首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Caffeine is one of the most psychostimulants consumed all over the world that usually presents positive effects on cognition. In this study, effects of caffeine on mice performance in the object recognition task were tested in different intertrial intervals. In addition, it was analyzed the effects of caffeine on brain derived neurotrophic factor (BDNF) and its receptor, TrkB, immunocontent to try to establish a connection between the behavioral finding and BDNF, one of the neurotrophins strictly involved in memory and learning process. CF1 mice were treated during 4 consecutive days with saline (0.9g%, i.p.) or caffeine (10mg/kg, i.p., equivalent dose corresponding to 2-3 cups of coffee). Caffeine treatment was interrupted 24h before the object recognition task analysis. In the test session performed 15min after training session, caffeine-treated mice recognized more efficiently both the familiar and the novel object. In the test session performed 90min and 24h after training session, caffeine did not change the time spent in the familiar object but increased the object recognition index, when compared to control group. Western blotting analysis of hippocampus from caffeine-treated mice revealed an increase in BDNF and TrkB immunocontent, compared to their saline-matched controls. Phospho-CREB immunocontent did not change with caffeine treatment. Our results suggest that acute treatment with caffeine improves recognition memory, and this effect may be related to an increase of the BDNF and TrkB immunocontent in the hippocampus.  相似文献   

2.
3.
Impaired fear memory extinction (Ext) is one of the hallmark symptoms of post‐traumatic stress disorder (PTSD). However, since the precise mechanism of impaired Ext remains unknown, effective interventions have not yet been established. Recently, hippocampal‐prefrontal brain‐derived neurotrophic factor (BDNF) activity was shown to be crucial for Ext in naïve rats. We therefore examined whether decreased hippocampal‐prefrontal BDNF activity is also involved in the Ext of rats subjected to a single prolonged stress (SPS) as a model of PTSD. BDNF levels were measured by enzyme‐linked immunosorbent assay (ELISA), and phosphorylation of TrkB was measured by immunohistochemistry in the hippocampus and medial prefrontal cortex (mPFC) of SPS rats. We also examined whether BDNF infusion into the ventral mPFC or hippocampus alleviated the impaired Ext of SPS rats in the contextual fear conditioning paradigm. SPS significantly decreased the levels of BDNF in both the hippocampus and mPFC and TrkB phosphorylation in the ventral mPFC. Infusion of BDNF 24 hours after conditioning in the infralimbic cortex (ILC), but not the prelimbic cortex (PLC) nor hippocampus, alleviated the impairment of Ext. Since amelioration of impaired Ext by BDNF infusion did not occur without extinction training, it seems the two interventions must occur consecutively to alleviate impaired Ext. Additionally, BDNF infusion markedly increased TrkB phosphorylation in the ILC of SPS rats. These findings suggest that decreased BDNF signal transduction might be involved in the impaired Ext of SPS rats, and that activation of the BDNF‐TrkB signal might be a novel therapeutic strategy for the impaired Ext by stress.  相似文献   

4.
The spontaneously hypertensive rat (SHR) is an established animal model of ADHD. It has been suggested that ADHD symptoms arise from deficits in executive functions such as working memory, attentional control and decision making. Both ADHD patients and SHRs show deficits in spatial working memory. However, the data on spatial working memory deficits in SHRs are not consistent. It has been suggested that the reported cognitive deficits of SHRs may be related to the SHRs’ locomotor activity. We have used a holeboard (COGITAT) to study both cognition and activity in order to evaluate the influence of the activity on the cognitive performance of SHRs. In comparison to Wistar-Kyoto (WKY) rats, SHRs did not have any impairment in spatial working memory and reference memory. When the rats’ locomotor activity was taken into account, the SHRs’ working memory and reference memory were significantly better than in WKY rats. The locomotor activity appears to be a confounding factor in spatial memory tasks and should therefore be controlled for in future studies. In the SHR model of ADHD, we were unable to demonstrate an impairment of working memory which has been reported in patients with ADHD.  相似文献   

