首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Funderburgh JL 《IUBMB life》2002,54(4):187-194
Keratan sulfate was originally identified as the major glycosaminoglycan of cornea but is now known to modify at least a dozen different proteins in a wide variety of tissues. Despite a large body of research documenting keratan sulfate structure, and an increasing interest in the biological functions of keratan sulfate, until recently little was known of the specific enzymes involved in keratan sulfate biosynthesis or of the molecular mechanisms that control keratan sulfate expression. In the last 2 years, however, marked progress has been achieved in identification of genes involved in keratan sulfate biosynthesis and in development of experimental conditions to study keratan sulfate secretion and control in vitro. This review summarizes current understanding of keratan sulfate structure and recent developments in understanding keratan sulfate biosynthesis.  相似文献   

2.
Three antibodies reacting with corneal keratan sulfate proteoglycan were used to detect antigenically related molecules in 11 bovine and 13 embryonic chick tissues. Two monoclonal antibodies recognized sulfated epitopes on the keratan sulfate chain and a polyclonal antibody bound antigenic sites on the core protein of corneal keratan sulfate proteoglycan. Competitive immunoassay detected core protein and keratan sulfate antigens in guanidine HCl extracts of most tissues. Keratan sulfate antigens of most bovine tissues were only partially extracted with guanidine HCl, but the remainder could be solubilized by CNBr treatment of the guanidine-extracted residue. Keratan sulfate and core protein antigens co-eluted with purified corneal keratan sulfate proteoglycan on ion exchange high-performance liquid chromatography (HPLC). Endo-beta-galactosidase digestion of the HPLC-purified keratan sulfate antigens eliminated the binding of monoclonal anti-keratan sulfate antibodies in enzyme-linked immunosorbent assay. Extracts of all 11 bovine tissues, except those from brain and cartilage, could bind both anti-keratan sulfate monoclonal antibodies and anti-core protein polyclonal antibody simultaneously. Binding was sensitive to competition with keratan sulfate and to digestion with endo-beta-galactosidase. These results suggest widespread occurrence of a proteoglycan or sulfated glycoprotein bearing keratan sulfate-like carbohydrate and a core protein resembling that of corneal keratan sulfate proteoglycan.  相似文献   

3.
It has been shown previously that hyaluronan (HA) added to fibroblast and keratocyte cell cultures or corneal explant cultures produces an up-regulation of MMP-2 and MMP-9 expression and activation. Here, we examine the effect of sulfated GAG-s, chondroitin 4 and 6 sulfate (CS4, CS6), dermatan sulfate (DS), keratan sulfate (KS) and heparan sulfate (HS) on MMP-2 and 9 expression and activation under the same culture conditions. It appears that CS4 has only minor effects, KS inhibits MMP-2 activation and CS6, DS and HS increase MMP-2 activation in corneal explant cultures. For skin explant cultures, DS, KS and HS strongly increase MMP-9 activation, whereas KS inhibits and DS increases MMP-2 activation. All these effects can be strongly inhibited by the addition of an antibody to CD44, except CS6 and DS. Activation by these two GAGs was only slightly affected, supporting the contention that the effects of HA, CS4, KS and HS are mediated by one of the isoforms of this CD44 receptor. The physio-pathological significance of these results is discussed for cornea and skin ageing, because of the divergent evolution with in vitro ageing of the relative proportions of GAGs synthesised by these two cell types.  相似文献   

4.
Corneal explants with scleral rims were freshly prepared from day 18 chicken embryos and incubated in vitro for 3 h in the presence of various radioactive precursors. Radiolabeled proteoglycans were isolated from the stromal tissue and culture medium for analysis. Two predominant proteoglycans were identified in corneal stroma. One contains dermatan sulfate and the other contains keratan sulfate; a structural analysis of each is reported in the accompanying paper (Midura, R.J., and Hascall, V.C. (1989) J. Biol. Chem. 264, 1423-1430). A minor keratan sulfate proteoglycan distinct from the major form, a small amount of heparan sulfate proteoglycan, and some sulfated glycoproteins were also detected in stromal extracts. The biosynthesis of the dermatan sulfate proteoglycan was stable in vitro and in ovo, whereas that of the major keratan sulfate proteoglycan was stable only in ovo. Various treatments were tried to maintain a high rate of keratan sulfate synthesis with time in culture. Cooling the corneal explants to 5 degrees C was the only treatment that reduced this decline in keratan sulfate synthesis in vitro to any significant extent. Three major proteoglycans were observed in the culture medium. Two were dermatan sulfate proteoglycan and appeared to be mainly derived from the scleral tissue surrounding the corneal explant. The third proteoglycan contained keratan sulfate. It was smaller in size and lower in charge density compared to the keratan sulfate proteoglycan found in the stroma, but both appeared to have similar core protein sizes. It seems likely that this proteoglycan was synthesized in the stroma and secreted into the medium. A small amount of heparan sulfate proteoglycan and some sulfated glycoproteins were also detected in the medium.  相似文献   

