首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Wheat Fusarium Head Blight (FHB), mainly caused by Fusarium graminearum (F.g), is a destructive fungal disease worldwide. FHB can not only cause considerable reduction in yield, but more seriously, can contaminate grain by trichothecene toxins released by the fungus. Here, we report new insights into the function and underlying mechanisms of a UDP-glycosyltransferase gene, Ta-UGT 3 , that is involved in FHB resistance in wheat. In our previous study, Ta-UGT 3 was found to enhance host tolerance against deoxynivalenol (DON) in Arabidopsis. In this study, four transgenic lines over-expressing Ta-UGT 3 in a FHB highly susceptible wheat variety, Alondra’s, were obtained and characterized. 3 years of assays using single floret inoculation with F.g indicated that all four transgenic lines exhibited significantly enhanced type II resistance to FHB and less DON accumulation in the grains compared to the untransformed control. Histological observation using GFP labelled F.g was in agreement with the above test results since over-expression of Ta-UGT 3 dramatically inhibited expansion of F.g. To explore the putative mechanism of resistance mediated by Ta-UGT 3 , microarray analysis, qRT-PCR and hormone measurements were performed. Microarray analysis showed that DON up-regulated genes, such as TaNPR1, in the susceptible control, and down-regulated genes in F.g inoculated transgenic lines, while qRT-PCR showed that some defence related genes were up-regulated in F.g inoculated transgenic lines. Ta-UGT 3 over-expression also changed the contents of the endogenous hormones SA and JA in the spikes. These data suggest that Ta-UGT 3 positively regulates the defence responses to F.g, perhaps by regulating defence-related and DON-induced downstream genes.  相似文献   

2.
Using bioinformatics analysis, the homologs of genes Sr33 and Sr35 were identified in the genomes of Triticum aestivum, Hordeum vulgare, and Triticum urartu. It is known that these genes confer resistance to highly virulent wheat stem rust races (Ug99). To identify amino acid sites important for this resistance, the found homologs were compared with the Sr33 and Sr35 protein sequences. It was found that sequences S5DMA6 and E9P785 are the closest homologs of protein RGAle, a Sr33 gene product, and sequences M7YFA9 (CNL-C) and F2E9R2 are homologs of protein CNL9, a Sr35 gene product. It is assumed that the homologs of genes Sr33 and Sr35, which were obtained from the wild relatives of wheat and barley, can confer resistance to various forms of stem rust and can be used in the future breeding programs aimed at improvement of national wheat varieties.  相似文献   

3.
This study was undertaken to pyramid two effective leaf rust resistance genes (Lr19 and Lr24) derived from Thinopyrum (syn. Agropyron), in the susceptible, but agronomically superior wheat cultivar HD2733 using marker-assisted selection. In the year 2001, HD2733 was released for irrigated timely sown conditions of the north eastern plains zone (NEPZ) of India became susceptible to leaf rust, a major disease of the region. Background selection helped in developing near-isogenic lines (NILs) of HD2733 with Lr19 and Lr24 with 97.27 and \(98.94\%\), respectively, of genomic similarity with the parent cultivar, after two backcrossing and one generation of selfing. NILs were intercrossed to combine the genes Lr19 and Lr24. The combination of these two genes in the cultivar HD2733 is expected to provide durable leaf rust resistance in farmers’ fields.  相似文献   

4.
An endochitinase gene ‘ech42’ from the biocontrol fungus ‘Trichoderma virens’ was introduced to Brassica juncea (L). Czern and Coss via Agrobaterium tumefaciens mediated genetic transformation method. Integration and expression of the ‘ech42’ gene in transgenic lines were confirmed by PCR, RT-PCR and Southern hybridization. Transgenic lines (T1) showed expected 3:1 Mendelian segregation ratio when segregation analysis for inheritance of transgene ‘hpt’ was carried out. Fluorimetric analysis of transgenic lines (T0 and T1) showed 7 fold higher endochitinase activity than the non-transformed plant. Fluorimetric zymogram showed presence of endochitinase (42 kDa) in crude protein extract of transgenic lines. In detached leaf bioassay with fungi Alternaria brassicae and Alternaria brassicicola, transgenic lines (T0 and T1) showed delayed onset of lesions as well as 30–73 % reduction in infected leaf area compared to non-transformed plant.  相似文献   

5.