5.
YP Tang  J Wade 《PloS one》2012,7(8):e43687
Mature brain derived neurotrophic factor (BDNF) plays critical roles in development of brain structure and function, including neurogenesis, axon growth, cell survival and processes associated with learning. Expression of this peptide is regulated by estradiol (E2). The zebra finch song system is sexually dimorphic - only males sing and the brain regions controlling song are larger and have more cells in males compared to females. Masculinization of this system is partially mediated by E2, and earlier work suggests that BDNF with its high affinity receptor TrkB may also influence this development. The present study evaluated expression of multiple forms of both BDNF and TrkB in the developing song system in juvenile males and females treated with E2 or a vehicle control. Using immunohistochemistry and Western blot analysis, BDNF was detected across the song nuclei of 25-day-old birds. Westerns allowed the pro- and mature forms of BDNF to be individually identified, and proBDNF to be quantified. Several statistically significant effects of sex existed in both the estimated total number of BDNF+ cells and relative concentration of proBDNF, varying across the regions and methodologies. E2 modulated BDNF expression, although the specific nature of the regulation depended on brain region, sex and the technique used. Similarly, TrkB (both truncated and full-length isoforms) was detected by Western blot in the song system of juveniles of both sexes, and expression was regulated by E2. In the context of earlier research on these molecules in the developing song system, this work provides a critical step in describing specific forms of BDNF and TrkB, and how they can be mediated by sex and E2. As individual isoforms of each can have opposing effects on mechanisms, such as cell survival, it will now be important to investigate in depth their specific functions in song system maturation.  相似文献   

6.
Abundant studies have shown possible links between low levels of brain-derived neurotrophic factor (BDNF) and neurological diseases such as Alzheimer's disease, Parkinson's disease, and depression, as well as stress and anxiety; therefore, BDNF could be a therapeutic target for neurological disorders. In the present study, a positional scanning-synthetic peptide combinatorial library was utilized to identify a peptide modulator of BDNF expression in the hippocampal neuronal cell line, H19-7. A novel tripeptide (Neuropep-1) induced a significant increase of BDNF mRNA and protein levels in H19-7 cells. Pre-treatment of TrkB inhibitor (K252a) did not block Neuropep-1-induced BDNF up-regulation. These results indicate that Neuropep-1 may up-regulate BDNF expression that might be independent of the TrkB receptor pathway. Tail vein injection of Neuropep-1 significantly up-regulated BDNF expression, TrkB phosphorylation, and its downstream signals including activation of Akt, ERK, and cAMP response element binding in the rat hippocampus. To evaluate improvement of spatial learning and memory (SLM) by Neuropep-1-induced BDNF up-regulation, the Y-maze and Morris water maze tests were performed. These results showed Neuropep-1 injection improved SLM performance with increase of BDNF and TrkB expression, activation of TrkB downstream signals in rat hippocampus compared with the control group. However, phosphorylation levels of TrkB were not changed when it was normalized to the level of TrkB expression. The difference on TrkB phosphorylation in Neuropep-1-injected rats may be affected by behavioral tests. These results suggest that Neuropep-1 may improve SLM via activation of the BDNF/TrkB signaling pathway in the rat hippocampus. Therefore, our findings represent that Neuropep-1 might be a potential candidate for treatment of learning and memory disorders as well as neurological diseases involving the abnormal expression of BDNF.  相似文献   

7.
Bisphenol A (BPA) is a ubiquitous environmental endocrine disrupting compound (EDC); public health concerns have been fueled by findings that maternal BPA exposure can change sex differences in the brain and in some behaviors. We investigated whether a physiologically relevant dose of BPA ingested by male rats before conception would affect spatial memory and hippocampal acetylcholinesterase (AchE) in their adult offspring. Twenty-two 60-day-old male rats (F0) received either a BPA diet (50 μg/kg/day) or vehicle alone for 10 weeks before being mated with non-exposed females. The paternal rats and their forty adult offspring's (F1) behaviors were then examined in the Morris Water Maze (MWM) and their AchE activities in the hippocampus were evaluated. BPA exposure led to spatial memory deficits along with decreased AchE activities in the hippocampus (p = 0.01) in adult F0 rats. This paternal exposure also induced impairment in spatial memory acquisition in both sexes while retention only in females in F1 rats, as well as abolished sex differences in the hippocampus AchE. Overall, these data provide new evidence that paternal BPA exposure, at a “safe” dose, may induce transgenerational alterations in spatial memory in a sex-specific manner.  相似文献   

