首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Streptococcus suis capsular type 2 is an important agent of diseases including meningitis among pigs worldwide, and is also a zoonotic agent. The barrier function of the choroid plexus epithelium that constitutes the structural basis for the blood-cerebrospinal fluid (CSF) barrier has not been elucidated yet in bacterial meningitis. We investigated the influence of various S. suis isolates on the barrier function of cultured porcine choroid plexus epithelial cells with respect to the transepithelial resistance and paracellular [(3)H]-mannitol flux. Preferentially apical application of S. suis isolates significantly decreased transepithelial resistance and significantly increased paracellular [(3)H]-mannitol flux in a time-, dose- and strain-dependent manner. Viable S. suis isolates caused cytotoxicity determined by lactate dehydrogenase assay and electron microscopy, whereas S. suis sonicates and UV-inactivated S. suis did not cause cytotoxicity. The observed effects on porcine choroid plexus epithelial cells barrier function could not exclusively be ascribed to known virulence factors of S. suis such as suilysin. In conclusion, S. suis isolates induce loss of blood-cerebrospinal fluid barrier function in an in vitro model. Thus, S. suis may facilitate trafficking of bacteria and leucocytes across the blood-cerebrospinal fluid barrier. The underlying mechanisms for the barrier breakdown have yet to be determined.  相似文献   

2.
Study showed 9-fold increase of concentration of lactoferrin (LF) in serum of patients with bacterial meningitis (BM) compared with normal concentration and 5-fold increase of LF concentration in patients with aseptic meningitis (AM). Level of LF in cerebrospinal fluid (CSF) of patients with BM and AM was 200-fold and 22-fold higher than in control group respectively. In 71% of patients with AM concentration of protein in CSF did not exceed minimal level observed in patients with BM. Level of LF in serum and CSF during treatment statistically significantly decreased. Concentration of LF (the latter is marker of neutrophilic granulocytes activation) can be used as a characteristic of acuteness and intensity of inflammatory process in central nervous system, whereas detection of LF in CSF--as additional criterion in differential diagnostics between bacterial and viral meningitis. Furthermore, repeated measurement of LF level can be useful for monitoring of disease course and assessment of effect of treatment.  相似文献   

3.
Hepatocyte growth factor (HGF) and its specific receptor, MET, are expressed in the developing and adult mammalian brain. Recent studies have shown a neurotrophic activity of HGF in the nervous system. The present study focused on HGF concentrations in the cerebrospinal fluid (CSF) and serum in normal persons and in different central nervous system (CNS) diseases considering blood-CSF barrier (BCB) function. Concentrations of HGF were analyzed using an enzyme-linked immunosorbent assay (ELISA). HGF was present in normal human CSF (346+/-126 pg/ml) representing approximately half of the HGF serum concentrations. The CSF HGF levels were not significantly changed in chronic CNS disease and in aseptic meningitis (419+/-71 pg/ml), but significantly increased in patients with bacterial meningitis (6101+/- 5200 pg/ml). The HGF levels in CSF were not influenced by increased serum concentrations in patients with normal or mildly affected BCB function. The results show that HGF is present in normal CSF and does not appear to cross the CSF barrier significantly unless it is severely disrupted. So far, strong increases of HGF concentration in CSF are only present in acute bacterial meningitis.  相似文献   

4.
The pathogenesis of brain inflammation and damage by human immunodeficiency virus (HIV) infection is unclear. Because blood-brain barrier damage and impaired cerebral perfusion are common features of HIV-1 infection, we evaluated the role of tumour necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta) in mediating disruption of the blood-brain barrier. Levels of TNF-alpha were more elevated in cerebrospinal fluid (CSF) than in serum of HIV-1 infected patients and were mainly detected in those patients who had neurologic involvement. Intrathecal TNF-alpha levels correlated with signs of blood-brain barrier damage, manifested by high CSF to serum albumin quotient, and with the degree of barrier impairment. In contrast, intrathecal IL-1beta levels did not correlate with blood-brain barrier damage in HIV-1 infected patients. TNF-alpha seems to be related to active neural inflammation and to blood-brain barrier damage. The proinflammatory effects of TNF-alpha in the nervous system are dissociated from those of IL-1beta.  相似文献   