5.
The quantitation of individual glycosaminoglycans in mixtures of polyanions using the dimethylmethylene blue (DMB) method described by R. W. Farndale, D. J. Buttle, and A. J. Barrett (1986, Biochim. Biophys. Acta 883, 173) is dependent on enzymatic hydrolysis by specific polysaccharidases. While using this method to examine the keratan sulfate (KS) of the intervertebral disc we found that digestion with commercially available keratanase decreased binding to DMB by less than 30%, whereas corneal KS was reduced by 85%. However, by preincubating the KS fractions with endo-beta-D-galactosidase prior to keratanase treatment the corneal KS could be completely digested and disc KS digestion increased to 60%. It is suggested that the resistance of the disc KS to these digestive procedures arises from branching and/or sites of multisulfation on the polysaccharide chain. Agarose gel electrophoresis and compositional analyses of the keratan sulfates supported such an interpretation.  相似文献   

6.
Thrombospondin is a cell adhesion molecule which interacts via specific domains with a wide array of extracellular matrix components, including fibrinogen, fibrin, fibronectin, collagen, and heparan sulfate proteoglycan. Although this protein has been localized in several human tissues, its presence in corneal tissues had not been previously established. In the present study, we have demonstrated that cultured bovine corneal endothelial cells synthesize thrombospondin and incorporate it into their extracellular matrix. We have also shown immunofluorescently the presence and distribution of thrombospondin in these cultured cells and in the noninjured and injured corneal endothelium in situ. Ultrastructural immunoperoxidase cytochemistry revealed that thrombospondin could be displaced from the cell surface by heparin, but not by keratan sulfate. Confluent cultures of corneal endothelium synthesize and secrete the three cell adhesion proteins laminin, thrombospondin, and fibronectin in the ratios 1:8.2:51.8. Only the laminin B chains were detected in immunoprecipitates. Immunofluorescent studies of these cultured cells, using a polyclonal antiserum raised against purified thrombospondin, revealed a low level of fluorescence associated with the cell layer but a punctate fluorescent pattern at the level of the extracellular matrix. Noninjured corneal endothelium in situ also demonstrated a low level of fluorescence throughout the cell layer. However, this dramatically changed after a circular freeze injury to the tissue. By 24 h after wounding, cells surrounding the injury zone displayed a prominent fluorescence that was still observed at 48 h post-injury. In addition to its increased intracellular fluorescence, thrombospondin was also localized as migration tracks, oriented in the direction of cellular migration into the wound site. Thus, in corneal endothelium, thrombospondin appears to play a major role in injury-induced cell migration in situ along a natural basement membrane.  相似文献   

7.
The control of glycosaminoglycan biosynthesis was investigated by studying the kinetic and regulatory properties of some enzymes involved in the formation of UDP-sugar precursors: UDP-N-acetylglucosamine 4'-epimerase, catalyzing the interconversion of hexosamine precursors and UDP-glucose dehydrogenase and UDP-glucose 4'-epimerase, utilizing UDP-glucose for the formation of uronic acid and galactose precursors. The study was carried out in tissues with different glycosaminoglycan production: bovine cornea, producing both chondroitin sulfate and keratan sulfate, and newborn-pig epiphysial-plate cartilage, producing mostly chondroitin sulfate. The biosynthesis of hexosamine precursors appeared to be regulated by the value of the NAD/NADH ratio. This control mechanism regulated also the activities of both UDP-glucose dehydrogenase and UDP-glucose 4'-epimerase and, therefore, it could correlate the biosynthesis of glycosaminoglycan precursors with the redox activity of the cell. At the level of UDP-glucose utilization two other control mechanisms were demonstrated: the different affinities of UDP-glucose dehydrogenase and UDP-glucose 4'-epimerase for UDP-glucose in tissues with different glycosaminoglycan production and the cellular concentration of UDP-xylose. This sugar-nucleotide inhibited UDP-glucose dehydrogenase, but did not affect the UDP-glucose 4'-epimerase activity; therefore, and increase of its cellular concentration may result in a decreased chondroitin sulfate synthesis and in an increased keratan sulfate formation.  相似文献   