8.
目的:研究负重爬梯与有氧跑台运动对糖尿病大鼠学习记忆能力的改善效果并探索其可能分子机制。方法:40只雄性大鼠,随机分为正常对照组(NC)、糖尿病对照组(DC)、糖尿病负重爬梯组(DL)和糖尿病有氧跑台组(DA),以单次腹腔注射链脲佐菌素构建糖尿病大鼠模型。DL组在晚上进行负重爬梯训练,10次/组×3组/天,每次间歇2 min,6天/周×6周;DA组在同一时间进行20 m/min的跑台训练,30 min/d。于造模成功和运动干预结束后采用Morris水迷宫检测大鼠的学习记忆能力;第2次水迷宫测试结束后断颈处死大鼠,采用RT-QPCR法检测大鼠海马内脑源性神经营养因子(BDNF)、TRKB、CREB mRNA表达水平。结果:与NC组相比,DC组大鼠海马BDNF、CREB基因表达显著下降,学习记忆能力显著降低。与DC组相比,DL和DA组大鼠海马BDNF、CREB基因表达显著上调,学习能力显著提高;DL大鼠海马TrkB基因显著上调,大鼠空间记忆能力显著改善,而DA组大鼠海马TrkB基因无显著变化,大鼠空间记忆能力无改善,与DA组相比,DL组大鼠海马TRKB、CREB基因显著上调。结论:有氧跑台运动与负重爬梯运动介导BDNF/TrkB/CREB信号通路对糖尿病大鼠的学习能力均有促进作用,而负重爬梯运动对糖尿病大鼠记忆能力的改善优于有氧运动方式。  相似文献   

9.
Recognition memory and anxiety were examined in nulliparous (NP: 0 litters) and multiparous (MP: 5-6 litters) middle-aged female rats (12 months old) to assess possible enduring effects of multiparity at least 3 months after the last litter was weaned. MP females performed significantly better than NP females on the non-spatial memory task, object recognition, and the spatial memory task, object placement. Anxiety as measured on the elevated plus maze did not differ between groups. Monoaminergic activity and levels were measured in prefrontal cortex, CA1 hippocampus, CA3 hippocampus, and olfactory bulb (OB). NP and MP females differed in monoamine concentrations in the OB only, with MP females having significantly greater concentrations of dopamine and metabolite DOPAC, norepinephrine and metabolite MHPG, and the serotonin metabolite 5-HIAA, as compared to NP females. These results indicate a long-term change in OB neurochemistry as a result of multiparity. Brain-derived neurotrophic factor (BDNF) was also measured in hippocampus (CA1, CA3, dentate gyrus) and septum. MP females had higher BDNF levels in both CA1 and septum; as these regions are implicated in memory performance, elevated BDNF may underlie the observed memory task differences. Thus, MP females (experiencing multiple bouts of pregnancy, birth, and pup rearing during the first year of life) displayed enhanced memory task performance but equal anxiety responses, as compared to NP females. These results are consistent with previous studies showing long-term changes in behavioral function in MP, as compared to NP, rats and suggest that alterations in monoamines and a neurotrophin, BDNF, may contribute to the observed behavioral changes.  相似文献   

10.
Silibinin, a flavonoid derived from the herb milk thistle (Silybum marianum), has been used as a hepato-protectant in the clinical treatment of liver disease. In the present study, the effect of silibinin on lipopolysaccharide (LPS)-induced neuroinflammatory impairment in rats is investigated. Injection of LPS into lateral ventricle caused learning and memory impairment. Rats were treated with silibinin to see the effect in comparison with resveratrol as a positive control. Y-maze and Morris water maze tests showed that silibinin significantly attenuated memory damage caused by LPS treatment. At the molecular analysis, the levels of IL-1β and of IL-4 in the hippocampus were decreased and enhanced, respectively, by the treatment with silibinin. NF-κB expression was attenuated by silibinin treatment. Furthermore, generation of total reactive oxygen species (ROS) in the hippocampus was elevated in silibinin-treated groups, and so were the expressions of brain-derived neurotrophic factor (BDNF) and tyrosine receptor kinase B (TrkB). At the same time, LPS-induced reduction of neurons in hippocampus was reversed by silibinin. In conclusion, silibinin ameliorated the impairment of learning and memory of LPS-injection rats, possibly due to the activation of ROS–BDNF–TrkB pathway in the hippocampus as well as the suppression of inflammatory response. This study gives an insight on the beneficial consequences of ROS in central nervous system. Silibinin might be a potential candidate drug for neurodegenerative diseases.  相似文献   