5.
Differential diagnosis of bacterial and viral meningitis is an urgent problem of the modern clinical medicine. Early and accurate detection of meningitis etiology largely determines the strategy of its treatment and significantly increases the likelihood of a favorable outcome for the patient. In the present work, we analyzed the peptidome and cytokine profiles of cerebrospinal fluid (CSF) of 17 patients with meningitis of bacterial and viral etiology and of 20 neurologically healthy controls. In addition to the identified peptides (potential biomarkers), we found significant differences in the cytokine status of the CSF of the patients. We found that cut-off of 100 pg/ml of IL-1β, TNF, and GM-CSF levels discriminates bacterial and viral meningitis with 100% specificity and selectivity. We demonstrated for the first time the reduction in the level of two cytokines, IL-13 and GM-CSF, in the CSF of patients with viral meningitis in comparison with the controls. The decrease in GM-CSF level in the CSF of patients with viral meningitis can be explained by a disproportionate increase in the levels of cytokines IL-10, IFN-γ, and IL-4, which inhibit the GM-CSF expression, whereas IL-1, IL-6, and TNF activate it. These observations suggest an additional approach for differential diagnosis of bacterial and viral meningitis based on the normalized ratio IL-10/IL-1β and IL-10/TNF > 1, as well as on the ratio IFN-γ/IL-1β and IFN-γ/ TNF < 0.1. Our findings extend the panel of promising clinical and diagnostic biomarkers of viral and bacterial meningitis and reveal opposite changes in the cytokine expression in meningitis due to compensatory action of proand antiinflammatory factors.  相似文献   

6.
Adiponectin circulates in the body in high concentrations, and 100-fold lower amounts were described in the cerebrospinal fluid (CSF) of mice, whereas in humans, contradictory results have been published. To clarify whether adiponectin is present in human CSF and is derived from the circulation, it was determined in human CSF and plasma of 52 nonselected patients. Adiponectin was detected by immunoblot in CSF and was quantified in CSF and serum by ELISA. CSF adiponectin was positively correlated to systemic levels, and the CSF/serum adiponectin ratio was correlated to the CSF/serum albumin ratio. Furthermore, disturbed function of the blood-brain barrier (BBB) was associated with an elevated CSF/serum adiponectin ratio. Adiponectin mRNA was not found in the brain, indicating that adiponectin crosses the BBB and/or the blood-cerebrospinal fluid barrier (BCB). Rat adiponectin with a COOH-terminal tag was injected into the tail vein of rats and was detected 3 h later in CSF. However, CSF adiponectin in humans and rats was approximately 0.1% of the serum concentration and therefore was below the 0.5% expected in the CSF because of the residual leakage of an undisturbed BBB/BCB. Taken together, data from the present study show that adiponectin in human CSF is far below the level expected by the baseline BBB/BCB permeability, indicating that adiponectin enters the brain much less efficiently than albumin, thus supporting recent data that exclude adiponectin transport to the CSF. Additional studies are needed to reveal whether these low levels of adiponectin in CSF have a physiological function.  相似文献   

7.
Urate is largely excluded from the brain under non‐inflammatory conditions (concentration gradient serum:CSF about 10:1), but increases markedly in Guillain–Barré Syndrome and bacterial meningitis. The oxidation product allantoin is normally not passively distributed between blood and cerebrospinal fluid (gradient 3:1) and increases 5‐fold in CSF of patients with meningitis. Patients with multiple sclerosis had normal levels of urate and allantoin in blood and CSF.  相似文献   

8.
Reactive oxygen and nitrogen species participate in the inflammatory process during meningitis. Among them, superoxide, nitric oxide (NO), and their reaction product peroxynitrite exert cytotoxic effects. Mercaptoethylguanidine (MEG) exerts beneficial effects in in vivo inflammatory conditions by scavenging peroxynitrite and inhibiting the inducible NO synthase. This study was designed to investigate whether MEG may attenuate inflammation and brain injury in experimental meningitis. Meningitis increased nitrite/nitrate, and protein content in the cerebrospinal fluid (CSF). In the brain tissue high levels of malondialdehyde and formation of nitrotyrosine indicated lipid peroxidation and nitrosative stress, respectively. Myeloperoxidase activity was increased indicating accumulation of neutrophils into the brain parenchyma. Treatment with MEG decreased nitrite/nitrate levels whereas it did not affect the bacterial clearance from the CSF. Furthermore, treatment with MEG markedly reduced brain tissue levels of myeloperoxidase and malondialdehyde. These data demonstrate that MEG could have a therapeutic role in meningitis.  相似文献   

