首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Voltage-gated potassium channels are regulators of membrane potentials, action potential shape, firing adaptation, and neuronal excitability in excitable tissues including in the primary sensory neurons of dorsal root ganglion (DRG). In this study, using the whole-cell patch-clamp technique, the effect of estradiol (E2) on voltage-gated total outward potassium currents, the component currents transient “A-type” current (I A) currents, and “delayed rectifier type” (I KDR) currents in isolated mouse DRG neurons was examined. We found that the extracellularly applied 17β-E2 inhibited voltage-gated total outward potassium currents; the effects were rapid, reversible, and concentration-dependent. Moreover, the membrane impermeable E2-BSA was as efficacious as 17β-E2, whereas 17α-E2 had no effect. 17β-E2-stimulated decrease in the potassium current was unaffected by treatment with ICI 182780 (classic estrogen receptor antagonist), actinomycin D (RNA synthesis inhibitor), or cycloheximide (protein synthesis inhibitor). We also found that I A and I KDR were decreased after 17β-E2 application. 17β-E2 significantly shifted the activation curve for I A and I KDR channels in the hyperpolarizing direction. In conclusion, our results demonstrate that E2 inhibited voltage-gated K+ channels in mouse DRG neurons through a membrane ER-activated non-genomic pathway.  相似文献   

2.
The endocrine-disrupting chemical bisphenol A (BPA) is used to manufacture plastics including food containers, and it may leach into these containers. Consumption of BPA that has leached out of plastics may be harmful as recent research highlighted that BPA can induce alterations in the nervous system. In the present work, we studied the effects of BPA on Ca2+ channels in dorsal root ganglion (DRG) neurons. Using whole-cell patch-clamp recordings, we found that I Ca could be reduced by BPA in a concentration-dependent manner. Additionally, BPA shifted the activation curve of calcium currents toward a depolarizing direction and increased the slope factor of the curve. The inactivation curve for the currents was also assessed, and the curve shifted toward the depolarizing direction, although it was not significant. Moreover, inhibitory effects of BPA on the increments of intracellular Ca2+ concentrations ([Ca2+]i) induced by 50 mM KCl were observed in DRG neurons using a laser scanning confocal microscopy assay. Further work revealed that the PKA and PKC pathways may be involved in the inhibitory effects of BPA since the PKA antagonist GÖ-6983 and the PKC antagonist H-89 significantly alleviated the inhibitory effects of BPA on I Ca. As such, the results of the present study provide direct evidence that BPA decreases I Ca and impairs calcium homeostasis, which may be involved in any toxic effects of BPA on DRG neurons.  相似文献   

3.
Sheng  Anqi  Zhang  Yan  Li  Guang  Zhang  Guangqin 《Neurochemical research》2018,43(2):450-457

Voltage-gated potassium (KV) currents, subdivided into rapidly inactivating A-type currents (I A) and slowly inactivating delayed rectifier currents (I K), play a fundamental role in modulating pain by controlling neuronal excitability. The effects of Honokiol (Hon), a natural biphenolic compound derived from Magnolia officinalis, on KV currents were investigated in freshly isolated mouse dorsal root ganglion neurons using the whole-cell patch clamp technique. Results showed that Hon inhibited I A and I K in concentration-dependent manner. The IC50 values for block of I A and I K were 30.5 and 25.7 µM, respectively. Hon (30 µM) shifted the steady-state activation curves of I A and I K to positive potentials by 17.6 and 16.7 mV, whereas inactivation and recovery from the inactivated state of I A were unaffected. These results suggest that Hon preferentially interacts with the active states of the I A and I K channels, and has no effect on the resting state and inactivated state of the I A channel. Blockade on K+ channels by Hon may contribute to its antinociceptive effect, especially anti-inflammatory pain.