8.
Four constitutive enzymes, capable of degrading keratan sulfate, were isolated from Pseudomonas sp.: a particulate endoglycosidase, a soluble endoglycosidase, a soluble exo-beta-D-galactosidase and a soluble exo-beta-D-N-acetylglucosaminidase. The endoglycosidases were shown to act only upon keratan sulfate forming beta-D-2-acetamido-2-deoxy-6-O-sulfoglucosyl-(1----3)-D-galactose, as the main product. This results indicates that the enzyme catalyses the hydrolysis of beta-D-galactose-(1----4)-N-acetylglucosamine linkages. It was also shown that this monosulfated disaccharide inhibits the particulate keratan sulfate endoglycosidase. The bovine nucleus pulposus keratan sulfate is depolymerized at a lower rate and extent when compared to the corneal keratan sulfate. The soluble endoglycosidase is very labile, in contrast to the particulate enzyme, which has been stored at -20 degrees C or at 4 degrees C for at least 12 months with no loss in activity. The particulate endoglycosidase and the soluble exo-beta-D-galactosidase and exo-beta-D-N-acetylglucosaminidase are induced when the bacteria is grown in adaptative media containing either 0.1% keratan sulfate or 0.1% chondroitin sulfate. Furthermore, particulate forms of the exoenzymes were detected. The soluble endoglycosidase specific activity, in contrast, is approximately the same in extracts of cells grown in glucose, keratan sulfate or chondroitin sulfate. A chondroitin sulfate lyase was also identified in the soluble extracts of Pseudomonas sp. cells. This enzyme depolymerizes chondroitin 4-sulfate, chondroitin 6-sulfate and hyaluronic acid forming unsaturated disaccharides as main products. It is also active upon the glucuronic-acid-containing regions of the dermatan sulfate molecules. The properties of the soluble enzymes, further purified by ion-exchange chromatography, and of the particulate keratan sulfate endoglycosidase are presented.  相似文献   

9.
The cornea is a transparent and avascular tissue that functions as the major refractive structure for the eye. A wide variety of growth factors, chemokines, cytokines and their receptors are synthesized by corneal epithelial and stromal cells, and are found in tears. These molecules function in corneal wound healing and in inflammatory responses. Proteoglycans and glycoproteins are essential for normal corneal function, both at the air-epithelial interface and within the extracellular matrix. The ocular MUC mucins may play roles in forming the mucus layer of the tear film, in regulating tear film spread, and in inhibiting the adhesion of pathogens to the ocular surface. Lumican, keratocan and mimecan are the major keratan sulfate proteoglycans of the corneal stroma. They are essential, along with other proteoglycans and interfibrillar proteins, including collagens type VI and XII, for the maintenance of corneal transparency. Corneal epithelial cells interact with a specialized extracellular matrix structure, the basement membrane, composed of a specific subset of collagen type IV and laminin isoforms in addition to ubiquitous extracellular matrix molecules. Matrix metalloprotein-ases have been identified in normal corneal tissue and cells and may play a role in the development of ulcerative corneal diseases. Changes in extracellular matrix molecule localization and synthesis have been noted in other types of corneal diseases as well, including bullous keratopathy and keratoconus.  相似文献   

