首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xu J  Qi X  Gong J  Yu M  Zhang F  Sha H  Gao X 《PloS one》2012,7(4):e32554
Bone morphogenetic protein (BMP) signaling pathway plays important roles in urinary tract development although the detailed regulation of its activity in this process remains unclear. Here we report that follistatin-like 1 (Fstl1), encoding a secreted extracellular glycoprotein, is expressed in developing ureter and antagonizes BMP signaling activity. Mouse embryos carrying disrupted Fstl1 gene displayed prominent hydroureter arising from proximal segment and ureterovesical junction defects. These defects were associated with significant reduction in ureteric epithelial cell proliferation at E15.5 and E16.5 as well as absence of subepithelial ureteral mesenchymal cells in the urinary tract at E16.5 and E18.5. At the molecular level, increased BMP signaling was found in Fstl1 deficient ureters, indicated by elevated pSmad1/5/8 activity. In vitro study also indicated that Fstl1 can directly bind to ALK6 which is specifically expressed in ureteric epithelial cells in developing ureter. Furthermore, Sonic hedgehog (SHH) signaling, which is crucial for differentiation of ureteral subepithelial cell proliferation, was also impaired in Fstl1(-/-) ureter. Altogether, our data suggest that Fstl1 is essential in maintaining normal ureter development by antagonizing BMP signaling.  相似文献   

2.
3.
A family of inner nuclear membrane proteins is implicated in gene regulation by interacting with chromatin, nuclear lamina and intranuclear proteins; however, the physiological functions of these proteins are largely unknown. Using a Xenopus expression screening approach with an anterior neuroectoderm cDNA library, we have identified an inner nuclear membrane protein, XMAN1, as a novel neuralizing factor that is encoded by the Xenopus ortholog of human MAN1. XMAN1 mRNA is expressed maternally, and appears to be restricted to the entire ectoderm at the early gastrula stage, then to the anterior neuroectoderm at the neurula stage. XMAN1 induces anterior neural markers without mesoderm induction in ectodermal explants, and a partial secondary axis when expressed ventrally by dorsalizing the ventral mesoderm. Importantly, XMAN1 antagonizes bone morphogenetic protein (BMP) signaling downstream of its receptor Alk3, as judged by animal cap assays, in which XMAN1 blocks expression of downstream targets of BMP signaling (Xhox3 and Msx1), and by luciferase reporter assays, in which XMAN1 suppresses BMP-dependent activation of the Xvent2 promoter. Deletion mutant analyses reveal that the neuralizing and BMP-antagonizing activities of XMAN1 reside in the C-terminal region, and that the C-terminal region binds to Smad1, Smad5 and Smad8, which are intracellular mediators of the BMP pathway. Interference with endogenous XMAN1 functions with antisense morpholino oligos leads to the reduction of anterior neuroectoderm. These results provide the first evidence that the nuclear envelope protein XMAN1 acts as a Smad-interacting protein to antagonize BMP signaling during Xenopus embryogenesis.  相似文献   

4.
The cellular events that govern patterning during animal development must be precisely regulated. This is achieved by extrinsic factors and through the action of both positive and negative feedback loops. Wnt/Wg signals are crucial across species in many developmental patterning events. We report that Drosophila nemo (nmo) acts as an intracellular feedback inhibitor of Wingless (Wg) and that it is a novel Wg target gene. Nemo antagonizes the activity of the Wg signal, as evidenced by the finding that reduction of nmo rescues the phenotypic defects induced by misexpression of various Wg pathway components. In addition, the activation of Wg-dependent gene expression is suppressed in wing discs ectopically expressing nmo and enhanced cell autonomously in nmo mutant clones. We find that nmo itself is a target of Wg signaling in the imaginal wing disc. nmo expression is induced upon high levels of Wg signaling and can be inhibited by interfering with Wg signaling. Finally, we observe alterations in Arm stabilization upon modulation of Nemo. These observations suggest that the patterning mechanism governed by Wg involves a negative feedback circuit in which Wg induces expression of its own antagonist Nemo.  相似文献   