  相似文献   

4.
Quantitative and morphometric observations were carried out on neurons of L3-L6 dorsal root ganglia (DRGs) in control and vitamin-E-deficient rats at different ages. Controls were fed a standard diet and sacrificed at 1 or at 5 months of age; deficient rats were fed a diet without vitamin E from 1 to 5 months of age and then sacrificed. No significant difference in total number of neurons was found, but an increase in neuron sizes, a decrease in nucleus-cytoplasm ratio, and a more circular neuron shape were found in controls with increasing age (from 1 to 5 months). In L3-L6 DRGs of vitamin-E-deficient rats (5 months of age), a higher number of neurons was found than in those of either young or adult controls. Moreover, some morphometric characteristics of neurons in the deficient rats were similar to those of neurons in 1-month-old controls. The findings suggest that vitamin E deficiency can trigger events resulting in appearance of new neurons, possibly anticipating phenomena that normally occur in aging.  相似文献   

5.
The effects of sodium metabisulfite (SMB), a general food preservative, on potassium currents in rat dorsal root ganglion (DRG) neurons were investigated using the whole-cell patch-clamp technique. SMB increased the amplitudes of both transient outward potassium currents and delayed rectifier potassium current in concentration- and voltage-dependent manner. The transient outward potassium currents (TOCs) include a fast inactivating (A-current or I A) current and a slow inactivating (D-current or I D) current. SMB majorly increased IA, and ID was little affected. SMB did not affect the activation process of transient outward currents (TOCs), but the inactivation curve of TOCs was shifted to more positive potentials. The inactivation time constants of TOCs were also increased by SMB. For delayed rectifier potassium current (I K), SMB shifted the activation curve to hyperpolarizing direction. SMB differently affected TOCs and I K, its effects major on A-type K+ channels, which play a role in adjusting pain sensitivity in response to peripheral redox conditions. SMB did not increase TOCs and I K when adding DTT in pipette solution. These results suggested that SMB might oxidize potassium channels, which relate to adjusting pain sensitivity in pain-sensing DRG neurons.  相似文献   

6.
Transient receptor potential (TRP) ion channels mediate key aspects of taste, smell, pain, temperature sensation, and pheromone detection. To deepen our understanding of TRP channel physiology, we require more diverse pharmacological tools. Citral, a bioactive component of lemongrass, is commonly used as a taste enhancer, as an odorant in perfumes, and as an insect repellent. Here we report that citral activates TRP channels found in sensory neurons (TRPV1 and TRPV3, TRPM8, and TRPA1), and produces long-lasting inhibition of TRPV1–3 and TRPM8, while transiently blocking TRPV4 and TRPA1. Sustained citral inhibition is independent of internal calcium concentration, but is state-dependent, developing only after TRP channel opening. Citral''s actions as a partial agonist are not due to cysteine modification of the channels nor are they a consequence of citral''s stereoisoforms. The isolated aldehyde and alcohol cis and trans enantiomers (neral, nerol, geranial, and geraniol) each reproduce citral''s actions. In juvenile rat dorsal root ganglion neurons, prolonged citral inhibition of native TRPV1 channels enabled the separation of TRPV2 and TRPV3 currents. We find that TRPV2 and TRPV3 channels are present in a high proportion of these neurons (94% respond to 2-aminoethyldiphenyl borate), consistent with our immunolabeling experiments and previous in situ hybridization studies. The TRPV1 activation requires residues in transmembrane segments two through four of the voltage-sensor domain, a region previously implicated in capsaicin activation of TRPV1 and analogous menthol activation of TRPM8. Citral''s broad spectrum and prolonged sensory inhibition may prove more useful than capsaicin for allodynia, itch, or other types of pain involving superficial sensory nerves and skin.  相似文献   

