共查询到20条相似文献,搜索用时 0 毫秒
1.
Marcela Laukova Peter Vargovic Olga Krizanova Richard Kvetnansky 《Cellular and molecular neurobiology》2010,30(7):1077-1087
Catecholamines are among first compounds released during stress, and they regulate many functions of the organism, including
immune system, via adrenergic receptors (ARs). Spleen, as an immune organ with high number of macrophages, possesses various
ARs, from which β2-ARs are considered to be the most important for the modulation of immune functions. Nevertheless, little is known about the
regulation and involvement of ARs in the splenic function by stress. Therefore, the aim of this work was to measure the gene
expression of ARs and several cytokines in the spleen of rats exposed to a single and repeated (14×) immobilization stress
(IMO). We have found a significant increase in β2-AR mRNA after a single IMO, but a significant decrease in β2-AR mRNA and protein level after repeated (14×) IMO. The most prominent decrease was detected in the gene expression of the
α2A- and α2C-AR after repeated IMO. However, changes in mRNA were translated into protein levels only for the α2C-subtype. Other types of ARs remained unchanged during the stress situation. Since we proposed that these ARs might affect
production of cytokines, we measured gene expression of pro-inflammatory (TNF-α, IL-1β, IL-6 and IL-18) and anti-inflammatory
(IL-10 and TGF-β1) cytokines. We detected changes only in IL-6 and IL-10 mRNA levels. While IL-6 mRNA was increased, IL-10
mRNA dropped after repeated IMO. According to these results we suggest that changes of β2- and α2C-ARs participate in IL-6-mediated processes in the spleen, especially during chronic stress situations. 相似文献
2.
Liliya Vugmeyster Aaron Griffin Dmitry Ostrovsky Shibani Bhattacharya Parker J. Nichols C. James McKnight Beat Vögeli 《Journal of biomolecular NMR》2018,72(1-2):39-54
We investigated correlated µs-ms time scale motions of neighboring 13C′–15N and 13Cα–13Cβ nuclei in both protonated and perdeuterated samples of GB3. The techniques employed, NMR relaxation due to cross-correlated chemical shift modulations, specifically target concerted changes in the isotropic chemical shifts of the two nuclei associated with spatial fluctuations. Field-dependence of the relaxation rates permits identification of the parameters defining the chemical exchange rate constant under the assumption of a two-site exchange. The time scale of motions falls into the intermediate to fast regime (with respect to the chemical shift time scale, 100–400 s?1 range) for the 13C′–15N pairs and into the slow to intermediate regime for the 13Cα–13Cβ pairs (about 150 s?1). Comparison of the results obtained for protonated and deuterated GB3 suggests that deuteration has a tendency to reduce these slow scale correlated motions, especially for the 13Cα–13Cβ pairs. 相似文献
3.
Mary Chebib Navnath Gavande Kit Yee Wong Anna Park Isabella Premoli Kenneth N. Mewett Robin D. Allan Rujee K. Duke Graham A. R. Johnston Jane R. Hanrahan 《Neurochemical research》2009,34(10):1704-1711
GABAC receptors play a role in myopia, memory-related disorders and circadian rhythms signifying a need to develop potent and selective
agents for this class of receptors. Guanidino analogs related to glycine, β-alanine and taurine were evaluated at human ρ1GABAC receptors expressed in Xenopus oocytes using 2-electrode voltage clamp methods. Of the 12 analogs tested, 8 analogs were active as antagonists and the remaining
were inactive. (S)-2-Guanidinopropionic acid (IC50 = 2.2 μM) and guanidinoacetic acid (IC50 = 5.4 μM; K
B = 7.75 μM [pK
B = 5.11 ± 0.06]) were the most potent being competitive antagonists at this receptor. In contrast, the β-alanine and GABA
guanidino analogs showed reduced activity, indicating the distance between the carboxyl carbon and terminal nitrogen of the
guanidino group is critical for activity. Substituting the C2-position of guanidinoacetic acid with various alkyl groups reduced
activity indicating that steric effects may impact on activity. The results of this study contribute to the structure–activity-relationship
profile required in developing novel therapeutic agents. 相似文献
4.