9.
We examined the compartmentalization of bioactive tumour necrosis factor (TNF) and interleukin 6 (IL-6) to the subarachnoid space and systemic circulation in patients with meningococcal meningitis and septic shock/bacteraemia. In patients with meningitis, median levels of TNF in 31 paired samples of cerebrospinal fluid (CSF) and serum were respectively 783 pg/ml and below detection limit (p < 0.001) and median levels of IL-6 were 150 ng/ml and 0.3 ng/ml (p < 0.0001). In patients with septic shock without meningitis, median levels in paired samples of CSF and serum were respectively below detection limit and 65 pg/ml (not significant, (ns)) (TNF, eleven patients) and 1.3 ng/ml-3 ng/ml (ns) (IL-6, nine patients). The data show that TNF and IL-6 are localized to the subarachnoid space in patients with meningitis although the blood-brain barrier is penetrable to serum proteins. On the other hand, patients with septic shock tend to have cytokines in both serum and CSF.  相似文献   

10.
Tuberculous meningitis is characterized by cerebral tissue destruction. Monocytes, pivotal in immune responses to Mycobacterium tuberculosis, secrete matrix metalloproteinase-9 (MMP-9), which facilitates leukocyte migration across the blood-brain barrier, but may cause cerebral injury. In vitro, human monocytic (THP-1) cells infected by live, virulent M. tuberculosis secreted MMP-9 in a dose-dependent manner. At 24 h, MMP-9 concentrations increased 10-fold to 239 +/- 75 ng/ml (p = 0.001 vs controls). MMP-9 mRNA became detectable at 24--48 h. In contrast, tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) gene expression and secretion were similar to constitutive levels from controls at 24 h and increased just 5-fold by 48 h. In vivo investigation revealed MMP-9 concentration per leukocyte in cerebrospinal fluid (CSF) from tuberculous meningitis patients (n = 23; median (range), 3.19 (0.19--31.00) ng/ml/cell) to be higher than that in bacterial (n = 12; 0.23 (0.01--18.37) ng/ml/cell) or viral meningitis (n = 20; 0.20 (0.04--31.00) ng/ml/cell; p < 0.01). TIMP-1, which was constitutively secreted into CSF, was not elevated in tuberculous compared with bacterial meningitis or controls. Thus, a phenotype in which MMP-9 activity is relatively unrestricted by TIMP-1 developed both in vitro and in vivo. This is functionally significant, since MMP-9 concentrations per CSF leukocyte (but not TIMP-1 concentrations) were elevated in fatal tuberculous meningitis and in patients with signs of cerebral tissue damage (unconsciousness, confusion, or neurological deficit; p < 0.05). However, MMP-9 activity was unrelated to the severity of systemic illness. In summary, M. tuberculosis-infected monocytic cells develop a matrix-degrading phenotype, which was observed in vivo and relates to clinical signs reflecting cerebral injury in tuberculous meningitis.  相似文献   

11.
The Gram-positive zoonotic bacterium Streptococcus suis (S. suis) is responsible for a wide range of diseases including meningitis in pigs and humans. The blood-cerebrospinal fluid (CSF) barrier is constituted by the epithelial cells of the choroid plexus, which execute barrier function also after bacteria have entered the central nervous system (CNS). We show that the bacterial capsule, a major virulence factor, strongly attenuates adhesion of S. suis to the apical side of porcine choroid plexus epithelial cells (PCPEC). Oligonucleotide microarray analysis and quantitative PCR surprisingly demonstrated that adherent wild-type and capsule-deficient S. suis influenced expression of a pronounced similar pattern of genes in PCPEC. Investigation of purified capsular material provided no evidence for a significant role of the capsule. Enriched among the regulated genes were those involved in “inflammatory response”, “defense response” and “cytokine activity”. These comprised several cytokines and chemokines including the interleukins 6 and 8, which could be detected on protein level. We show that after infection with S. suis the choroid plexus contributes to the immune response by actively producing cytokines and chemokines. Other virulence factors than the bacterial capsule may be relevant in inducing a strong inflammatory response in the CNS during S. suis meningitis.  相似文献   