7.
The Cav3.2 isoform of the T-type calcium channel is expressed in primary sensory neurons of the dorsal root ganglion (DRG), and these channels contribute to nociceptive and neuropathic pain in rats. However, there are conflicting reports on the roles of these channels in pain processing in rats and mice. In addition, the function of T-type channels in persistent inflammatory hyperalgesia is poorly understood. We performed behavioral and comprehensive histochemical analyses to characterize Cav3.2-expressing DRG neurons and examined the regulation of T-type channels in DRGs from C57BL/6 mice with carrageenan-induced inflammatory hyperalgesia. We show that approximately 20% of mouse DRG neurons express Cav3.2 mRNA and protein. The size of the majority of Cav3.2-positive DRG neurons (69 ± 8%) ranged from 300 to 700 μm2 in cross-sectional area and 20 to 30 μm in estimated diameter. These channels co-localized with either neurofilament-H (NF-H) or peripherin. The peripherin-positive cells also overlapped with neurons that were positive for isolectin B4 (IB4) and calcitonin gene-related peptide (CGRP) but were distinct from transient receptor potential vanilloid 1 (TRPV1)-positive neurons during normal mouse states. In mice with carrageenan-induced inflammatory hyperalgesia, Cav3.2 channels, but not Cav3.1 or Cav3.3 channels, were upregulated in ipsilateral DRG neurons during the sub-acute phase. The increased Cav3.2 expression partially resulted from an increased number of Cav3.2-immunoreactive neurons; this increase in number was particularly significant for TRPV1-positive neurons. Finally, preceding and periodic intraplantar treatment with the T-type calcium channel blockers mibefradil and NNC 55-0396 markedly reduced and reversed mechanical hyperalgesia during the acute and sub-acute phases, respectively, in mice. These data suggest that Cav3.2 T-type channels participate in the development of inflammatory hyperalgesia, and this channel might play an even greater role in the sub-acute phase of inflammatory pain due to increased co-localization with TRPV1 receptors compared with that in the normal state.  相似文献   

8.
Transient receptor potential vanilloid type 1 (TRPV1) is a plasma membrane Ca2+ channel involved in transduction of painful stimuli. Dorsal root ganglion (DRG) neurons express ectopic but functional TRPV1 channels in the endoplasmic reticulum (ER) (TRPV1ER). We have studied the properties of TRPV1ER in DRG neurons and HEK293T cells expressing TRPV1. Activation of TRPV1ER with capsaicin or other vanilloids produced an increase of cytosolic Ca2+ due to Ca2+ release from the ER. The decrease of [Ca2+]ER was directly revealed by an ER-targeted aequorin Ca2+ probe, expressed in DRG neurons using a herpes amplicon virus. The sensitivity of TRPV1ER to capsaicin was smaller than the sensitivity of the plasma membrane TRPV1 channels. The low affinity of TRPV1ER was not related to protein kinase A- or C-mediated phosphorylations, but it was due to inactivation by cytosolic Ca2+ because the sensitivity to capsaicin was increased by loading the cells with the Ca2+ chelator BAPTA. Decreasing [Ca2+]ER did not affect the sensitivity of TRPV1ER to capsaicin. Disruption of the TRPV1 calmodulin-binding domains at either the C terminus (Δ35AA) or the N terminus (K155A) increased 10-fold the affinity of TRPV1ER for capsaicin, suggesting that calmodulin is involved in the inactivation. The lack of TRPV1 sensitizers, such as phosphatylinositol 4,5-bisphosphate, in the ER could contribute to decrease the affinity for capsaicin. The low sensitivity of TRPV1ER to agonists may be critical for neuron health, because otherwise Ca2+ depletion of ER could lead to ER stress, unfolding protein response, and cell death.  相似文献   

9.
10.
In co-cultured dorsal root ganglion (DRG) neurons and spinal cord neurons from newborn rats, using a voltage-clamp technique in the whole-cell configuration enabled us to observe in DRG neurons the effects evoked by extracellular local electrical stimulation of cells corresponding to spinal cord neurons in their morphological characteristics. Such stimulation caused the appearance of postsynaptic currents (PSC) in DRG neurons in 9% of the cases. The mean delay of these currents (measured from the stimulus leading edge) was 4.7 ± 0.29 msec, the mean time to peak was 2.6 ± 0.77 msec, and the decay time constant = 14.5 ± 1.04 msec. The reversal potential of evoked PSC (ePSC) was close to the equilibrium potential for chloride ions estimated by the Nernst equation. Application of 20 M bicuculline induced practically complete and reversible ePSC block. The conclusion was drawn that these currents arise due to activation of the chloride channels operated by GABA receptors and, hence, represent an inhibitory PSC. Thus, one may deem it proved that spinal cord neurons can establish functional inhibitory synapses with DRG neurons.  相似文献   