11.
Attention-deficit/hyperactivity disorder (ADHD) is a highly heterogeneous disorder characterized by impairing levels of hyperactivity, impulsivity and inattention. Oxidative and inflammatory parameters have been recognized among its multiple predisposing pathways, and clinical studies indicate that ADHD patients have increased oxidative stress. In this study, we aimed to evaluate oxidative (DCFH oxidation, glutathione levels, glutathione peroxidase, catalase and superoxide dismutase activities) and inflammatory (TNF-α, IL-1β and IL-10) parameters in the most widely accepted animal model of ADHD, the spontaneously hypertensive rats (SHR). Prefrontal cortex, cortex (remaining regions), striatum and hippocampus of adult male SHR and Wistar Kyoto rats were studied. SHR presented increased reactive oxygen species (ROS) production in the cortex, striatum and hippocampus. In SHR, glutathione peroxidase activity was decreased in the prefrontal cortex and hippocampus. TNF-α levels were reduced in the prefrontal cortex, cortex (remaining regions), hippocampus and striatum of SHR. Besides, IL-1β and IL-10 levels were decreased in the cortex of the ADHD model. Results indicate that SHR presented an oxidative profile that is characterized by an increase in ROS production without an effective antioxidant counterbalance. In addition, this strain showed a decrease in cytokine levels, mainly TNF-α, indicating a basal deficit. These results may present a new approach to the cognitive disturbances seen in the SHR.  相似文献   

12.
Role for brain-derived neurotrophic factor in learning and memory   总被引:23,自引:0,他引:23  
In addition to its actions on neuronal survival and differentiation, brain-derived neurotrophic factor (BDNF) has a role in the regulation of synaptic strength. Long-term potentiation, a form of synaptic plasticity, is markedly impaired in BDNF mutant mice, but the changes were restored by the re-expression of BDNF. BDNF also influences the development of patterned connections and the growth and complexity of dendrites in the cerebral cortex. These results suggest a role for BDNF in learning and memory processes, since memory acquisition is considered to involve both short-term changes in electrical properties and long-term structural alterations in synapses. Memory acquisition is associated with an increase in BDNF mRNA and TrkB receptor activation in specific brain areas. Moreover, the pharmacologic and genetic deprivation of BDNF or its receptor TrkB results in severe impairment of learning and memory in mice, rats and chicks. The effect of BDNF on learning and memory may be linked to the modulation of NMDA and non-NMDA receptor functions as well as the expression of synaptic proteins required for exocytosis. Activation of the mitogen-associated protein kinase and/or phosphatidylinositol 3-kinase signaling pathways may be involved in BDNF-dependent learning and memory formation. It is concluded that BDNF/TrkB signaling plays an important role in learning and memory.  相似文献   

13.
Spontaneously hypertensive rats (SHR) and its counterpart, the Wistar-Kyoto rats (WKY), are probably the most often used animal model of ADHD. However, SHR as model of ADHD have also been criticised partly because of not differing to outbred rat strains. In the present study, adolescent SHR, WKY and Wistar rats from Charles River were tested in open-field, elevated plus maze and novel object recognition and on gastrointestinal transport to more intensively evaluate the strain characteristics. Non-habituated SHR and Wistar rats were more active than WKY rats but contrary to Wistar rats SHR stay hyperactive in a familiar environment. SHR were more sensitive to the alpha2-adrenoceptor agonist guanfacine and the dopamine D1 agonist A-68930 than WKY and Wistar rats, whereas amphetamine, the D1/D5 agonist ABT431 and the D2 agonist quinpirole, similarly affected open-field activity in all strains. In the elevated plus maze, SHR and Wistar rats showed less anxiety-related behaviour than WKY rats. Guanfacine and amphetamine induced an anxiolytic-like activity in SHR but not in WKY and Wistar rats. SHR showed the highest long-term memory in the novel object recognition. Gastrointestinal transport was similar and comparably affected by guanfacine in all rat strains. The present study shows clear differences in the behaviour of SHR and Wistar rats but also of WKY and Wistar rats. The use of SHR as animal model of ADHD is supported.  相似文献   

