of carbon isotopes in amino acids (AAs) to determine the biosynthetic source of AAs in fish from major tributaries to California's Sacramento-San Joaquin river delta (i.e., the Sacramento, Cosumnes and Mokelumne rivers). Using samples collected in winter and spring between 2016 and 2019, we confirmed that algae are a critical component of floodplain food webs in California's Central Valley. Results from bulk stable isotope analysis of carbon and nitrogen in producers and consumers were adequate to characterize a general trophic structure and identify potential upstream and downstream migration into our study site by American shad Alosa sapidissima and rainbow trout Oncorhynchus mykiss, respectively. However, owing to overlap and variability in source isotope compositions, our bulk data were unsuitable for conventional bulk isotope mixing models. Our results from compound-specific carbon isotope analysis of AAs clearly indicate that algae are important sources of organic matter to fish of conservation concern, such as Chinook salmon Oncorhynchus tshawytscha in California's Central Valley. However, algae were not the exclusive source of energy to metazoan food webs. We also revealed that other sources of AAs, such as bacteria, fungi and higher plants, contributed to fish as well. While consistent with the well-supported notion that algae are critical to aquatic food webs, our results highlight the possibility that detrital subsidies might intermittently support metazoan food webs.  相似文献   

8.
We characterized 23 polymorphic tetranucleotide microsatellite loci for Sacramento perch (Archoplites interruptus). This species is extirpated in its native range, the Sacramento–San Joaquin Delta (California, USA), and is therefore targeted for recovery. A concerted effort is currently underway to re‐establish self‐sustaining populations of Sacramento perch in its native range. These microsatellites will be used to analyse the population structure of the species and, in conjunction with life history and physiological data, develop a comprehensive recovery plan.  相似文献   

9.
Pinus sabiniana Dougl. (grey pine) forms savanna forests in the foothills surrounding California's Great Central Valley. However, its fossil record, which dates from the late Miocene through the Pliocene and Pleistocene, is found exclusively in southern California, south of the species’ present range. A total of twenty-nine isozyme loci, representing eighteen enzyme systems, was assayed to analyse the genetic structure in eight populations of grey pine and attempt to track its migration history from southern to northern California. Expected heterozygosity in the two southernmost samples was 0.128 and 0.150, and heterozygosity tended to decrease with increasing latitude, suggesting the loss of diversity as grey pine dispersed northward. However, genetic distances between populations were very small, even on opposite sides of the treeless Great Central Valley; and estimated time since divergence was 900 to 9000 years at a maximum. Wright's FST, the proportion of total genetic diversity among populations, was only 0.057, which is similar to values found in many conifers with continuous distributions. Nm, the number of migrants among populations per generation, was 4.1 to 6.7, depending on estimator, and indicates that gene flow is extensive, or was so in the recent past. In every population, observed heterozygosity was less than expected heterozygosity, and the fixation index, FIS, for the progeny was 0.128, which indicates a fairly high rate of inbreeding. The genetic similarity of disjunct populations, in combination with paleogeographic and paleoclimatic evidence, suggests that grey pine formed a continuous population throughout the Great Central Valley, perhaps between 12,000 and 8000 yrs BP . Its range became fragmented during the Xerothermic, when it ascended into the foothills. Gaps in its range correlate with late Pleistocene–early Holocene lakes in adjacent basins and with the Sacramento–San Joaquin Delta.  相似文献   

10.
The historical biogeography of California’s taxa has been the focus of extensive research effort. The western pond turtle (Emys marmorata) is an example of a wide‐ranging taxon that spans several well‐known California diversity hotspots. Using a dataset comprised of one mitochondrial and five nuclear loci, we elucidate the major biogeographic patterns of the western pond turtle across the California landscape. By employing a combination of phylogenetic and network‐based approaches, we recovered a relatively ancient (c. 2–8 Ma) north/south split among populations of E. marmorata and find an area of intergradation centred in the Central Coast Ranges of California. In addition, discordant mitochondrial/nuclear genetic patterns suggest subsequent gene flow from northern populations and from San Joaquin Valley populations into the Central Coast Ranges after the Pliocene‐Pleistocene marine embayment of the Great Central Valley subsided. Our results emphasize the utility of nuclear DNA phylogeography for recovering the impact of relatively ancient biogeographic events, and suggest that the Central Coast Ranges of California have played a major role in the geographic structuring of the western pond turtle, and possibly other co‐distributed taxa.  相似文献   

11.
The roles of vision and the lateral-line system in fish-screen avoidance behaviors were investigated in Sacramento splittail (Pogonichthys macrolepidotus). Fish were viewed swimming in front of water-diversion-type fish screens in a laboratory flume during the day (lit condition) and night (darkened condition, using infrared equipment). Streptomycin-sulfate treatments were used to block the fish’s lateral-line systems. Lateral line neuromasts were labeled with 2-(4-(dimethylamino)styryl)-N-ethylpyridinium iodide (DASPEI) to assess the streptomycin treatment’s effectiveness. Splittail contacted the screens infrequently during the day, but contacted the screens significantly more often during the night. Also, in darkened conditions, streptomycin-treated splittail contacted the screens significantly more often than did control fish. Furthermore 60 % of the streptomycin-treated fish became impinged (stuck) to the screens during night experiments, compared to 15 % of the untreated fish. These findings suggest that splittail use their lateral-line system to detect and avoid objects (screens) in the absence of vision. Splittail displayed no response to stimuli generated from a piston-driven vibrator mounted to the center of the screens. Our findings are the first to show how fish can use different sensory systems to detect and avoid fish screens in the presence or absence of light, and they should benefit fisheries and water resources managers, regarding the timing of water extractions through screened water diversions.  相似文献   