11.
Septic shock, the most severe complication associated with sepsis, is manifested by tissue hypoperfusion due, in part, to cardiovascular and autonomic dysfunction. In many cases, the splanchnic circulation becomes vasoplegic. The celiac-superior mesenteric ganglion (CSMG) sympathetic neurons provide the main autonomic input to these vessels. We used the cecal ligation puncture (CLP) model, which closely mimics the hemodynamic and metabolic disturbances observed in septic patients, to examine the properties and modulation of Ca2+ channels by G protein-coupled receptors in acutely dissociated rat CSMG neurons. Voltage-clamp studies 48 hr post-sepsis revealed that the Ca2+ current density in CMSG neurons from septic rats was significantly lower than those isolated from sham control rats. This reduction coincided with a significant increase in membrane surface area and a negligible increase in Ca2+ current amplitude. Possible explanations for these findings include either cell swelling or neurite outgrowth enhancement of CSMG neurons from septic rats. Additionally, a significant rightward shift of the concentration-response relationship for the norepinephrine (NE)-mediated Ca2+ current inhibition was observed in CSMG neurons from septic rats. Testing for the presence of opioid receptor subtypes in CSMG neurons, showed that mu opioid receptors were present in ~70% of CSMG, while NOP opioid receptors were found in all CSMG neurons tested. The pharmacological profile for both opioid receptor subtypes was not significantly affected by sepsis. Further, the Ca2+ current modulation by propionate, an agonist for the free fatty acid receptors GPR41 and GPR43, was not altered by sepsis. Overall, our findings suggest that CSMG function is affected by sepsis via changes in cell size and α2-adrenergic receptor-mediated Ca2+ channel modulation.  相似文献   

12.
Lei  Xiaolu  Zeng  Junwei  Yan  Yan  Liu  Xiaohong 《Neurochemical research》2022,47(4):1083-1096
Neurochemical Research - Hyperpolarization-activated cyclic nucleotide-gated channels and purinergic P2X receptors play critical roles in the nerve injury-induced pain hypersensitivity. Both HCN...  相似文献   

13.
Glutamate in the peripheral nervous system is involved in neuropathic pain, yet we know little how nerve injury alters responses to this neurotransmitter in primary sensory neurons. We recorded neuronal responses from the ex-vivo preparations of the dorsal root ganglia (DRG) one week following a chronic constriction injury (CCI) of the sciatic nerve in adult rats. We found that small diameter DRG neurons (<30 µm) exhibited increased excitability that was associated with decreased membrane threshold and rheobase, whereas responses in large diameter neurons (>30 µm) were unaffected. Puff application of either glutamate, or the selective ionotropic glutamate receptor agonists alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainic acid (KA), or the group I metabotropic receptor (mGluR) agonist (S)-3,5-dihydroxyphenylglycine (DHPG), induced larger inward currents in CCI DRGs compared to those from uninjured rats. N-methyl-D-aspartate (NMDA)-induced currents were unchanged. In addition to larger inward currents following CCI, a greater number of neurons responded to glutamate, AMPA, NMDA, and DHPG, but not to KA. Western blot analysis of the DRGs revealed that CCI resulted in a 35% increase in GluA1 and a 60% decrease in GluA2, the AMPA receptor subunits, compared to uninjured controls. mGluR1 receptor expression increased by 60% in the membrane fraction, whereas mGluR5 receptor subunit expression remained unchanged after CCI. These results show that following nerve injury, small diameter DRG neurons, many of which are nociceptive, have increased excitability and an increased response to glutamate that is associated with changes in receptor expression at the neuronal membrane. Our findings provide further evidence that glutamatergic transmission in the periphery plays a role in nociception.  相似文献   