14.
Exercise and low-fat diets are common lifestyle modifications used for the treatment of hypertension besides drug therapy. However, unrestrained low-fat diets may result in deficiencies of low-unsaturated fatty acids and carry contingent risks of delaying neurodevelopment. While aerobic exercise shows positive neuroprotective effects, it is still unclear whether exercise could alleviate the impairment of neurodevelopment that may be induced by certain low-fat diets. In this research, developing spontaneously hypertensive rats (SHR) were treated with chronic swimming exercise and/or a low-soybean-oil diet for 6 weeks. We found that performance in the Morris water maze was reduced and long-term potentiation in the hippocampus was suppressed by the diet, while a combination treatment of exercise and diet alleviated the impairment induced by the specific low-fat diet. Moreover, the combination treatment effectively increased the expression of brain-derived neurotrophic factor (BDNF) and N-methyl-d-aspartic acid receptor (NMDAR), which were both down-regulated by the low-soybean-oil diet in the hippocampus of developing SHR. These findings suggest that chronic swimming exercise can ameliorate the low-soybean-oil diet-induced learning and memory impairment in developing SHR through the up-regulation of BDNF and NMDAR expression.  相似文献   

15.
We have previously demonstrated that adolescent exposure of rats to bisphenol-A (BPA), an environmental endocrine disrupter, increases anxiety, impairs spatial memory, and decreases dendritic spine density in the CA1 region of the hippocampus (CA1) and medial prefrontal cortex (mPFC) when measured in adolescents in both sexes. The present study examined whether the behavioral and morphological alterations following BPA exposure during adolescent development are maintained into adulthood. Male and female, adolescent rats received BPA, 40 μg/kg/bodyweight, or control treatments for one week. In adulthood, subjects were tested for anxiety and locomotor activity, spatial memory, non-spatial visual memory, and sucrose preference. Additionally, stress-induced serum corticosterone levels and dendritic spine density in the mPFC and CA1 were measured. BPA-treated males, but not females, had decreased arm visits on the elevated plus maze, but there was no effect on anxiety. Non-spatial memory, object recognition, was also decreased in BPA treated males, but not in females. BPA exposure did not alter spatial memory, object placement, but decreased exploration during the tasks in both sexes. No significant group differences in sucrose preference or serum corticosterone levels in response to a stress challenge were found. However, BPA exposure, regardless of sex, significantly decreased spine density of both apical and basal dendrites on pyramidal cells in CA1 but had no effect in the mPFC. Current data are discussed in relation to BPA dependent changes, which were present during adolescence and did, or did not, endure into adulthood. Overall, adolescent BPA exposure, below the current reference safe daily limit set by the U.S.E.P.A., leads to alterations in some behaviors and neuronal morphology that endure into adulthood.  相似文献   

16.
In adult male rats, vasopressin (AVP) facilitates social recognition via activation of V1a receptors within the lateral septum. Much less is known about how AVP affects social recognition in adult females or in juvenile animals of either sex. We found that administration of the specific V1a receptor antagonist d(CH(2))(5)[Tyr(Me)(2)]AVP into the lateral septum of adult rats impaired, whereas AVP extended, social discrimination in both sexes. In juveniles, however, we detected a sex difference, such that males but not females showed social discrimination. Interestingly, administration of the V1a receptor antagonist to juveniles (either intracerebroventricularly or locally in the lateral septum) did not prevent social discrimination, but instead significantly decreased the investigation of a novel as opposed to a familiar animal in both sexes, with stronger effects in males. V1a receptors were found to be abundantly expressed in the lateral septum with higher binding density in females than in males. These findings demonstrate that activation of V1a receptors in the lateral septum is important for social recognition in both sexes, and that the roles of septal V1a receptors in social recognition change during development.  相似文献   