12.
13.
Few studies have quantified juvenile salmon growth among different habitats or evaluated the mechanisms controlling salmon growth and survival. We used otolith microstructure to compare daily relative growth rates among main-channel riverine areas, off-channel ponds, and non-natal seasonal tributaries of the Sacramento River, CA. We compared prey availability, prey preference, and stomach fullness between these sites. We observed larger average otolith growth increments, higher prey densities, and warmer water temperatures in both off-channel ponds and non-natal seasonal tributaries compared to the main-channel areas in both 2001 and 2002. Our findings suggest that warmer temperatures and abundant prey in off-channel habitats during Central Valley Chinook salmon rearing periods may lead to higher growth rates, which in turn may improve juvenile survival. Our results suggest that off-channel habitats may be critical habitats to include in conservation and management plans for juvenile salmon.  相似文献   

14.
Species ranges that span different geographic landscapes frequently contain cryptic species‐ or population‐level structure. Identifying these possible diversification factors can often be accomplished under a comparative phylogeographic framework. However, comparisons suffer if previous studies are limited to a particular group or habitat type. In California, a complex landscape has led to several phylogeographic breaks, primarily in terrestrial species. However, two sister taxa of freshwater fish, riffle sculpin (Cottus gulosus) and Pit sculpin (Cottus pitensis), display ranges based on morphological identifications that do not coincide with these breaks. Using a comprehensive sampling and nuclear, mitochondrial and microsatellite markers, we hypothesized that proposed species ranges are erroneous based on potential hybridization/gene flow between species. Results identified a phylogeographic signature consistent with this hypothesis, with breaks at the Coast Range Mountains and Sacramento/San Joaquin River confluence. Coastal locations of C. gulosus represent a unique lineage, and ‘true’ C. gulosus were limited to the San Joaquin basin, both regions under strong anthropogenic influence and potential conservation targets. C. pitensis limits extended historically throughout the Sacramento/Pit River basin but currently are restricted to the Pit River. Interestingly, locations in the Sacramento River contained low levels of ancestral hybridization and gene flow from C. gulosus but now appear to be a distinct population. The remaining population structure was strongly correlated with Sierra Nevada presence (high) or absence (low). This study stresses the importance of testing phylogeographic breaks across multiple taxa/habitats before conservation decisions are made, but also the potential impact of different geographic landscapes on evolutionary diversification.  相似文献   

15.
Skunk-variant rabies is endemic in California (United States), and the development of oral vaccines and baits to vaccinate skunks is in progress. In 2003, the California Department of Public Health (CDPH) began to quantify the impacts of skunk-variant rabies and to assess the feasibility of using oral rabies vaccination (ORV) as a containment measure. The CDPH rabies case data for skunks were spatially depicted and analyzed using a geographic information system. Statewide, rabid skunks (1992-2003) primarily occurred in seven physiographic regions: Central Coast, North Coast, North Sierra, Sacramento Valley, San Francisco Bay and Delta, San Joaquin Valley, and South Sierra. Detailed analysis of rabid skunks in San Luis Obispo (SLO) and Santa Barbara (SB) counties showed that skunk rabies was endemic in the coastal plain of SLO County between 1992 and 2000, but only became epizootic in SB County during 2002. Despite the widespread distribution of striped skunks (Mephitis mephitis) throughout most of California, the skunk rabies variant has not been found in Los Angeles County since 1979. Results imply that future ORV campaigns for skunk-variant rabies in the Pacific Coastal Plain could deter spread from SLO into SB County, as well as deterring the reintroduction of skunk-variant rabies into southern California.  相似文献   

16.
The grass sharpshooter, Draeculacephala minerva Ball (Hemiptera: Cicadellidae), is a very common and often abundant grass-feeding leafhopper in California. Its population dynamics and ability to transmit Xylella fastidiosa were monitored over a 2-yr period in California's San Joaquin Valley. Collections of individuals from natural populations in irrigated pastures and alfalfa, Medicago savita L. fields adjacent to X. fastidiosa-infected almond (Prunus spp.) orchards indicated the occurrence of three discrete generations per year that peaked during the summer. Population densities varied significantly among experimental field survey sites. Insects captured on intercepting mesh traps, yellow sticky cards, and UV-light traps indicated local movement of these insects into and surrounding X. fastidiosa-infected, almond orchards. Local movement and seasonal transmission of X. fastidiosa from infected almonds to Catharanthus roseus (L.) G. Don indicated that this insect may be partly responsible for the slow spread of almond leaf scorch now recently observed in California's San Joaquin Valley.  相似文献   