Utilizing first-principles calculations, we studied the electronic and optical properties of C24, C12X6Y6, and X12Y12 fullerenes (X?=?B, Al; Y?=?N, P). These fullerenes are energetically stable, as demonstrated by their negative cohesive energies. The energy gap of C24 may be tuned by doping, and the B12N12 fullerene was found to have the largest energy gap. All of the fullerenes had finite optical gaps, suggesting that they are optical semiconductors, and they strongly absorb UV radiation, so they could be used in UV light protection devices. They could also be used in solar cells and LEDs due to their low reflectivities. 相似文献
5.
P. B. MARLEY 《Nature: New biology》1972,235(59):213-214
PROSTAGLANDIN (PG) F2αhas antifertility effects in many species1–3 but there are conflicting suggestions as to its mechanism of action. For example, it may cause the degeneration of the corpus luteum by decreasing blood flow in the uteroovarian vein4; alternatively, its action may be due to a hypersecretion of luteinizing hormone (LH) by the pituitary3,5. I have investigated the effects of PGF2α, E2 and E1 on pregnancy in mice and examined the mechanism of action of PGF2α. 相似文献
6.
Mohammadi B Krampfl K Cetinkaya C Moschref H Grosskreutz J Dengler R Bufler J 《European biophysics journal : EBJ》2003,32(6):529-536
To analyze the influence of the beta-subunit on the kinetic properties of GlyR channel currents, alpha(1)-subunits and alpha(1)beta-subunits were transiently expressed in HEK 293 cells. A piezo dimorph was used for fast application of glycine to outside-out patches. The rise time of activation was dose dependent for both receptors and decreased with increasing glycine concentrations. Subunit composition had no effect on the time course of activation. Coexpression of alpha(1)- and beta-subunits resulted in a significantly lower EC(50) and a reduced slope of the dose-response curve of glycine compared with expression of alpha(1)-subunits alone. For both receptor subtypes, the time course of desensitization was concentration dependent. Desensitization was best fitted with a single time constant at 10-30 micro M, with two at 0.1 mM, and at saturating concentrations (0.3-3 mM) with three time constants. Desensitization of homomeric alpha(1)-receptor channels was significantly slower than that of alpha(1)beta-receptor channels. The time course of current decay after the end of glycine pulses was tested at different pulse durations of 1 mM glycine. It was best fitted with two time constants for both alpha(1) and alpha(1)beta GlyR channels, and increased significantly with increasing pulse duration. 相似文献
7.
While ~30% of the human genome encodes membrane proteins, only a handful of structures of membrane proteins have been resolved to high resolution. Here, we studied the structure of a member of the Cys-loop ligand gated ion channel protein superfamily of receptors, human type A γ2α1β2α1β2 gamma amino butyric acid receptor complex in a lipid bilayer environment. Studying the correlation between the structure and function of the gamma amino butyric acid receptor may enhance our understanding of the molecular basis of ion channel dysfunctions linked with epilepsy, ataxia, migraine, schizophrenia and other neurodegenerative diseases. The structure of human γ2α1β2α1β2 has been modeled based on the X-ray structure of the Caenorhabditis elegans glutamate-gated chloride channel via homology modeling. The template provided the first inhibitory channel structure for the Cys-loop superfamily of ligand-gated ion channels. The only available template structure before this glutamate-gated chloride channel was a cation selective channel which had very low sequence identity with gamma aminobutyric acid receptor. Here, our aim was to study the effect of structural corrections originating from modeling on a more reliable template structure. The homology model was analyzed for structural properties via a 100 ns molecular dynamics (MD) study. Due to the structural shifts and the removal of an open channel potentiator molecule, ivermectin, from the template structure, helical packing changes were observed in the transmembrane segment. Namely removal of ivermectin molecule caused a closure around the Leu 9 position along the ion channel. In terms of the structural shifts, there are three potential disulfide bridges between the M1 and M3 helices of the γ2 and 2 α1 subunits in the model. The effect of these disulfide bridges was investigated via monitoring the differences in root mean square fluctuations (RMSF) of individual amino acids and principal component analysis of the MD trajectory of the two homology models—one with the disulfide bridge and one with protonated Cys residues. In all subunit types, RMSF of the transmembrane domain helices are reduced in the presence of disulfide bridges. Additionally, loop A, loop F and loop C fluctuations were affected in the extracellular domain. In cross-correlation analysis of the trajectory, the two model structures displayed different coupling in between the M2–M3 linker region, protruding from the membrane, and the β1-β2/D loop and cys-loop regions in the extracellular domain. Correlations of the C loop, which collapses directly over the bound ligand molecule, were also affected by differences in the packing of transmembrane helices. Finally, more localized correlations were observed in the transmembrane helices when disulfide bridges were present in the model. The differences observed in this study suggest that dynamic coupling at the interface of extracellular and ion channel domains differs from the coupling introduced by disulfide bridges in the transmembrane region. We hope that this hypothesis will be tested experimentally in the near future. 相似文献
8.