5.
The dorsal-ventral axis of vertebrate embryos is thought to be specified by a gradient of bone morphogenetic protein (BMP) activity, which, in part, arises through the interaction of dorsally expressed antagonists Chordin and Noggin with the ventralizing BMPs. The zebrafish mercedes(tm305), ogon(m60), and short tail(b180) mutations produce ventralized phenotypes, including expanded bmp2b/4 expression domains. We find that the three mutations are allelic and that the locus they define, renamed ogon (ogo), maps to linkage group 25. The ogo(m60) and ogo(b180) mutations are deficiencies and thus represent null alleles, whereas the ENU-induced allele ogo(tm305) retains partial function. Aspects of the ogo(m60) and ogo(tm305) mutant phenotypes are fully suppressed by overexpression of BMP antagonists. Moreover, swirl(tc300), a null mutation in bmp2b, is epistatic to ogo(m60) mutation, providing further evidence that ogo normally functions in a BMP-dependent manner. Embryonic patterning is highly sensitive to maternal and zygotic ogo gene dosage, especially when the level of zygotic chordin activity is also reduced. However, elimination of the zygotic activity of both genes does not result in a completely ventralized embryo. Thus, while ogo and chordin are required to limit activity of BMPs, additional mechanisms must exist to block these ventralizing signals. We have ruled out zebrafish noggin homologues as candidates for the ogo gene, including a newly identified gene, nog1, which is specifically expressed in the gastrula organizer. The results suggest that ogo encodes an as yet unidentified dorsalizing factor that mediates dorsoventral patterning by directly or indirectly antagonizing BMP activity.  相似文献   

6.
7.
Improper attachment of the mitotic spindle to the kinetochores of paired sister chromatids in mitosis is monitored by a checkpoint that leads to an arrest in early metaphase. This arrest requires the inhibitory association of Mad2 with the anaphase promoting complex/cyclosome (APC/C). It is not known how the association of Mad2 with the kinetochore and the APC/C is regulated in mitosis. Here, we demonstrate that human Mad2 is modified through phosphorylation on multiple serine residues in vivo in a cell cycle dependent manner and that only unphosphorylated Mad2 interacts with Mad1 or the APC/C in vivo. A Mad2 mutant containing serine to aspartic acid mutations mimicking the C-terminal phosphorylation events fails to interact with Mad1 or the APC/C and acts as a dominant-negative antagonist of wild-type Mad2. These data suggest that the phosphorylation state of Mad2 regulates its checkpoint activity by modulating its association with Mad1 and the APC/C.  相似文献   

8.
9.
Sato T  Ogata J  Niki Y 《Zoological science》2010,27(10):804-810
The germline is segregated from the remainder of the soma during early embryonic development in metazoan species. In Drosophila, female primordial germ cells (PGCs) continue to proliferate during larval development, and become germline stem cells at the early pupal stage. To elucidate the roles of growth factors in larval PGC division, we examined expression patterns of a bone morphogenetic protein (BMP) growth factor, Decapentaplegic (Dpp), and Hedgehog (Hh), along with factors downstream of each, in the ovary during larval development. Dpp signaling appeared in the ovarian soma from early larval development, and was prominent in the terminal filament cells at late larval stage, whereas Hh appeared in the ovarian soma and PGCs from the third instar larval stage. The number of PGCs decreased when components of these signal transduction pathways were abrogated by RNAi in the PGCs, indicating that both Dpp and Hh signals directly regulate PGC proliferation. Experiments on the up- and down-regulation of Dpp and Hh with a tissue-specific Gal4 driver indicated that Dpp and Hh act as extrinsic and autocrine growth factors. Furthermore, heat-pulse experiments with hs-Gal4 showed that Dpp is active in PGC proliferation throughout larval development, whereas Hh has effects only during late larval development. In addition to Dpp, the reduction of Glass bottom boat (Gbb), another BMP molecule, caused a decrease in the number of PGCs and initiation of larval PGCs differentiation into cystocytes, indicating that Gbb functions to promote PGC division and repress differentiation.  相似文献   