17.
Almond leaf scorch (ALS) disease is caused by the bacterium Xylella fastidiosa and transmitted by xylem-feeding insects. Reports of increased incidence of ALS-diseased trees in California prompted surveys in three almond [Prunus dulcis (Mill.) D. A. Webb]-growing regions, from June 2003 to September 2005, to determine insect vector species composition and abundance. For comparison, sampling in and near vineyards in the San Joaquin Valley, California, also was completed. Sampling in or near almond orchards collected >42,000 Cicadomorpha of which 4.8% were xylem feeders, including 1912 grass sharpshooter, Draeculacephala minerva Ball; five Xyphon fulgida Nottingham; and a single spittlebug, Philaenus spumarius L. The most abundant vector was D. minerva. Season-long sampling indicated that D. minerva was a year-round resident in and/or near almonds in the Sacramento Valley, but not in the San Joaquin Valley. Similarly, D. minerca was rare in vineyards in the San Joaquin Valley, but was abundant in irrigated pastures near vineyards. D. minerva was most frequently collected along orchard margins, and peak densities were observed in summer, the period of time when bacterial titers are reported to increase in infected trees. Screening of D. minerva for presence of X.fastidiosa found that 1.1% of insects collected near almond orchards and 4.5% of insects collected from pastures tested positive. The X. fastidiosa subspecies and genotype detected in insects collected from orchards matched those collected from ALS-diseased almond trees in the same orchard. Of the few X. fulgida and P. spumarius collected, none tested positive for X. fastidiosa. Results are discussed with respect to X. fastidiosa vector control and detection methods.  相似文献   

18.
Lygus spp. (Heteroptera: Miridae) are serious pests of numerous field and fruit crops in North America. In an effort to reduce crop damage, parasitoids known to attack these species in Europe were introduced into the USA beginning in the 1970s. Permanent populations of the nymphal endoparasitoid Peristenus relictus (Hymenoptera: Braconidae) were established at two locations in California during the 2000s. Both populations are associated with significant reductions in lygus bugs attacking alfalfa, commercially produced strawberries grown organically and in wild vegetation. Beginning in 2009, in an effort to determine the extent to which P. relictus has spread from the Sacramento Valley and Monterey Bay region, populations of lygus bug were sampled at increasing distances from their original release sites. P. relictus has dispersed at least 213 km in the central region of California and 150 km along the coastal mountains. These respective populations have averaged 16.6 km/year and 17.7 km/year since they were released. While not directly examined, the spread of P. relictus south into the central and major growing region of California, the San Joaquin Valley, where previous releases have failed, suggests this population may be evolving greater heat tolerance, relative to the populations originally introduced into California.  相似文献   

19.
A primary goal of conservation genetics is the discovery, delimitation and protection of phylogenetic lineages within sensitive or endangered taxa. Given the importance of lineage protection, a combination of phylogeography, historical geology and molecular clock analyses can provide an important historical context for overall species conservation. We present the results of a range-wide survey of genetic variation in the California tiger salamander, Ambystoma californiense, as well as a summary of the past several million years of inundation and isolation of the Great Central Valley and surrounding uplands that constitute its limited range. A combination of population genetic and phylogenetic analyses of mitochondrial DNA variation among 696 samples from 84 populations revealed six well-supported genetic units that are geographically discrete and characterized by nonoverlapping haplotype distributions. Populations from Santa Barbara and Sonoma Counties are particularly well differentiated and geographically isolated from all others. The remaining units in the Southern San Joaquin Valley, Central Coast Range, Central Valley and Bay Area are separated by geological features, ecological zone boundaries, or both. The geological history of the California landscape is consistent with molecular clock evidence suggesting that the Santa Barbara unit has been isolated for at least 0.74-0.92 Myr, and the Sonoma clade is equally ancient. Our work places patterns of genetic differentiation into both temporal- and landscape-level contexts, providing important insights into the conservation genetics of the California tiger salamander.  相似文献   

20.
Microsatellites, which have rapidly become the preferred markers in population genetics, reliably assign individual chinook salmon to the winter, fall, late-fall, or spring chinook runs in the Sacramento River in California's Central Valley (Banks et al. 2000. Can. J. Fish. Aquat. Sci. 57:915-927). A substantial proportion of this discriminatory power comes from Ots-2, a simple CA repeat, which is expected to evolve rapidly under the stepwise mutation model. We have sequenced a 300-bp region around this locus and typed 668 microsatellite-flanking sequence haplotypes to explore further the basis of this microsatellite divergence. Three sites of nucleotide polymorphism in the Ots-2 flanking sequence define five haplotypes that are shared by the Californian and Canadian populations. The Ots-2 microsatellite alleles are nonrandomly distributed among these five haplotypes in a pattern of gametic disequilibrium that is also shared among populations. Divergence between the winter run and other Central Valley stocks appears to be caused by a combination of surprisingly static evolution at Ots-2 within a context of more rapidly changing haplotype frequencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号