L. A. Nesterova B. N. Manukhin 《Biochemistry (Moscow) Supplemental Series A: Membrane and Cell Biology》2009,3(1):66-70
The binding of specific nonselective α1- and α2-adrenoceptor antagonists [3H]prazosine and [3H]RX821002 has been studied on rat cerebral cortex synaptosomal membranes. It is shown that for α1-adrenoceptors the ligand-receptor interaction corresponds to the model assuming the presence of one pool of receptors and binding of two ligand molecules to the receptor. The parameters of [3H]prazosine binding to α1-adrenoceptors were: K d= 1.56 ± 0.17 nM, B max = 30.25 ± 1.78 fmol/mg protein, n = 2. The parameters of [3H]RX821002 binding to α2-adrenoceptors were: K d = 1.94 ± 0.08 nM, B max = 12.77 ± 3.17 fmol/mg protein, n = 2. For α2 -adrenoceptors the ligand-receptor interaction corresponded to the same model. For α1 - and α2-adrenoceptor antagonists the dissociation constants (K d) are approximately equal (1.56 ± 0.17 and 1.94 ± 0.08 nM, respectively), but the concentration of α2-adrenoceptors is two times lower than that of α1-adrenoceptors ( 12.77 ± 3.17 and 30.25 ± 1.78 fmol/mg protein, respectively). The efficiency (E = B max/2K d) of the ligand binding to α1-adrenoceptors is 2.3 times higher than that to α2-adrenoceptors (7.46 ± 1.32 and 3.29 ± 0.68 fmol/mg protein/nM, respectively. The data suggest that α1- and α2 -adrenoceptors in rat cerebral cortex exist as dimers. 相似文献
9.
10.
Presence of Ornithine in the Urate-binding α<Subscript>1</Subscript>—<Subscript>2</Subscript>Globulin 总被引:1,自引:0,他引:1
THE urate-binding α1–α2 globulin has been isolated from human plasma in a highly purified state1. The protein was purified by DEAE-‘Sephadex’, ammonium sulphate precipitation and semi-preparative Polyacrylamide gel electrophoresis. The urate-binding α1–α2 globulin is a rod-shaped glycoprotein, containing 12.1% carbohydrate, with an isoelectric point of 4.6 and a molecular weight of 67,000 ± 4,000. Amino-acid analysis indicated an unknown basic compound which appeared as an extra peak just in front of lysine1. To identify this compound, high voltage paper electrophoresis has been carried out on a plate electrophoresis apparatus in pyridine-acetate buffer pH 3.5. A spot separated out corresponding to ornithine. Amino-acid analysis on a BC-200 automatic analyser (Bio-Cal Instruments Co., West Germany), with a 54 cm column at 55° C and with 0.35 M sodium citrate buffer, pH 5.28, as elution buffer at a flow-rate of 150 ml./h, showed that ornithine was present. The presence of ornithine in the protein hydrolysate was also verified by gas chromatography/mass spectrometry2. 相似文献
11.