Key message

A new gene for adult plant leaf rust resistance in wheat was mapped to chromosome 3BL. This gene was designated as Lr77.

Abstract

‘Santa Fe’ is a hard red winter cultivar that has had long-lasting resistance to the leaf rust fungus, Puccinia triticina. The objective of this study was to determine the chromosome location of the adult plant leaf rust resistance in Santa Fe wheat. A partial backcross line of ‘Thatcher’ (Tc) wheat with adult plant leaf rust resistance derived from Santa Fe was crossed with Thatcher to develop a Thatcher//Tc*2/Santa Fe F6 recombinant inbred line (RIL) population. The RIL population and parental lines were evaluated for segregation of leaf rust resistance in three field plot tests and in an adult plant greenhouse test. A genetic map of the RIL population was constructed using 90,000 single-nucleotide polymorphism (SNP) markers with the Illumina Infinium iSelect 90K wheat bead array. A significant quantitative trait locus for reduction of leaf rust severity in all four tests was found on chromosome 3BL that segregated as a single adult plant resistance gene. The RILs with the allele from the resistant parent for SNP marker IWB10344 had lower leaf rust severity and a moderately resistant to moderately susceptible response compared to the susceptible RILs and Thatcher. The gene derived from Santa Fe on chromosome 3BL was designated as Lr77. Kompetitive allele-specific polymerase chain reaction assay markers linked to Lr77 on 3BL should be useful for selection of wheat germplasm with this gene.
  相似文献   

6.

Key message

Here, we describe a strategy to improve broad-spectrum leaf rust resistance by marker-assisted combination of two partial resistance genes. One of them represents a novel partial adult plant resistance gene, named Lr75.

Abstract

Leaf rust caused by the fungal pathogen Puccinia triticina is a damaging disease of wheat (Triticum aestivum L.). The combination of several, additively-acting partial disease resistance genes has been proposed as a suitable strategy to breed wheat cultivars with high levels of durable field resistance. The Swiss winter wheat cultivar ‘Forno’ continues to show near-immunity to leaf rust since its release in the 1980s. This resistance is conferred by the presence of at least six quantitative trait loci (QTL), one of which is associated with the morphological trait leaf tip necrosis. Here, we used a marker-informed strategy to introgress two ‘Forno’ QTLs into the leaf rust-susceptible Swiss winter wheat cultivar ‘Arina’. The resulting backcross line ‘ArinaLrFor’ showed markedly increased leaf rust resistance in multiple locations over several years. One of the introgressed QTLs, QLr.sfr-1BS, is located on chromosome 1BS. We developed chromosome 1B-specific microsatellite markers by exploiting the Illumina survey sequences of wheat cv. ‘Chinese Spring’ and mapped QLr.sfr-1BS to a 4.3 cM interval flanked by the SSR markers gwm604 and swm271. QLr.sfr-1BS does not share a genetic location with any of the described leaf rust resistance genes present on chromosome 1B. Therefore, QLr.sfr-1BS is novel and was designated as Lr75. We conclude that marker-assisted combination of partial resistance genes is a feasible strategy to increase broad-spectrum leaf rust resistance. The identification of Lr75 adds a novel and highly useful gene to the small set of known partial, adult plant leaf rust resistance genes.
  相似文献   