17.
Neurotrophins, including the brain-derived neurotrophic factor (BDNF), are essential for regulating neuronal differentiation in developing brains. BDNF and its receptor tyrosine kinase receptor B (TrkB) are involved in neuronal signaling, survival and plasticity. Cyclosporine A (CsA) is a potent immunosuppressive agent which prevents allograft rejection in organ transplantation and various immunological diseases. We investigated whether chronic administration of CsA decreases BDNF gene expression in rats, and the influence of CsA on mRNA levels of TrkB receptors was also examined. For 30 days of CsA (10 mg/kg/day) administration, the expression of BDNF and TrkB mRNA was significantly decreased in the hippocampus and midbrain, but there was no significant difference in the cortex. CsA (0, 1, 5 10, 15 ug/ml) down-regulated BDNF and TrkB gene expression through cultured SH-SY5Y cells, as did all-trans retinoic acid (ATRA), and there was no effect on cell viability. These experimental results indicate that suppression of the BDNF and TrkB mRNA, protein level of BDNF expression in the hippocampus and midbrain may be related to altered behavior observed following chronic administration of CsA. A common mechanism of adverse effects of CsA induced depressive symptoms may involve neurotoxicity mediated by down-regulation of brain BDNF and TrkB.  相似文献   

18.
New neurons are incorporated into the high vocal center (HVC), a nucleus of the adult canary (Serinus canaria) brain that plays a critical role in the acquisition and production of learned song. Recruitment of new neurons in the HVC is seasonally regulated and depends upon testosterone levels. We show here that brain-derived neurotrophic factor (BDNF) is present in the HVC of adult males but is not detectable in that of females, though the HVC of both sexes has BDNF receptors (TrkB). Testosterone treatment increases the levels of BDNF protein in the female HVC, and BDNF infused into the HVC of adult females triples the number of new neurons. Infusion of a neutralizing antibody to BDNF blocks the testosterone-induced increase in new neurons. Our results demonstrate that BDNF is involved in the regulation of neuronal replacement in the adult canary brain and suggest that the effects of testosterone are mediated through BDNF.  相似文献   

19.
Epileptogenesis is the process whereby a normal brain becomes epileptic. We hypothesized that the neurotrophin brain-derived neurotrophic factor (BDNF) activates its receptor, TrkB, in the hippocampus during epileptogenesis and that BDNF-mediated activation of TrkB is required for epileptogenesis. We tested these hypotheses in Synapsin-Cre conditional BDNF(-/-) and TrkB(-/-) mice using the kindling model. Despite marked reductions of BDNF expression, only a modest impairment of epileptogenesis and increased hippocampal TrkB activation were detected in BDNF(-/-) mice. In contrast, reductions of electrophysiological measures and no behavioral evidence of epileptogenesis were detected in TrkB(-/-) mice. Importantly, TrkB(-/-) mice exhibited behavioral endpoints of epileptogenesis, tonic-clonic seizures. Whereas TrkB can be activated, and epileptogenesis develops in BDNF(-/-) mice, the plasticity of epileptogenesis is eliminated in TrkB(-/-) mice. Its requirement for epileptogenesis in kindling implicates TrkB and downstream signaling pathways as attractive molecular targets for drugs for preventing epilepsy.  相似文献   

20.
Age-related memory decline is closely associated with decreased neurogenesis and increased apoptosis in the hippocampus. Noradrenaline exerts its effect by selectively binding to and activating adrenergic receptors (ARs). Tamsulosin, α1-AR antagonist, is reported to have access to the brain and interact with α1-AR. In this study, the effects of tamsulosin on short-term and spatial learning memory in terms of neurogenesis and apoptosis were investigated using rats. Step-down avoidance test for short-term memory and radial 8-arm maze test for spatial learning memory were conducted. Neurogenesis was detected by 5-bromo-2’-deoxyuridine (BrdU) immunohistochemistry and apoptosis was evaluated by caspase-3 immunohistochemisty and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling (TUNE) staining. Western blot for protein kinase C (PKC), cAMP-responsive element-binding protein (CREB), brain-derived neurotrophic factor (BDNF), tyrosine kinase B (TrkB), phosphatidylinositol 3-kinase (PI 3-kinase), Akt, Bcl-2, and Bax was conducted. In the aged rats, short-term and spatial learning memory was declined. Hippocampal nerogenesis was suppressed and hippocampal apoptosis was enhanced in the aged rats. In addition, phosphorylation of PKCα, CREB, PI-3 kinase, and Akt was decreased in the hippocampus of old-aged rats. Tamsulosin activated PKC/CREB and PI-3 kinase/Akt pathways. With these pathways, BDNF-TrkB signaling enhanced hippocampal neurogenesis and suppressed apoptosis in the old-aged rats. As the results, tamsulosin improved performance of short-term and spatial learning memory in the aged rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号