10.
The precursor protein to the chick corneal keratan sulfate proteoglycan was identified by immunoprecipitation with antiserum to its core protein from lysates of [35S]methionine-pulsed corneas and corneal fibroblasts in cell culture. Antiserum to the keratan sulfate proteoglycan immunoprecipitated a doublet of Mr 52,000 and 50,000 and minor amounts of a Mr 40,000 protein from pulsed corneas. Pulse-chase experiments, which permitted the conversion of the precursor proteins to proteoglycans and digestion of the glycosaminoglycans on immunoprecipitated proteoglycans with keratanase or chondroitinase ABC, showed that the Mr 52,000-50,000 doublet was converted to a keratan sulfate proteoglycan and the Mr 40,000 protein was converted to a chondroitin sulfate proteoglycan. Chick corneal fibroblasts in cell culture primarily produced the smaller (Mr50,000) precursor protein, and in the presence of tunicamycin the precursor protein size was reduced to Mr35,000, which indicates that the core protein contains approximately five N-linked oligosaccharides. Pulse-chase experiments with corneal fibroblasts in culture showed that the precursor protein was processed and secreted into the medium. However, its sensitivity to endo-beta-galactosidase and resistance to keratanase indicate that the precursor protein was converted to a glycoprotein with large oligosaccharides and not to a proteoglycan. This suggests that, although the precursor protein for the proteoglycan is produced in cultured corneal fibroblasts, the sulfation enzymes for keratan sulfate may be absent.  相似文献   

11.
Keratan sulfate (KS) proteoglycan is expressed in the extracellular matrix or cell surface in numerous tissues, predominantly in those of the cornea, cartilage, and brain. However, its structure, function, and regulation remain poorly understood. Our investigation of KS expression in glioblastoma cell lines using Western-blot and flow cytometry with anti-KS antibody (5D4) revealed that LN229 glioblastoma cell highly expresses KS on a cell surface. Real-time PCR analysis showed that LN229 expresses a high level of keratan sulfate Gal-6-sulfotransferase. Results of this study also demonstrate that recombinant 5D4-reactive aggrecan is produced in LN229. Taken together, these results suggest that LN229 produces 5D4-reactive highly sulfated KS and is useful to investigate the KS structure and function in glioblastoma.  相似文献   

12.
Antibodies have been made in rabbits against bovine corneal keratan sulfate proteoglycan. Antisera were titered by their ability to agglutinate sheep red blood cells that had been coated with the proteoglycan. Immune antisera, but not preimmune sera, agglutinate coated cells. Uncoated cells are not agglutinated by either serum. Immune agglutination is inhibited by prior incubation of antiserum with the intact corneal proteoglycan fraction or with 2-mercaptoethanol. Immune agglutination is also sharply reduced by the glycosaminoglycans, keratan sulfate-I (corneal type), and keratan sulfate-II (cartilage type). Desulfated keratan sulfate-I is somewhat less effective as an inhibitor than keratan sulfate-I. In contrast, chondroitin 4- and 6-sulfates, heparin, and hyaluronic acid do not interfere with immune agglutination. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, followed by electroblot transfer of the proteins to nitrocellulose paper, incubation with antisera, and reaction with 125I-protein A suggest that the proteoglycan fraction contains high molecular weight antigenic components (Mr = approximately 300,000) whose mobility is sharply decreased by incubation with keratanase to that corresponding to molecular weights of approximately 55,000 and 40,000. No antigenic component appears sensitive to reduction by 2-mercaptoethanol. Chondroitinase ABC does not affect the mobility of proteins in the proteoglycan fraction. These results suggest that antibodies against corneal keratan sulfate proteoglycan may include some that react with the keratan sulfate chains, as well as those directed against the core protein. Keratan sulfate core proteins of two molecular weights may be present.  相似文献   