7.
The common weed Euphorbia hirta (Euphorbiaceae) grows widely across tropical and subtropical regions. In this study, plants infected by an Uromyces species displayed characteristic rust pustules delimited by a necrotic band with a reddish-brown border. Observation of leaf tissues revealed 74% of lesions encircled by a row of dark brown setose acervuli, present exclusively within the necrotic area. Acervuli were never observed in the absence of Uromyces pustules. Isolation from healthy leaf tissues revealed the fungus to be endophytic. Morphological and molecular characterization confirmed Uromyces euphorbiae as the pathogen and revealed both the endophyte and the pustule-associated fungus to be members of the Colletotrichum trucatum complex, representing the first record of this fungus on E. hirta. As understanding of the interaction between host plants, endophytes and phytopathogens is currently limited, this system constitutes a model for investigation of the physiological processes involved in this endophyte-biotrophic pathogen interaction.  相似文献   

8.
9.
Leaf rust of wheat, caused by Puccinia triticina, is an important disease throughout the world. The adult plant leaf rust resistance gene Lr48 reported in CSP44 was previously mapped in chromosome 2B, but the marker–gene association was weak. In this study, we confirmed the location of Lr48 to be in the short arm of chromosome 2B and identified closely linked markers suitable for use in breeding. The CSP44/WL711 recombinant inbred line (RIL) population (90 lines) showed monogenic segregation for Lr48. Twelve resistant and 12 susceptible RILs were used for selective genotyping using an iSelect 90K Infinium SNP assay. Closely linked SNPs were converted into Kompetitive allele-specific primers (KASP) and tested on the parental lines. KASP markers giving clear clusters for alternate genotypes were assayed on the entire RIL population. SNP markers IWB31002, IWB39832, IWB34324, IWB72894 and IWB36920 co-segregated with Lr48 and the marker IWB70147 was mapped 0.3 cM proximal to this gene. Closely linked KASP markers were tested on a set of Australian and Nordic wheat genotypes. The amplification of SNP alleles alternate to those linked with Lr48 in the majority of the Australian and Nordic wheat genotypes demonstrated the usefulness of these markers for marker-assisted pyramiding of Lr48 with other rust resistance genes.  相似文献   

10.
To evaluate the effectiveness of a germin-like protein (GLP) in legumes against the serious soil-borne pathogen Fusarium oxysporum f. sp. lentis, an Oryza sativa root-expressed GLP (OsRGLP1) was expressed in the model legume Medicago truncatula using the recombinant vector pCOsRGLP1. The transgene was highly expressed in M. truncatula transformed lines as assessed by RT-qPCR. Consistent with the active status of the transgene there was an elevated accumulation of H2O2 in transformed progeny. Enzymatic characterization of T1 transgenic progeny showed increased superoxide dismutase (SOD) activity. The additional SOD activity in transgenic lines was insensitive to potassium cyanide and sensitive to H2O2 indicating its resemblance to FeSOD. The effectiveness of the OsRGLP1 gene was tested by monitoring the root disease after infection of wild-type and transgenic lines. Wild-type plants were greatly affected by the pathogen infection showing a percent disease index value of 50 compared to 10–18 for the transgenic lines. The tolerance of the transgenic lines leads to recovery in fresh weight and pod production to an almost normal level. Analysis of defense-related genes downstream of hydrogen peroxide (H2O2) in transgenic plants showed induction of salicylic acid and jasmonate signaling pathways and increased expression of some pathogenesis-related-1 (PR-1) genes and a plant defensin gene. Overall, the findings suggest that OsRGLP1 provides protection against the fungal pathogen F. oxysporum that may involve the direct influence of H2O2 on signaling pathways leading to the activation of defense-related genes.  相似文献   

11.

Key message

The quantitative barley leaf rust resistance gene, Rph26, was fine mapped within a H. bulbosum introgression on barley chromosome 1HL. This provides the tools for pyramiding with other resistance genes.

