首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To test whether pulmonary and extrapulmonary acute lung injury (ALI) of identical mechanical compromise would express diverse morphological patterns and immunological pathways. For this purpose, a model of pulmonary (p) and extrapulmonary (exp) ALI with similar functional changes was developed and pulmonary morphology (light and electron microscopy), cytokines levels, and neutrophilic infiltration in the bronchoalveolar lavage fluid (BALF), elastic and collagen fiber content in the alveolar septa, and neutrophil apoptosis in the lung parenchyma were analyzed. BALB/c mice were divided into four groups. In control groups, saline was intratracheally (it, 0.05 ml) instilled and intraperitoneally (ip, 0.5 ml) injected, respectively. In the ALIp and ALIexp groups, mice received E. coli lipopolysaccharide (10 microg it and 125 microg ip, respectively). The changes in lung resistive and viscoelastic pressures and in static elastance, alveolar collapse, and cell content in lung tissue were similar in the ALIp and ALIexp groups. The ALIp group presented a threefold increase in KC (murine function homolog to IL-8) and IL-10 levels in the BALF in relation to ALIexp, whereas IL-6 level showed a twofold increase in ALIp. Neutrophils in the BALF were more frequent in ALIp than in ALIexp. ALIp showed more extensive injury of alveolar epithelium, intact capillary endothelium, and apoptotic neutrophils, whereas the ALIexp group presented interstitial edema and intact type I and II cells and endothelial layer. In conclusion, given the same pulmonary mechanical dysfunction independently of the etiology of ALI, insult in pulmonary epithelium yielded more pronounced inflammatory responses, which induce ultrastructural morphological changes.  相似文献   

2.
This study tests the hypotheses that a recruitment maneuver per se yields and/or intensifies lung mechanical stress. Recruitment maneuver was applied to a model of paraquat-induced acute lung injury (ALI) and to healthy rats with (ATEL) or without (CTRL) previous atelectasis. Recruitment was done by using 40-cmH(2)O continuous positive airway pressure for 40 s. Rats were, then, ventilated for 1 h at zero end-expiratory pressure (ZEEP) or positive end-expiratory pressure (PEEP; 5 cmH(2)O). Atelectasis was generated by inflating a sphygmomanometer around the thorax. Additional groups did not undergo recruitment but were ventilated for 1 h under ZEEP. Lung resistive and viscoelastic pressures and static elastance were computed before and immediately after recruitment, and at the end of 1 h of ventilation. Lungs were prepared for histology. Type III procollagen (PCIII) mRNA expression in lung tissue was analyzed by RT-PCR. Lung mechanics improved after recruitment in the CTRL and ALI groups. One hour of ventilation at ZEEP increased alveolar collapse, static elastance, and lung resistive and viscoelastic pressures. Alveolar collapse was similar in ATEL and ALI, and recruitment opened the alveoli in both groups. ALI showed higher PCIII expression than ATEL or CTRL groups. One hour of ventilation at ZEEP did not increase PCIII expression but augmented it significantly in the three groups when applied after recruitment. However, PEEP ventilation after recruitment avoided any increment in PCIII expression in all groups. In conclusion, recruitment followed by ZEEP was more deleterious in ALI than in mechanical ATEL, although ZEEP alone did not elevate PCIII expression. Ventilation with 5-cmH(2)O PEEP prevented derecruitment and aborted the increase in PCIII expression.  相似文献   

3.
Recent studies emphasize the presence of alveolar tissue inflammation in asthma. Immunotherapy has been considered a possible therapeutic strategy for asthma, and its effect on lung tissue had not been previously investigated. Measurements of lung tissue resistance and elastance were obtained before and after both ovalbumin and acetylcholine challenges. Using morphometry, we assessed eosinophil and smooth muscle cell density, as well as collagen and elastic fiber content, in lung tissue from guinea pigs with chronic pulmonary allergic inflammation. Animals received seven inhalations of ovalbumin (1-5 mg/ml; OVA group) or saline (SAL group) during 4 wk. Oral tolerance (OT) was induced by offering ad libitum ovalbumin 2% in sterile drinking water starting with the 1st inhalation (OT1 group) or after the 4th (OT2 group). The ovalbumin-exposed animals presented an increase in baseline and in postchallenge resistance and elastance related to baseline, eosinophil density, and collagen and elastic fiber content in lung tissue compared with controls. Baseline and post-ovalbumin and acetylcholine elastance and resistance, eosinophil density, and collagen and elastic fiber content were attenuated in OT1 and OT2 groups compared with the OVA group. Our results show that inducing oral tolerance attenuates lung tissue mechanics, as well as eosinophilic inflammation and extracellular matrix remodeling induced by chronic inflammation.  相似文献   