14.
海南捕鸟蛛毒素 IV(HNTX IV)是从中国捕鸟蛛Seleconosmiahainana粗毒中分离得到的一种肽类神经毒素 ,在成年大鼠背根神经节 (DRG)细胞上观察了该毒素对电压门控钠通道的影响。在全细胞膜片钳条件下 ,HNTX IV能明显抑制哺乳动物神经性河豚毒敏感型 (TTX S)钠电流 ,但不影响河豚毒不敏感型 (TTX R)钠电流。HNTX IV对DRG细胞TTX S钠电流的抑制作用具有浓度依从性 ,其有效半抑制浓度 (IC50 )为 44 .6nmol/L。该毒素不影响DRG钠电流的激活与失活时间特征 ,但能导致钠通道的半数稳态失活电压向超极化方向漂移约 10 .1mV。结果表明HNTX IV是一种新型的蜘蛛毒素 ,其影响电压门控钠通道的机制可能有别于那些结合于通道位点 3来延缓钠电流失活时间特征的蜘蛛毒素如δ 澳洲漏斗网蛛毒素、μ 美洲漏斗网蛛毒素I VI等。  相似文献   

15.
Ca(2+) is well known for its role as crucial second messenger in modulating many cellular physiological functions, Ca(2+) overload is detrimental to cellular function and may present as an important cause of cellular oxidative stress generation and apoptosis. The aim of this study is to investigate the effects of selenium on lipid peroxidation, reduced glutathione (GSH), glutathione peroxidase (GSH-Px), cytosolic Ca(2+) release, cell viability (MTT) and apoptosis values in dorsal root ganglion (DRG) sensory neurons of rats. DRG cells were divided into four groups namely control, H(2)O(2) (as a model substance used as a paradigm for oxidative stress), selenium, selenium + H(2)O(2). Moderate doses and times of H(2)O(2) and selenium were determined by MTT test. Cells were preterated 200 nM selenium for 30 h before incubatation with 1 μM H(2)O(2) for 2 h. Lipid peroxidation levels were lower in the control, selenium, selenium + H(2)O(2) groups than in the H(2)O(2) group. GSH-Px activities were higher in the selenium groups than in the H(2)O(2) group. GSH levels were higher in the control, selenium, selenium + H(2)O(2) groups than in the H(2)O(2) group. Cytosolic Ca(2+) release was higher in the H(2)O(2) group than in the control, selenium, selenium + H(2)O(2) groups. Cytosolic Ca(2+) release was lower in the selenium + H(2)O(2) group than in the H(2)O(2). In conclusion, the present study demonstrates that selenium induced protective effects on oxidative stress, [Ca(2+)](c) release and apoptosis in DRG cells. Since selenium deficiency is a common feature of oxidative stress-induced neurological diseases of sensory neurons, our findings are relevant to the etiology of pathology in oxidative stress-induced neurological diseases of the DRG neurons.  相似文献   

16.
Aquaporin-1 (AQP1) water channels are expressed in the plasma membrane of dorsal root ganglion (DRG) neurons. We found reduced osmotic water permeability in freshly isolated DRG neurons from AQP1−/− versus AQP1+/+ mice. Behavioral studies showed greatly reduced thermal inflammatory pain perception in AQP1−/− mice evoked by bradykinin, prostaglandin E2, and capsaicin as well as reduced cold pain perception. Patch clamp of freshly isolated DRG neurons showed reduced action potential firing in response to current injections. Single action potentials after pulse current injections showed reduced maximum inward current, suggesting impaired Nav1.8 Na+ function. Whole-cell Nav1.8 Na+ currents in Nav1.8-expressing ND7-23 cells showed slowed frequency-dependent inactivation after AQP1 transfection. Immunoprecipitation studies showed AQP1- Nav1.8 Na+ interaction, which was verified in live cells by single-particle tracking of quantum dot-labeled AQP1. Our results implicate the involvement of AQP1 in DRG neurons for the perception of inflammatory thermal pain and cold pain, whose molecular basis is accounted for, in part, by reduced Nav1.8-dependent membrane Na+ current. AQP1 is, thus, a novel target for pain management.  相似文献   