Abstract

A novel quantitative resistance gene, Rph26, effective against barley leaf rust (Puccinia hordei) was introgressed from Hordeum bulbosum into the barley (Hordeum vulgare) cultivar ‘Emir’. The effect of Rph26 was to reduce the observed symptoms of leaf rust infection (uredinium number and infection type). In addition, this resistance also increased the fungal latency period and reduced the fungal biomass within infected leaves. The resulting introgression line 200A12, containing Rph26, was backcrossed to its barley parental cultivar ‘Emir’ to create an F2 population focused on detecting interspecific recombination within the introgressed segment. A total of 1368 individuals from this F2 population were genotyped with flanking markers at either end of the 1HL introgression, resulting in the identification of 19 genotypes, which had undergone interspecific recombination within the original introgression. F3 seeds that were homozygous for the introgressions of reduced size were selected from each F2 recombinant and were used for subsequent genotyping and phenotyping. Rph26 was genetically mapped to the proximal end of the introgressed segment located at the distal end of chromosome 1HL. Molecular markers closely linked to Rph26 were identified and will enable this disease resistance gene to be combined with other sources of quantitative resistance to maximize the effectiveness and durability of leaf rust resistance in barley breeding. Heterozygous genotypes containing a single copy of Rph26 had an intermediate phenotype when compared with the homozygous resistant and susceptible genotypes, indicating an incompletely dominant inheritance.
  相似文献   

12.
13.
Leaf rust, caused by Puccinia triticina, is one of the most widespread diseases in common wheat globally. The Chinese wheat cultivar Zhoumai 22 is highly resistant to leaf rust at the seedling and adult stages. Seedlings of Zhoumai 22 and 36 lines with known leaf rust resistance genes were inoculated with 13 P. triticina races for gene postulation. The leaf rust response of Zhoumai 22 was different from those of the single gene lines. With the objective of identifying and mapping, the new gene(s) for resistance to leaf rust, F1, F2 plants and F2:3 lines from the cross Zhoumai 22/Chinese Spring were inoculated with Chinese P. triticina race FHDQ at the seedling stage. A single dominant gene, tentatively designated LrZH22, conferred resistance. To identify other possible genes in Zhoumai 22, ten P. triticina races avirulent on Zhoumai 22 were used to inoculate 24 F2:3 lines. The same gene conferred resistance to all ten avirulent races. A total of 1300 simple sequence repeat (SSR) markers and 36 EST markers on 2BS were used to test the parents, and resistant and susceptible bulks. Resistance gene LrZH22 was mapped in the chromosome bin 2BS1-0.53-0.75 and closely linked to six SSR markers (barc183, barc55, gwm148, gwm410, gwm374 and wmc474) and two EST markers (BF202681 and BE499478) on chromosome arm 2BS. The two closest flanking SSR loci were Xbarc55 and Xgwm374 with genetic distances of 2.4 and 4.8 cM from LrZH22, respectively. Six designated genes (Lr13, Lr16, Lr23, Lr35, Lr48 and Lr73) are located on chromosome arm 2BS. In seedling tests, LrZH22 was temperature sensitive, conferring resistance at high temperatures. The reaction pattern of Zhoumai 22 was different from that of RL 4031 (Lr13), RL 6005 (Lr16) and RL 6012 (Lr23), Lr35 and Lr48 are adult-plant resistance genes, and Lr73 is not sensitive to the temperature. Therefore, LrZH22 is likely to be a new leaf rust resistance gene or allele.  相似文献   

14.
A rust fungus was found on the leaves of Euphorbia helioscopia during a field study in Pakistan. Previously, Melampsora euphorbiae, M. euphorbiae-gerardianae and M. helioscopiae have been reported on E. helioscopia, the first two of which are also known from Pakistan. Morphological observations of the newly collected rust samples detected some differences from the previously described Melampsora species on E. helioscopia. The molecular analysis of the ITS and LSU sequences also detected that the rust is different from the previously reported rusts described from E. helioscopia. Based on both morphological comparisons and sequence analysis, the rust is described here as M. pakistanica sp. nov. This species could have potential as a bio-control agent against its host plant—E. helioscopia—which is a weed of wheat fields in Pakistan and elsewhere in the world.  相似文献   

15.