13.
Antibodies to corneal keratan sulfate proteoglycan (KSPG) were used to characterize the pattern of KSPG accumulation during differentiation of neural crest cells in the stroma of embryonic chick cornea. Immunohistochemistry with monoclonal antibody I22 to keratan sulfate found this KSPG antigen localized inside stromal cells at stage 29 (Day 6), ca. 12 hr after migration into the primary stroma. A 2- to 3-day lag then occurred before appearance of extracellular keratan sulfate, first seen on Day 9 (Stage 35) in the posterior stroma. Keratan sulfate antigen accumulated in a posterior to anterior direction during subsequent development. Uniform staining of the stroma for keratan sulfate did not occur until after Day 16. Among several tissues, only corneal stroma contained an extracellular matrix which stained for keratan sulfate, though intracellular staining of some cartilage cells was observed. Accumulation of KSPG antigens in developing cornea was measured in unfractionated guanidine extracts with a quantitative ELISA using three different antibodies against KSPG. Increases were first detected after Day 9 using monoclonal I22, and somewhat later with the other two antibodies. Assays with all three antibodies detected a sustained, exponential increase of KSPG throughout the 5 days prior to hatching. Keratan sulfate continued to accumulate after hatching, but an antibody with specificity to KSPG core protein, detected no relative increase in antigen after hatching. This suggests a modulation of KSPG primary structure late in development and after hatching. Overt differentiation of individual neural crest cells thus appears to begin ca. 12 hr after their arrival in the primary stroma; a lag of 2-3 days precedes active secretion of KSPG.  相似文献   

14.
Sulfated glycosaminoglycan (GAG) chains are a class of long linear polysaccharides that are covalently attached to multiple core proteins to form proteoglycans (PGs). PGs are major pericellular and extracellular matrix components that surround virtually all mammalian cell surfaces, and create conducive microenvironments for a number of essential cellular events, such as cell adhesion, cell proliferation, differentiation, and cell fate decisions. The multifunctional properties of PGs are mostly mediated by their respective GAG moieties, including chondroitin sulfate (CS), heparan sulfate (HS), and keratan sulfate (KS) chains. Structural divergence of GAG chains is enzymatically generated and strictly regulated by the corresponding biosynthetic machineries, and is the major driving force for PG functions. Recent studies have revealed indispensable roles of GAG chains in stem cell biology and technology. In this review, we summarize the current understanding of GAG chain-mediated stem cell niches, focusing primarily on structural characteristics of GAG chains and their distinct regulatory functions in stem cell maintenance and fate decisions.  相似文献   

15.
16.
Human corneal N-acetylglucosamine 6-O-sulfotransferase (hCGn6ST) has been identified by the positional candidate approach as the gene responsible for macular corneal dystrophy (MCD). Because of its high homology to carbohydrate sulfotransferases and the presence of mutations of this gene in MCD patients who lack sulfated keratan sulfate in the cornea and serum, hCGn6ST protein is thought to be a sulfotransferase that catalyzes sulfation of GlcNAc in keratan sulfate. In this report, we analyzed the enzymatic activity of hCGn6ST by expressing it in cultured cells. A lysate prepared from HeLa cells transfected with an intact form of hCGn6ST cDNA or culture medium from cells transfected with a secreted form of hCGn6ST cDNA showed an activity of transferring sulfate to C-6 of GlcNAc of synthetic oligosaccharide substrates in vitro. When hCGn6ST was expressed together with human keratan sulfate Gal-6-sulfotransferase (hKSG6ST), HeLa cells produced highly sulfated carbohydrate detected by an anti-keratan sulfate antibody 5D4. These results indicate that hCGn6ST transfers sulfate to C-6 of GlcNAc in keratan sulfate. Amino acid substitutions in hCGn6ST identical to changes resulting from missense mutations found in MCD patients abolished enzymatic activity. Moreover, mouse intestinal GlcNAc 6-O-sulfotransferase had the same activity as hCGn6ST. This observation suggests that mouse intestinal GlcNAc 6-O-sulfotransferase is the orthologue of hCGn6ST and functions as a sulfotransferase to produce keratan sulfate in the cornea.  相似文献   

17.
The composition and the distribution of glycosaminoglycans (GAGs) present in normal human nasal cartilage (HNNC), were examined and compared with those in human scoliotic nasal cartilage (HSNC). In both tissues, hyaluronan (HA), keratan sulfate (KS) and the galactosaminoglycans (GalAGs)--chondroitin sulfate (CS) and dermatan sulfate (DS)--were identified. The overall GAG content in HSNC was approx. 30% higher than the HNNC. Particularly, a 114% increase in HA, and 46% and 86% in KS and DS, respectively, was recorded. CS was the main type of GAG in both tissues with no significant compositional difference. GalAG chains in HSNC exhibited an altered disaccharide composition which was associated with significant increases of non-sulfated and 6-sulfated disaccharides. DS, which was identified and quantitated for the first time in HNNC and HSNC, contained low amounts of iduronic acid (IdoA), 18% and 28% respectively. In contrast to other tissues, where IdoA residues are organized in long IdoA rich repeats, the IdoA residues of DS in human nasal cartilage seemed to be randomly distributed along the chain. DS chains in HSNC were of larger average molecular size than those from HNNC. These results clearly indicate the GAG content and pattern in both HNNC and HSNC and demonstrate that scoliosis of nasal septum cartilage is related to quantitative and structural modifications at the GAG level.  相似文献   