The susceptibility of Salmonella spp. to 15 fatty acids was determined in vitro in cultures grown on glucose. Antimicrobial activity was expressed as IC50 (a concentration at which only 50% of the initial glucose in cultures was utilized). Caprylic acid was the only acid inhibiting glucose utilization. In cultures of S. enteritidis, S. infantis and S. typhimurium, IC50 of caprylic acid ranged from 0.75 to 1.17 mg/mL. A moderate adaptation effect was observed as these values increased 1.5-1.8 times when bacteria were subcultured 10 times in media containing a low concentration of caprylic acid (1/3 IC50). No effect of calcium ions added in excess on antimicrobial activity of caprylic acid was observed. Incubation of salmonellas with caprylic acid (1 mg/mL; 30 min) at pH 5.2-5.3 led to a reduction in the concentration of viable cells below the detection limit; 2-6% of Salmonella cells survived at pH 6.3-6.6. 相似文献
12.
Various non-natural C(3)- and C(4)-symmetric alpha-amino acid derivatives have been synthesized via Suzuki-Miyaura cross-coupling reaction between aromatic iodides or bromide and a suitably protected DL-4-boronophenylalanine derivative. 相似文献
13.
Z. F. Rakhmankulova E. V. Shuyskaya P. Yu. Voronin T. A. Velivetskaya A. V. Ignatiev I. Yu. Usmanov 《Russian Journal of Plant Physiology》2018,65(3):455-463
Plants from two Sedobassia sedoides (Pall.) Aschers populations (Makan and Valitovo) (Chenopodiaceae) with C2 photosynthesis (precursor of C4 photosynthesis in phylogenesis) and photorespiratory CO2-concentrating mechanism were studied. Genetic polymorphism and isotope discrimination (δ13С) levels of the plants were determined under natural conditions, and their morpho-physiological parameters such as fresh and dry biomass of the above ground parts of plants, functioning of photosystem I (PSI) and photosystem II (PSII), intensity of net photosynthesis (A), transpiration (E), photorespiration and water use efficiency (WUE) of plants were calculated under control and salinine conditions (0 and 200 mM NaCl). Results of the population-genetic analysis showed that the Makan population is polymorphic (plastic) and the Valitovo population is monomorphic (narrowly specialized). There were no significant differences between the populations based on δ13С values or growth parameters, PSII, A, E and WUE under control conditions. Under saline conditions, dry biomass accumulation decreased in the Makan population by 15% and by more than 2- fold in the Valitovo population. Population differences were revealed in terms of photorespiration intensity and P700 oxidation kinetics under control and saline conditions. Under control conditions, Makan plants were characterized by a higher photorespiration intensity, which decreased by 2-fold under saline conditions to the photorespiration level of Valitovo plants. Cyclic electron transport activity was minimal in the control Makan plants, and it increased by almost 2-fold under saline conditions to the level of that in Valitovo plants under control and saline conditions. Under control conditions, photosynthesis in Makan plants can be specified as the proto-Kranz type (transitional type from C3 to C2) and that in Valitovo plants can be specified as the C2 type (C4 photosynthesis with photorespiratory CO2-concentrating mechanism), based on their photorespiration level and cyclic electron transport activity. Under saline conditions, Makan plants exhibited features of C2 photosynthesis. Intraspecific functional differences of photosynthesis were revealed in different populations of intermediate C3–C4 plant species S. sedoides which reflect the initial stages of formation of a photorespiratory CO2-concentrating mechanism during C4 photosynthesis evolution, accompanied by decrease in salt tolerance. 相似文献
14.