10.
The spindle assembly checkpoint (SAC) monitors chromosome attachment to spindle microtubules. SAC proteins operate at kinetochores, scaffolds mediating chromosome-microtubule attachment. The ubiquitous SAC constituents Mad1 and Mad2 are recruited to kinetochores in prometaphase. Mad2 sequesters Cdc20 to prevent its ability to mediate anaphase onset. Its function is counteracted by p31comet (formerly CMT2). Upon binding Cdc20, Mad2 changes its conformation from O-Mad2 (Open) to C-Mad2 (Closed). A Mad1-bound C-Mad2 template, to which O-Mad2 binds prior to being converted into Cdc20-bound C-Mad2, assists this process. A molecular understanding of this prion-like property of Mad2 is missing. We characterized the molecular determinants of the O-Mad2:C-Mad2 conformational dimer and derived a rationalization of the binding interface in terms of symmetric and asymmetric components. Mutation of individual interface residues abrogates the SAC in Saccharomyces cerevisiae. NMR chemical shift perturbations indicate that O-Mad2 undergoes a major conformational rearrangement upon binding C-Mad2, suggesting that dimerization facilitates the structural conversion of O-Mad2 required to bind Cdc20. We also show that the negative effects of p31comet on the SAC are based on its competition with O-Mad2 for C-Mad2 binding.  相似文献   

11.
The bone morphogenetic protein (BMP) signaling pathway is a conserved regulator of cellular and developmental processes in animals. The mechanisms underlying BMP signaling activation differ among tissues and mostly reflect changes in the expression of pathway components. BMP signaling is one of the major pathways responsible for the patterning of the Drosophila eggshell, a complex structure derived from a layer of follicle cells (FCs) surrounding the developing oocyte. Activation of BMP signaling in the FCs is dynamic. Initially, signaling is along the anterior-posterior (A/P) axis; later, signaling acquires dorsal-ventral (D/V) polarity. These dynamics are regulated by changes in the expression pattern of the type I BMP receptor thickveins (tkv). We recently found that signaling dynamics and TKV patterning are highly correlated in the FCs of multiple Drosophila species. In addition, we showed that signaling patterns are spatially different among species. Here, we use a mathematical model to simulate the dynamics and differences of BMP signaling in numerous species. This model predicts that qualitative and quantitative changes in receptor expression can lead to differences in the spatial pattern of BMP signaling. We tested these predications experimentally in three different Drosophila species and through genetic perturbations of BMP signaling in D. melanogaster. On the basis of our results, we concluded that changes in tkv patterning can account for the experimentally observed differences in the patterns of BMP signaling in multiple Drosophila species.  相似文献   

12.
The dorsal anterior region of the follicle cells (FCs) in the developing Drosophila egg gives rise to the respiratory eggshell appendages. These tubular structures display a wide range of qualitative and quantitative variations across Drosophila species, providing a remarkable example of a rapidly evolving morphology. In D. melanogaster, the bone morphogenetic protein (BMP) signaling pathway is an important regulator of FCs patterning and dorsal appendages morphology. To explore the mechanisms underlying the diversification of eggshell patterning, we analyzed BMP signaling in the FCs of 16 Drosophila species that span 45 million years of evolution. We found that the spatial patterns of BMP signaling in the FCs are dynamic and exhibit a range of interspecies' variations. In most of the species examined, the dynamics of BMP signaling correlate with the expression of the type I BMP receptor thickveins (tkv). This correlation suggests that interspecies' variations of tkv expression are responsible for the diversification of BMP signaling during oogenesis. This model was supported by genetic manipulations of tkv expression in the FCs of D. melanogaster that successfully recapitulated the signaling diversities found in the other species. Our results suggest that regulation of receptor expression mediates spatial diversification of BMP signaling in Drosophila oogenesis, and they provide insight into a mechanism underlying the evolution of eggshell patterning.  相似文献   