17.
During development, neural crest-derived sensory neurons require nerve growth factor (NGF) for survival, but lose this dependency postnatally. Similarly, dissociated embryonic sensory neurons lose their NGF dependence during the first 3 weeks in cell culture. It has been hypothesized that, in sympathetic neurons, intracellular levels of calcium are related to trophic factor dependence. In vitro during the period in which embryonic-day-15 sensory neurons become independent of NGF, intracellular calcium concentrations progressively increased in parallel to the decline in NGF dependence. This elevation of intracellular calcium was directly related to the absolute age of the neurons, not to the length of time in culture. Without NGF, immature sensory, i.e., dependent, neurons survived in the presence of high extracellular potassium, a condition that produces elevated intracellular calcium. In another paradigm, measurements of intracellular calcium were determined in NGF-dependent neurons "committed to die" after NGF withdrawal. These measurements were determined prior to the time that extensive morphological changes, consistent with cell death, were noted by phase-contrast microscopy. No elevation in intracellular calcium was found in these dying neurons, but rather, a small decrease was observed prior to the disintegration of the neurons. These findings support the hypothesis that trophic factor dependence of neurons may be inversely related to levels of intracellular calcium.  相似文献   

18.
Aberrant calcium regulation has been implicated as a causative factor in the degeneration of retinal ganglion cells (RGCs) in numerous injury models of optic neuropathy. Since calcium has dual roles in maintaining homeostasis and triggering apoptotic pathways in healthy and injured cells, respectively, investigation of voltage-gated Ca channel (VGCC) regulation as a potential strategy to reduce the loss of RGCs is warranted. The accessibility and structure of the retina provide advantages for the investigation of the mechanisms of calcium signalling in both the somata of ganglion cells as well as their unmyelinated axons. The goal of the present study was to determine the distribution of VGCC subtypes in the cell bodies and axons of ganglion cells in the normal retina and to define their contribution to calcium signals in these cellular compartments. We report L-type Ca channel α1C and α1D subunit immunoreactivity in rat RGC somata and axons. The N-type Ca channel α1B subunit was in RGC somata and axons, while the P/Q-type Ca channel α1A subunit was only in the RGC somata. We patch clamped isolated ganglion cells and biophysically identified T-type Ca channels. Calcium imaging studies of RGCs in wholemounted retinas showed that selective Ca channel antagonists reduced depolarization-evoked calcium signals mediated by L-, N-, P/Q- and T-type Ca channels in the cell bodies but only by L-type Ca channels in the axons. This differential contribution of VGCC subtypes to calcium signals in RGC somata and their axons may provide insight into the development of target-specific strategies to spare the loss of RGCs and their axons following injury.  相似文献   

19.
20.
The transient receptor potential vanilloid receptor 1 (TRPV1) channel is a nonselective cation channel activated by a variety of exogenous and endogenous physical and chemical stimuli, such as temperature (≥42 °C), capsaicin, a pungent compound in hot chili peppers, and allyl isothiocyanate. Large-conductance calcium- and voltage-activated potassium (BK) channels regulate the electric activities and neurotransmitter releases in excitable cells, responding to changes in membrane potentials and elevation of cytosolic calcium ions (Ca2+). However, it is unknown whether the TRPV1 channels are coupled with the BK channels. Using patch-clamp recording combined with an infrared laser device, we found that BK channels could be activated at 0 mV by a Ca2+ influx through TRPV1 channels not the intracellular calcium stores in submilliseconds. The local calcium concentration around BK is estimated over 10 μM. The crosstalk could be affected by 10 mM BAPTA, whereas 5 mM EGTA was ineffectual. Fluorescence and co-immunoprecipitation experiments also showed that BK and TRPV1 were able to form a TRPV1-BK complex. Furthermore, we demonstrated that the TRPV1-BK coupling also occurs in dosal root ganglion (DRG) cells, which plays a critical physiological role in regulating the “pain” signal transduction pathway in the peripheral nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号