Sun DS Lo SJ Tsai WJ Lin CH Yu MS Chen YF Chang HH 《Journal of biomedical science》2005,12(6):937-948
Summary Phosphatidylinositol 3-kinase (PI3K) pathway is important for platelet activation. Recent studies showed that PI3K and oscillative
calcium could cross talk to each other and positively regulate integrin α IIbβ3-mediated outside-in signaling. However, the mechanism of this feedback regulation remains to be further characterized. Here
we found that treatments of both PI3K inhibitor wortmannin and P2Y1 inhibitor A3P5P could inhibit granular secretion in platelets.
Additionally, when RGD-substrate adherent platelets were treated with the ADP scavenger apyrase to deplete the granular-released
ADP, their attachments in engaging with substrates became looser and the frequency of calcium oscillation decreased. Since
it is known that ADP stimulates the PI3K and calcium signal primarily through P2Y12 and P2Y1 receptors respectively, our data
indicated that integrin αIIbβ3 downstream PI3K and calcium activation might be not completely coupled to integrin associated signaling complex, but in part
through feedback stimulation by granular released ADP. Our data indicates the important roles of PI3K and granular released
ADP in coordinating the feedback regulations in integrin αIIbβ3-mediated platelet activation. 相似文献
15.
Tessari F Bortolami S Zoccarato F Alexandre A Cavallini L 《Journal of bioenergetics and biomembranes》2011,43(3):267-274
Sodium Nitroprusside (SNP) and S-Nitrosoglutathione (GSNO) differently affect mitochondrial H2O2 release at Complex-I. mM SNP increases while GSNO decreases the release induced by succinate alone or added on top of NAD-linked
substrates. Stimulation likely depends on Nitric Oxide (
.
NO) (released by SNP but not by GSNO) inhibiting cytochrome oxidase and mitochondrial respiration. Preincubations with SNP
or high GSNO (10 mM plus DTE to increases its
.
NO release) induces an inhibition of the succinate dependent H2O2 production consistent with a
.
NO dependent covalent modification. However maximal inhibition of the succinate dependent H2O2 release is obtained in the presence of low GSNO (20–100 μM), but not with SNP. This inhibition appears independent of
.
NO release since μM GSNO does not affect mitochondrial respiration, or the H2O2 detection systems and its effect is very rapid. Inhibition may be partly due to an increased removal of O2.− since GSNO chemically competes with NBT and cytochrome C in O2.− detection. 相似文献
16.
Nine microalgal species from the classes Bacillariophyceae, Cryptophyceae, Prymnesiophyceae and Dinophyceae were isolated from Australian waters, cultured to stationary phase and analyzed for their lipid and fatty acid composition and yield. Five species (Pavlova pinguis, Heterocapsa niei, Proteomonas sulcata, Navicula jeffreyi and Thalassiosira pseudonana) produced high proportions of triacylglycerol (TAG: 22–57% total lipid). An unidentified Navicula-like diatom (CS-786), despite having a low TAG content, had the highest EPA yield (5.8 mg L−1), due to high biomass and a high relative proportion of EPA. Heterocapsa niei had the highest DHA yield (2.9 mg L−1), due to a high cellular lipid and DHA content (171 pg cell−1 and 13.7 pg cell−1, respectively) despite its relatively low biomass. The desirable PUFA composition and yield of both diatom CS-786 and H. niei make them potential candidates for optimization of biomass and PUFA production for use as live-feeds in aquaculture. In addition, H. niei may have potential as a source of DHA for other uses. Low proportions (< 1.2%) of 24:6(n−3) accompanied by trace proportions of 24:5(n−6) were detected in most strains, while 28:8(n−3) was found in dinoflagellates and also in the prymnesiophyte P. pinguis. All non-diatomaceous species contained 26:7(n−3) in minor quantities. This is the first time these unusual C24 and C26 PUFA have been reported in microalgae and the first report of C28 PUFA in a microalga other than dinoflagellates. Possible biosynthetic reasons why these might occur in stationary phase cultures are considered and the likely dietary transfer of these PUFA to higher aquatic life is discussed. 相似文献
17.