13.
14.
Embryonic stem (ES) cells are a promising source of cardiomyocytes, but clinical application of ES cells has been hindered by the lack of reliable selective differentiation methods. Differentiation into any lineage is partly dependent on the regulatory mechanisms of normal early development. Although several signals, including bone morphogenetic protein (BMP), Wnt and FGF, are involved in heart development, scarce evidence is available about the exact signals that mediate cardiomyocyte differentiation. While investigating the involvement of BMP signaling in early heart formation in the mouse, we found that the BMP antagonist Noggin is transiently but strongly expressed in the heart-forming region during gastrulation and acts at the level of induction of mesendoderm to establish conditions conducive to cardiogenesis. We applied this finding to develop an effective protocol for obtaining cardiomyocytes from mouse ES cells by inhibition of BMP signaling.  相似文献   

15.
Mang HG  Qian W  Zhu Y  Qian J  Kang HG  Klessig DF  Hua J 《The Plant cell》2012,24(3):1271-1284
Plant defense responses to pathogens are influenced by abiotic factors, including temperature. Elevated temperatures often inhibit the activities of disease resistance proteins and the defense responses they mediate. A mutant screen with an Arabidopsis thaliana temperature-sensitive autoimmune mutant bonzai1 revealed that the abscisic acid (ABA)-deficient mutant aba2 enhances resistance mediated by the resistance (R) gene suppressor of npr1-1 constitutive1 (SNC1) at high temperature. ABA deficiency promoted nuclear accumulation of SNC1, which was essential for it to function at low and high temperatures. Furthermore, the effect of ABA deficiency on SNC1 protein accumulation is independent of salicylic acid, whose effects are often antagonized by ABA. ABA deficiency also promotes the activity and nuclear localization of R protein resistance to Pseudomonas syringae4 at higher temperature, suggesting that the effect of ABA on R protein localization and nuclear activity is rather broad. By contrast, mutations that confer ABA insensitivity did not promote defense responses at high temperature, suggesting either tissue specificity of ABA signaling or a role of ABA in defense regulation independent of the core ABA signaling machinery. Taken together, this study reveals a new intersection between ABA and disease resistance through R protein localization and provides further evidence of antagonism between abiotic and biotic responses.  相似文献   

16.
17.
18.
19.
20.
Retrograde BMP signaling in neurons plays conserved roles in synaptic efficacy and subtype-specific gene expression. However, a role for retrograde BMP signaling in the behavioral output of neuronal networks has not been established. Insect development proceeds through a series of stages punctuated by ecdysis, a complex patterned behavior coordinated by a dedicated neuronal network. In Drosophila, larval ecdysis sheds the old cuticle between larval stages, and pupal ecdysis everts the head and appendages to their adult external position during metamorphosis. Here, we found that mutants of the type II BMP receptor wit exhibited a defect in the timing of larval ecdysis and in the completion of pupal ecdysis. These phenotypes largely recapitulate those previously observed upon ablation of CCAP neurons, an integral subset of the ecdysis neuronal network. Here, we establish that retrograde BMP signaling in only the efferent subset of CCAP neurons (CCAP-ENs) is required to cell-autonomously upregulate expression of the peptide hormones CCAP, Mip and Bursicon β. In wit mutants, restoration of wit exclusively in CCAP neurons significantly rescued peptide hormone expression and ecdysis phenotypes. Moreover, combinatorial restoration of peptide hormone expression in CCAP neurons in wit mutants also significantly rescued wit ecdysis phenotypes. Collectively, our data demonstrate a novel role for retrograde BMP signaling in maintaining the behavioral output of a neuronal network and uncover the underlying cellular and gene regulatory substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号