Key message

Yr10 is an important gene to control wheat stripe rust, and the search for Yr10 needs to be continued.

Abstract

Wheat stripe rust or yellow rust is a devastating fungal disease caused by Puccinia striiformis f. sp. tritici (Pst). Host disease resistance offers a primary source for controlling wheat stripe rust. The stripe rust resistance gene Yr10 confers the race-specific resistance to most tested Pst races in China including CYR29. Early studies proposed that Yr10 was a nucleotide-binding site, leucine-rich repeat gene archived as GenBank accession AF149112 (hereafter designated the Yr10 candidate gene or Yr10 CG ). In this study, we revealed that 15 Chinese wheat cultivars positive for Yr10 CG are susceptible to CYR29. We then expressed the Yr10 CG cDNA in the common wheat ‘Bobwhite’. The Yr10 CG -cDNA positive transgenic plants were also susceptible to CYR29. Thus, it is highly unlikely that Yr10 CG corresponds to the Yr10 resistance gene. Using the Yr10 donor ‘Moro’ and the Pst-susceptible wheat ‘Huixianhong’, we generated two F3 populations that displayed a single Mendelian segregation on the Yr10 gene, and used them to remap the Yr10 gene. Six markers were placed in the Yr10 region, with the Yr10 CG gene now mapping about 1.2-cM proximal to the Yr10 locus and the Xsdauw79 marker is completely linked to the Yr10 locus. Apparently, the Yr10 gene has not yet been identified. Fine mapping and positional cloning of Yr10 is important for gene pyramiding for stripe rust resistance in wheat.
  相似文献   

16.

Key message

Genome-wide association analysis in tetraploid wheat revealed novel and diverse loci for seedling and field resistance to stripe rust in elite spring durum wheat accessions from worldwide.

Abstract

Improving resistance to stripe rust, caused by Puccinia striiformis f. sp. tritici, is a major objective for wheat breeding. To identify effective stripe rust resistance loci, a genome-wide association study (GWAS) was conducted using 232 elite durum wheat (Triticum turgidum ssp. durum) lines from worldwide breeding programs. Genotyping with the 90 K iSelect wheat single nucleotide polymorphism (SNP) array resulted in 11,635 markers distributed across the genome. Response to stripe rust infection at the seedling stage revealed resistant and susceptible accessions present in rather balanced frequencies for the six tested races, with a higher frequency of susceptible responses to United States races as compared to Italian races (61.1 vs. 43.1% of susceptible accessions). Resistance at the seedling stage only partially explained adult plant resistance, which was found to be more frequent with 67.7% of accessions resistant across six nurseries in the United States. GWAS identified 82 loci associated with seedling stripe rust resistance, five of which were significant at the false discovery rate adjusted P value <0.1 and 11 loci were detected for the field response at the adult plant stages in at least two environments. Notably, Yrdurum-1BS.1 showed the largest effect for both seedling and field resistance, and is therefore considered as a major locus for resistance in tetraploid wheat. Our GWAS study is the first of its kind for stripe rust resistance in tetraploid wheat and provides an overview of resistance in elite germplasm and reports new loci that can be used in breeding resistant cultivars.
  相似文献   

17.
Drought is one of the major abiotic stresses restricting the yield of wheat (Triticum aestivum L.). Breeding wheat varieties with drought tolerance is an effective and durable way to fight against drought. Here we reported introduction of AtHDG11 into wheat via Agrobacterium-mediated transformation and analyzed the morphological and physiological characteristics of T2 generation transgenic lines under drought stress. With drought treatment for 30 days, transgenic plants showed significantly improved drought tolerance. Compared with controls, the transgenic lines displayed lower stomatal density, lower water loss rate, more proline accumulation and increased activities of catalase and superoxide dismutase. Without irrigation after booting stage, the photosynthetic parameters, such as net photosynthesis rate, water use efficiency and efficiency of excitation energy, were increased in transgenic lines, while transpiration rate was decreased. Moreover, the kernel yield of transgenic lines was also improved under drought condition. Taken together, our data demonstrate that AtHDG11 has great potential in genetic improvement of drought tolerance of wheat.  相似文献   