4.
Cl(2) gas toxicity is complex and occurs during and after exposure, leading to acute lung injury (ALI) and reactive airway syndrome (RAS). Moreover, Cl(2) exposure can occur in diverse situations encompassing mass casualty scenarios, highlighting the need for postexposure therapies that are efficacious and amenable to rapid and easy administration. In this study, we assessed the efficacy of a single dose of nitrite (1mg/kg) to decrease ALI when administered to rats via intraperitoneal (ip) or intramuscular (im) injection 30min after Cl(2) exposure. Exposure of rats to Cl(2) gas (400ppm, 30min) significantly increased ALI and caused RAS 6-24h postexposure as indexed by BAL sampling of lung surface protein and polymorphonucleocytes (PMNs) and increased airway resistance and elastance before and after methacholine challenge. Intraperitoneal nitrite decreased Cl(2)-dependent increases in BAL protein but not PMNs. In contrast im nitrite decreased BAL PMN levels without decreasing BAL protein in a xanthine oxidoreductase-dependent manner. Histological evaluation of airways 6h postexposure showed significant bronchial epithelium exfoliation and inflammatory injury in Cl(2)-exposed rats. Both ip and im nitrite improved airway histology compared to Cl(2) gas alone, but more coverage of the airway by cuboidal or columnar epithelium was observed with im compared to ip nitrite. Airways were rendered more sensitive to methacholine-induced resistance and elastance after Cl(2) gas exposure. Interestingly, im nitrite, but not ip nitrite, significantly decreased airway sensitivity to methacholine challenge. Further evaluation and comparison of im and ip therapy showed a twofold increase in circulating nitrite levels with the former, which was associated with reversal of post-Cl(2) exposure-dependent increases in circulating leukocytes. Halving the im nitrite dose resulted in no effect in PMN accumulation but significant reduction of BAL protein levels, indicating a distinct nitrite dose dependence for inhibition of Cl(2)-dependent lung permeability and inflammation. These data highlight the potential for nitrite as a postexposure therapeutic for Cl(2) gas-induced lung injury and also suggest that administration modality is a key consideration in nitrite therapeutics.  相似文献   

5.
The importance of lung tissue in asthma pathophysiology has been recently recognized. Although nitric oxide mediates smooth muscle tonus control in airways, its effects on lung tissue responsiveness have not been investigated previously. We hypothesized that chronic nitric oxide synthase (NOS) inhibition by N(omega)-nitro-L-arginine methyl ester (L-NAME) may modulate lung tissue mechanics and eosinophil and extracellular matrix remodeling in guinea pigs with chronic pulmonary inflammation. Animals were submitted to seven saline or ovalbumin exposures with increasing doses (1 approximately 5 mg/ml for 4 wk) and treated or not with L-NAME in drinking water. After the seventh inhalation (72 h), animals were anesthetized and exsanguinated, and oscillatory mechanics of lung tissue strips were performed in baseline condition and after ovalbumin challenge (0.1%). Using morphometry, we assessed the density of eosinophils, neuronal NOS (nNOS)- and inducible NOS (iNOS)-positive distal lung cells, smooth muscle cells, as well as collagen and elastic fibers in lung tissue. Ovalbumin-exposed animals had an increase in baseline and maximal tissue resistance and elastance, eosinophil density, nNOS- and iNOS-positive cells, the amount of collagen and elastic fibers, and isoprostane-8-PGF(2alpha) expression in the alveolar septa compared with controls (P<0.05). L-NAME treatment in ovalbumin-exposed animals attenuated lung tissue mechanical responses (P<0.01), nNOS- and iNOS-positive cells, elastic fiber content (P<0.001), and isoprostane-8-PGF(2alpha) in the alveolar septa (P<0.001). However, this treatment did not affect the total number of eosinophils and collagen deposition. These data suggest that NO contributes to distal lung parenchyma constriction and to elastic fiber deposition in this model. One possibility may be related to the effects of NO activating the oxidative stress pathway.  相似文献   