12.
N R?sler  C Reuner  J Geiger  K Rissler  H Cramer 《Peptides》1990,11(1):181-183
Cerebrospinal fluid (CSF) levels of substance-P like immunoreactivity (SPLI) and somatostatin-like immunoreactivity (SLI) were measured in 43 patients with multiple sclerosis (MS), differentiated according to course and activity of the disease, in 23 patients with inflammatory disease of known bacterial or viral etiology and in 16 control patients using specific radioimmunoassay. SPLI and SLI levels were not significantly different from controls in MS patients whereas SLI was significantly increased in patients with infectious disease of central nervous system and/or subarachnoidal space. It is assumed that CSF SPLI and SLI cannot serve as a diagnostic or prognostic indicator of disease state in multiple sclerosis. Analysis of immunoreactivity by reverse phase HPLC-RIA revealed marked molecular heterogeneity of both neuropeptides.  相似文献   

13.
Toll-like receptors (TLR) play a key role in the recognition of pathogenic organisms. Fibronectin, an extracellular matrix protein, is considered a potent stimulator of the innate immune system through TLR4. In bacterial meningitis, several extracellular matrix proteins and bacterial compounds are elevated in the CSF. For this reason, we hypothesized that these molecules may jointly stimulate the innate immune system and increase neuronal damage in bacterial meningitis. Concentrations of fibronectin were elevated in the CSF of patients suffering from bacterial meningitis, but not in patients with multiple sclerosis, when compared with control patients without CSF abnormalities. In primary cultures of mouse microglial cells, co-administration of fibronectin at concentrations occurring in the CSF in bacterial meningitis (10 microg/mL) with defined TLR agonists [lipopolysaccharide (TLR4), the synthetic lipopeptide tripalmytoyl-cysteinyl-seryl-(lysyl)3-lysine (TLR2) and single-stranded unmethylated cytosine-guanosine oligodesoxynucleotide (TLR9)] led to an additive release of nitric oxide and tumor necrosis factor-alpha when compared with the release elicited by either compound alone. In conclusion, the inflammatory reaction to bacterial compounds can be aggravated by endogenous fibronectin at elevated levels during bacterial CNS infections. This additive or synergistic effect may contribute to neuronal damage during bacterial meningitis.  相似文献   

14.
This study aimed to determine whether patients with aseptic and bacterial meningitis presented alterations in oxidative stress parameters of cerebrospinal fluid (CSF). A total of 30 patients were used in the research. The CSF oxidative stress status has been evaluated through many parameters, such as lipid peroxidation through thiobarbituric acid reactive substances (TBARS) and antioxidant defense systems such as superoxide dismutase (SOD), glutathione S-transferase (GST), reduced glutathione (GSH) and ascorbic acid. TBARS levels, SOD and GST activity increase in aseptic meningitis and in bacterial meningitis. The ascorbic acid concentration increased significantly in patients with both meningitis types. The reduced glutathione levels were reduced in CSF of patients with aseptic and bacterial meningitis. In present study we may conclude that oxidative stress contributes at least in part to the severe neurological dysfunction found in meningitis.  相似文献   

15.
Cerebrospinal Fluid Nitrite/Nitrate Levels in Neurologic Diseases   总被引:5,自引:0,他引:5  
Abstract: Nitric oxide has been proposed to mediate cytotoxic effects in inflammatory diseases. To investigate the possibility that overproduction of nitric oxide might play a role in the neuropathology of inflammatory and noninflammatory neurological diseases, we compared levels of the markers of nitric oxide, nitrite plus nitrate, in the CSF of controls with those in patients with various neurologic diseases, including Huntington's and Alzheimer's disease, amyotrophic lateral sclerosis, and HIV infection. We found that there were no significant increases in the CSF levels of these nitric oxide metabolites, even in patients infected with HIV or in monkeys infected with poliovirus, both of which have significantly elevated levels of the neurotoxin quinolinic acid and the marker of macrophage activation, neopterin. However, CSF quinolinic acid, neopterin, and nitrite/nitrate levels were significantly increased in a small group of patients with bacterial and viral meningitis.  相似文献   

16.
The delivery of many potentially therapeutic and diagnostic compounds to specific areas of the brain is restricted by brain barriers, of which the most well known are the blood-brain barrier (BBB) and the blood-cerebrospinal fluid (CSF) barrier. Recent studies have shown numerous additional roles of these barriers, including an involvement in neurodevelopment, in the control of cerebral blood flow, and--when barrier integrity is impaired--in the pathology of many common CNS disorders such as Alzheimer's disease, Parkinson's disease and stroke.  相似文献   