Ab initio calculations have been performed using the complete basis set model (CBS-QB3) to study the reaction mechanism of
butane radical (C4H9•) with oxygen (O2). On the calculated potential energy surface, the addition of O2 to C4H9• forms three intermediates barrierlessly, which can undergo subsequent isomerization or decomposition reaction leading to
various products: HOO• + C4H8, C2H5• + CH2CHOOH, OH• + C3H7CHO, OH• + cycle-C4H8O, CH3• + CH3CHCHOOH, CH2OOH• + C3H6. Five pathways are supposed in this study. After taking into account the reaction barrier and enthalpy, the most possible
reaction pathway is C4H9• + O2 → IM1 → TS5 → IM3 → TS6 → IM4 → TS7 → OH• + cycle-C4H8O. 相似文献
18.
Yan Xiao Liang Zhao Shi-Xiang Kuang Zhi-Zhong Guan 《Cellular and molecular neurobiology》2016,36(8):1377-1387
Our present aim was to investigate whether changes in the expression of α4β2 nicotinic acetylcholine receptor (nAChR) in patients with vascular dementia (VaD) and ischemic rats are related to cognitive scores. Blood leukocytes for 59 Chinese patients with VaD (diagnosed on the basis of clinical guidelines) and 31 cases as age-matched controls were examined, and the animal model established employing Pulsinelli’s four-vessel occlusion. The levels of α4 and β2 subunit mRNA in leukocytes and the hippocampus were analyzed by real-time PCR, and the protein level in the hippocampus by Western blotting. The mini-mental state examination was utilized to characterize the intellectual capacity of the patients with reference to the DSM IV diagnosis and Hachinski Ischemic Scale score, and the Morris Water Maze test to assess the ability of learning and memory of the rats. In patients, the level of α4 mRNA, but not β2, in blood leukocytes was clearly lowered, which was significantly correlated to their clinical cognitive test scores. Smoking exerted no impact on the level of α4 mRNA in the present study. In the blood leukocytes and the hippocampus of the brains of the ischemic rats, the levels of both α4 and β2 mRNA were lowered, and the proteins of these subunits in the hippocampus were decreased. The changes of α4 and β2 mRNA in blood leukocytes, and their protein levels in the hippocampus were significantly correlated with impaired learning and memory. These findings indicate that alterations in expression of the α4β2 subtype of nAChR may be involved in the molecular mechanism(s) underlying the cognitive deficit associated with VaD. 相似文献
19.
Similar to σ-hole interactions, the π-hole interaction has attracted much attention in recent years. According to the positive electrostatic potentials above and below the surface of inorganic heterocyclic compounds S2N2 and three SN2P2 isomers (heterocyclic compounds 1–4), and the negative electrostatic potential outside the X atom of XH3 (X = N, P, As), S2N2/SN2P2?XH3 (X = N, P, As) complexes were constructed and optimized at the MP2/aug-cc-pVTZ level. The X atom of XH3 (X = N, P, As) is almost perpendicular to the ring of the heterocyclic compounds. The π-hole interaction energy becomes greater as the trend goes from 1?XH3 to 4?XH3. These π-hole interactions are weak and belong to “closed-shell” noncovalent interactions. According to the energy decomposition analysis, of the three attractive terms, the dispersion energy contributes more than the electrostatic energy. The polarization effect also plays an important role in the formation of π-hole complexes, with the contrasting phenomena of decreasing electronic density in the π-hole region and increasing electric density outside the X atom of XH3 (X = N, P, As). 相似文献
20.
W. W. W. DE JONG 《Nature: New biology》1971,234(49):176-177
STUDIES of adult1 and foetal2 haemoglobin from the chimpanzee (Pan troglodytes) have shown that the amino-acid compositions of tryptic and chymotryptic peptides of the α, β and γ-chains are indistinguishable from those of man. The primary structures of chimpanzee α, β and γ-chains are therefore almost certainly identical to the homologous human chains. The two types of γ-chains found in man3, Gγ and Aγ, with glycine and alanine in position γ136, respectively, are likewise present in the chimpanzee2. 相似文献