6.
7.
BackgroundInfluenza often leads to acute lung injury (ALI). Few therapeutics options such as vaccines and other antiviral drugs are available. Paeoniflorin is a monoterpene glucoside isolated from the roots of Paeonia lactiflora Pall. that has showed good anti-inflammatory and anti-fibrotic effects. However, it is not known whether paeoniflorin has an effect on influenza virus-induced ALI.PurposeTo investigative the protective effect and potential mechanism of paeoniflorin on ALI induced by influenza A virus (IAV).Study design and methodsThe anti-influenza activity of paeoniflorin in vitro was investigated. Influenza virus A/FM/1/47 was intranasally infected in mice to induce ALI, and paeoniflorin (50 and 100 mg/kg) was given orally to mice during 5 days, beginning 2 h after infection. On day 6 post-infection, body and lung weights, histology and survival were observed, and the lungs were examined for viral load, cytokine and cellular pathway protein expression.ResultsResults showed that paeoniflorin (50 and 100 mg/kg) reduced IAV-induced ALI. It reduces pulmonary oedema and improves histopathological changes in the lung, and also diminishes the accumulation of inflammatory cells in the lung. It was shown that paeoniflorin (50 and 100 mg/kg) alleviated IAV-induced ALI, as evidenced by improved survival in infected mice (40% and 50%, respectively), reduced viral titer in lung tissue, improved histological changes, and reduced lung inflammation. Paeoniflorin also improves pulmonary fibrosis by reducing the levels of pulmonary fibrotic markers (collagen type IV, alpha-smooth muscle actin, hyaluronic acid, laminin, and procollagen type III) and downregulating the expression levels of type I collagen (Col I) and type III collagen (Col III) in the lung tissues. Additionally, paeoniflorin inhibits the expression of αvβ3, TGF-β1, Smad2, NF-κB, and p38MAPK in the lung tissues.ConclusionThe results showed that paeoniflorin (50 and 100 mg/kg) protected against IAV-induced ALI, and the underlying mechanism may be related to the reduction of pro-inflammatory cytokine production and lung collagen deposition through down-regulation of activation of αvβ3/TGF-β1 pathway in lung tissue.  相似文献   

8.
Partitioning of pulmonary responses to inhaled methacholine in puppies.   总被引:2,自引:0,他引:2  
Twelve open-chest mongrel puppies, 8-10 wk old, were studied to localize the site of action of inhaled methacholine within the lungs. Six puppies were challenged with methacholine aerosols and six were challenged with an equal number of nebulizations of normal saline (control group). Pulmonary mechanics were measured during mechanical ventilation and after midexpiratory flow interruptions. Alveolar pressure was measured to allow the partitioning of pulmonary mechanics into airway and tissue components. Good matching between airway opening and alveolar pressures was seen throughout the study. After methacholine challenge, lung resistance increased fivefold. Increases in airway resistance and in the parameters reflecting tissue viscoelastic properties contributed to this increase in lung resistance. Dynamic lung elastance also increased threefold. The response of the methacholine group was statistically different from that of the control group. These data indicate that both the airways and pulmonary parenchyma contribute to the response to inhaled methacholine in 8- to 10-wk-old puppies.  相似文献   

9.
Maturational changes in extracellular matrix and lung tissue mechanics.   总被引:3,自引:0,他引:3  
The viscoelastic properties of the pulmonary parenchyma change rapidly postparturition. We compared changes in mechanical properties with changes in tissue composition of rat lung parenchymal strips in three groups of Sprague-Dawley rats: baby (B; 10-14 days), young (Y; approximately 3 wk), and adult (A; approximately 8 wk). Strips were suspended in an organ bath, and resistance (R), elastance (E), and hysteresivity (eta) were calculated during sinusoidal oscillations before and after the addition of acetylcholine (ACh) (10(-3) M). Strips were then fixed in formalin, and sections were stained with hematoxylin and eosin, Verhoff's elastic stain, or Van Gieson's picric acid-fuchsin stain for collagen. The volume proportion of collagen (%Col), the length density of elastic fibers (L(V)/Pr(alv)), and the arithmetic mean thickness of alveolar septae (T(a)) were calculated by morphometry. Tissue was also stained for alpha-smooth muscle actin (ASMA), and the volume proportion of ASMA (%ASMA) was calculated. Hyaluronic acid (HA) was quantitated by radioimmunoassay in separate strips. R and E in B strips were significantly higher, whereas eta was significantly smaller than in Y or A strips. Changes in these parameters with ACh were greater in B strips. T(a), %ASMA, and HA were greatest in B strips, whereas %Col and L(V)/Pr(alv) were least. There were significant positive correlations between R and E vs. T(a) and between percent change in R and eta post-ACh vs. T(a) and vs. %ASMA, and significant negative correlations between R and E vs. %Col and vs. L(V)/Pr(alv) and percent increase in all three mechanical parameters post-ACh vs. %Col. These data suggest that the relatively high stiffness, R, and contractile responsiveness of parenchymal tissues observed in newborns are not directly attributable to the amount of collagen and elastic fibers in the tissue, but rather they are related to the thickened alveolar wall and the relatively greater percent of contractile cells.  相似文献   