17.
Single-cell RT-PCR was used to sample CD19(+) B cell repertoires in cerebrospinal fluid (CSF) of patients with multiple sclerosis (MS) or viral meningitis. Analysis of amplified Ab H and L chain products served to identify the rearranged germline segment and J segment, and to determine the degree of homology for the H and L chain sequence of individual B cells. The B cell repertoire of viral meningitis CSF was predominantly polyclonal, whereas B cell clonal expansion was a prominent feature of the IgG repertoire in three of four MS patients. Two dominant clonal populations in one MS CSF accounted for approximately 70% of the IgG H chain V regions sequenced, while the corresponding IgM repertoires were more heterogeneous. One clonal B cell population revealed multiple L chain rearrangements, raising the possibility of a role for receptor editing in shaping the B cell response in some MS patients. The most immediate implications of identifying rearranged Ig sequences in MS B cells is the potential to accurately recreate recombinant Abs from these overrepresented H and L chains that can be used to discover the relevant Ag(s) in MS.  相似文献   

18.
We previously identified CCL20 as an early chemokine in the cerebrospinal fluid (CSF) of patients with pneumococcal meningitis but its functional relevance was unknown. Here we studied the role of CCL20 and its receptor CCR6 in pneumococcal meningitis. In a prospective nationwide study, CCL20 levels were significantly elevated in the CSF of patients with pneumococcal meningitis and correlated with CSF leukocyte counts. CCR6-deficient mice with pneumococcal meningitis and WT mice with pneumococcal meningitis treated with anti-CCL20 antibodies both had reduced CSF white blood cell counts. The reduction in CSF pleocytosis was also accompanied by an increase in brain bacterial titers. Additional in vitro experiments showed direct chemoattractant activity of CCL20 for granulocytes. In summary, our results identify the CCL20-CCR6 axis as an essential component of the innate immune defense against pneumococcal meningitis, controlling granulocyte recruitment.  相似文献   

19.
The rat lugworm Angiostrongylus cantonensis can cause eosinophilic meningitis. The purpose of this study was to determine whether matrix metalloproteinase (MMP)-12 and its substrate elastin participate in this inflammatory response. We showed that the MMP-12/tissue inhibitor of metalloproteinase-1 ratio was significantly increased in the CSF of A. cantonensis-infected mice from day 10 p.i., and reached high levels on days 20 and 25 p.i. MMP-12 production was correlated with elastin degradation, eosinophil count, blood–CSF barrier permeability and pathological changes in the subarachnoid space. Also, MMP-12 might contribute to elastin degradation in the meningeal vessel of the subarachnoid space. Simultaneous administration of albendazole and doxycycline significantly reduced the levels of MMP-12, elastin and Evans blue in mice with meningitis. These results imply that MMP-12 contributes to the elastin degradation that occurs in angiostrongyliasis meningitis, and doxycycline can reverse related inflammatory events by inhibition of MMP-12.  相似文献   

20.
The propensity of canine distemper virus (CDV) to spread to the central nervous system is one of the primary features of distemper. Therefore, we developed a reverse genetics system based on the neurovirulent Snyder Hill (SH) strain of CDV (CDV(SH)) and show that this virus rapidly circumvents the blood-brain and blood-cerebrospinal fluid (CSF) barriers to spread into the subarachnoid space to induce dramatic viral meningoencephalitis. The use of recombinant CDV(SH) (rCDV(SH)) expressing enhanced green fluorescent protein (EGFP) or red fluorescent protein (dTomato) facilitated the sensitive pathological assessment of routes of virus spread in vivo. Infection of ferrets with these viruses led to the full spectrum of clinical signs typically associated with distemper in dogs during a rapid, fatal disease course of approximately 2 weeks. Comparison with the ferret-adapted CDV(5804P) and the prototypic wild-type CDV(R252) showed that hematogenous infection of the choroid plexus is not a significant route of virus spread into the CSF. Instead, viral spread into the subarachnoid space in rCDV(SH)-infected animals was triggered by infection of vascular endothelial cells and the hematogenous spread of virus-infected leukocytes from meningeal blood vessels into the subarachnoid space. This resulted in widespread infection of cells of the pia and arachnoid mater of the leptomeninges over large areas of the cerebral hemispheres. The ability to sensitively assess the in vivo spread of a neurovirulent strain of CDV provides a novel model system to study the mechanisms of virus spread into the CSF and the pathogenesis of acute viral meningitis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号