18.
The tomato bZIP2-encoding gene was inserted into the Nicotiana benthamiana genome using Agrobacterium-mediated transformation to characterize resistance to oxidative stress and two herbicides, glyphosate and paraquat. We produced transgenic tobacco plants using the LebZIP2 gene, which were then utilized to examine salt stress and herbicide resistance through oxidative mechanisms. Transgenic LebZIP2-overexpressing plants were examined using specific primers for selection marker genes (PCR using genomic DNA) and target genes (RT-PCR). Based on microscopic examination, we observed an increase in leaf thickness and cell number in transgenic plants. The electrolyte leakage of leaves suggested that LebZIP2-overexpressing lines were weak tolerant to NaCl stress and resistant to methyl viologen. During our analysis, transgenic lines were exposed to different herbicides. Transgenic plants showed an increased tolerance based on visual injury, as well as an increased biomass. Based on these results, the LebZIP2 gene may be involved in oxidative stress tolerance and cell development in plants.  相似文献   

19.
The barley genes Rpg5, RGA1 and Adf3, which provide a strong resistance to many pathotypes of stem rust, were cloned a few years ago, but it was still unclear whether their homologues were represented in wheat and in related species. The paper describes the results of a bioinformatic research to determine the homologues of Rpg5, RGA1 and Adf3 in the genomes of Triticum aestivum and several wild grasses, which breeders usually use as sources of stem rust resistance, and which are available in the genome databases. It was found that the Th. elongatum sequence Q9FEC6 and T. aestivum sequence Q43655 were the highly identical homologues of the Adf3 sequence. T. urartu M8A999 sequence and T. aestivum W5FCU1 sequence were found to be the closest homologues of Rpg5 complete protein sequence, but the identity of their kinase domains was not as clear as that of the other domains. The separate Rpg5 kinase part analysis did not provide the strong evidences that its orthologs were present in our corn species. T. urartu M7ZZX9 sequence and T. aestivum W5FFP0 and W5FI33 sequences were shown to be the homologues of RGA1. The analysis of the predicted active sites allowed finding out the difference between sequences of Rpg5, RGA1, Adf3 protein and their homologues.  相似文献   

20.
Auxin receptors TIR1/AFBs play an essential role in a series of signaling network cascades. These F-box proteins have also been identified to participate in different stress responses via the auxin signaling pathway in Arabidopsis. Cucumber (Cucumis sativus L.) is one of the most important crops worldwide, which is also a model plant for research. In the study herein, two cucumber homologous auxin receptor F-box genes CsTIR and CsAFB were cloned and studied for the first time. The deduced amino acid sequences showed a 78% identity between CsTIR and AtTIR1 and 76% between CsAFB and AtAFB2. All these proteins share similar characteristics of an F-box domain near the N-terminus, and several Leucine-rich repeat regions in the middle. Arabidopsis plants ectopically overexpressing CsTIR or CsAFB were obtained and verified. Shorter primary roots and more lateral roots were found in these transgenic lines with auxin signaling amplified. Results showed that expression of CsTIR/AFB genes in Arabidopsis could lead to higher seeds germination rates and plant survival rates than wild-type under salt stress. The enhanced salt tolerance in transgenic plants is probably caused by maintaining root growth and controlling water loss in seedlings, and by stabilizing life-sustaining substances as well as accumulating endogenous osmoregulation substances. We proposed that CsTIR/AFB-involved auxin signal regulation might trigger auxin mediated stress adaptation response and enhance the plant salt stress resistance by osmoregulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号