18.
Keratan sulfate was isolated from the skin of Pacific mackerel (Scomber japonicus) after exhaustive digestion with pronase followed by ethanol precipitation and fractionation on a cellulose column with 0.3% recovery of dried material. The keratan sulfate preparation was separated into four major fractions by Dowex-1 column chromatrography. The chemical and infrared spectrum analyses of the four fractions showed a high degree of heterogeneity in sulfation. Since the carbohydrate-peptide linkage in the teleost skin keratan sulfate was found to be stable in alkali, and asparagine was the predominant amino acid, the asparagine residue in the peptide backbone was most likely to be involved in the N-glycosyl linkage with the carbohydrate moiety. Besides the type of carbohydrate-peptide linkage, the teleost skin keratan sulfate is very similar to corneal keratan sulfate, (keretan sulfate I) in two respects: (1) The teleost skin and bovine corneal keratan sulfates were hydrolyzed much faster by endo-β-galactosidase that the whale nasal cartilage keratan sulfate (keratan sulfate II). (2) Although the teleost skin keratan sulfate showed considerable polydispersity, the molecular weight was in the same range as the corneal keratan sulfate, and it was relatively higher than that of the cartilage keratan sulfate.  相似文献   

19.
Kao WW  Liu CY 《Glycoconjugate journal》2002,19(4-5):275-285
Lumican and keratocan are members of the small leucine-rich proteoglycan (SLRP) family, and are the major keratan sulfate (KS) proteoglycans in corneal stroma. Both lumican and keratocan are essential for normal cornea morphogenesis during embryonic development and maintenance of corneal topography in adults. This is attributed to their bi-functional characteristic (protein moiety binding collagen fibrils to regulate collagen fibril diameters, and highly charged glycosaminoglycan (GAG) chains extending out to regulate interfibrillar spacings) that contributes to their regulatory role in extracellular matrix assembly. The absence of lumican leads to formation of cloudy corneas in homozygous knockout mice due to altered collagenous matrix characterized by larger fibril diameters and disorganized fibril spacing. In contrast, keratocan knockout mice exhibit thin but clear cornea with insignificant alteration of stromal collaegenous matrix. Mutations of keratocan cause cornea plana in human, which is often associated with glaucoma. These observations suggest that lumican and keratocan have different roles in regulating formation of stromal extracellular matrix. Experimental evidence indicates that lumican may have additional biological functions, such as modulation of cell migration and epithelium-mesenchyme transition in wound healing and tumorgenesis, besides regulating collagen fibrillogenesis. Published in 2003.  相似文献   

20.
Macular corneal dystrophy (MCD) is a rare, potentially blinding disease whose fundamental genetic defect and exact pathogenesis are yet to be elucidated. It is, however, an especially interesting pathology, which highlights how an erroneous glycosaminoglycan or proteoglycan metabolism can induce physical symptoms in a specific connective tissue. Based on immunochemical data, MCD is a heterogeneous condition, and at least two types of the disease have been identified. The cornea, cartilage, and serum from MCD type I patients all contain an unsulphated form of keratan sulphate. In contrast, these tissues contain normally sulphated keratan sulphate in MCD type II patients. A normal population of keratan sulphate proteoglycans (and chondroitin/dermatan sulphate proteoglycans) in the cornea seems to be a requirement of corneal transparency. However, a clinical diagnosis of MCD is unable to distinguish between the keratan sulphate positive and negative types of MCD. The histopathology of MCD is fairly well established, and various corneal aberrations—such as fibrillogranular and glycosaminoglycan deposits, abnormal diameter collagen, and collagen-free lacunae—result in a breakdown of the regular corneal architecture that presumably contributes to the subsequent corneal opacification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号