10.
Inhaled glucocorticoid treatment during the first 2 yr of life is controversial because this is a period of major structural remodeling of the lung. Rabbits received aerosolized budesonide (Bud; 250 microg/ml) or injected dexamethasone (Dex; 0.05 mg.ml(-1).kg(-1)) between 1 and 5 wk of age. Treatment with Bud caused specific growth retardation of the lung. Dex but not Bud affected the mechanical properties of the lung parenchyma, when corrected for lung volume. Small peripheral airway walls in both glucocorticoid groups were thinner and had fewer alveolar attachment points with greater distance between attachments than controls, but collagen content was not affected by glucocorticoids. Dex led to reduced body weight, lung volume, alveolar number, and surface area. The alveolar size and number and elastin content, when related to lung volume, was not affected by Bud, suggesting normal structural development but inhibition of total growth. Arterial wall thickness and diameter were affected by Bud. This study demonstrates that developing lungs are sensitive to inhaled glucocorticoids. As such, the use of glucocorticoids in young infants and children should be monitored with caution and only the lowest doses that yield significant clinical improvement should be used.  相似文献   

11.
The biomechanical properties of connective tissues play fundamental roles in how mechanical interactions of the body with its environment produce physical forces at the cellular level. It is now recognized that mechanical interactions between cells and the extracellular matrix (ECM) have major regulatory effects on cellular physiology and cell-cycle kinetics that can lead to the reorganization and remodeling of the ECM. The connective tissues are composed of cells and the ECM, which includes water and a variety of biological macromolecules. The macromolecules that are most important in determining the mechanical properties of these tissues are collagen, elastin, and proteoglycans. Among these macromolecules, the most abundant and perhaps most critical for structural integrity is collagen. In this review, we examine how mechanical forces affect the physiological functioning of the lung parenchyma, with special emphasis on the role of collagen. First, we overview the composition of the connective tissue of the lung and their complex structural organization. We then describe how mechanical properties of the parenchyma arise from its composition as well as from the architectural organization of the connective tissue. We argue that, because collagen is the most important load-bearing component of the parenchymal connective tissue, it is also critical in determining the homeostasis and cellular responses to injury. Finally, we overview the interactions between the parenchymal collagen network and cellular remodeling and speculate how mechanotransduction might contribute to disease propagation and the development of small- and large-scale heterogeneities with implications to impaired lung function in emphysema.  相似文献   

12.
Acute lung injury (ALI), such as that which occurs with mechanical ventilation, contributes to morbidity and mortality of critical illness. Nonetheless, in many instances, ALI resolves spontaneously through unknown mechanisms. Therefore, we hypothesized the presence of innate adaptive pathways to protect the lungs during mechanical ventilation. In this study, we used ventilator-induced lung injury as a model to identify endogenous mechanisms of lung protection. Initial in vitro studies revealed that supernatants from stretch-induced injury contained a stable factor which diminished endothelial leakage. This factor was subsequently identified as adenosine. Additional studies in vivo revealed prominent increases in pulmonary adenosine levels with mechanical ventilation. Because ectoapyrase (CD39) and ecto-5'-nucleotidase (CD73) are rate limiting for extracellular adenosine generation, we examined their contribution to ALI. In fact, both pulmonary CD39 and CD73 are induced by mechanical ventilation. Moreover, we observed pressure- and time-dependent increases in pulmonary edema and inflammation in ventilated cd39(-/-) mice. Similarly, pharmacological inhibition or targeted gene deletion of cd73 was associated with increased symptom severity of ventilator-induced ALI. Reconstitution of cd39(-/-) or cd73(-/-) mice with soluble apyrase or 5'-nucleotidase, respectively, reversed such increases. In addition, ALI was significantly attenuated and survival improved after i.p. treatment of wild-type mice with soluble apyrase or 5'-nucleotidase. Taken together, these data reveal a previously unrecognized role for CD39 and CD73 in lung protection and suggest treatment with their soluble compounds as a therapeutic strategy for noninfectious ALI.  相似文献   

13.
14.
Enlargement of the respiratory air spaces is associated with the breakdown and reorganization of the connective tissue fiber network during the development of pulmonary emphysema. In this study, a mouse (C57BL/6) model of emphysema was developed by direct instillation of 1.2 IU of porcine pancreatic elastase (PPE) and compared with control mice treated with saline. The PPE treatment caused 95% alveolar enlargement (P = 0.001) associated with a 29% lower elastance along the quasi-static pressure-volume curves (P < 0.001). Respiratory mechanics were measured at several positive end-expiratory pressures in the closed-chest condition. The dynamic tissue elastance was 19% lower (P < 0.001), hysteresivity was 9% higher (P < 0.05), and harmonic distortion, a measure of collagen-related dynamic nonlinearity, was 33% higher in the PPE-treated group (P < 0.001). Whole lung hydroxyproline content, which represents the total collagen content, was 48% higher (P < 0.01), and alpha-elastin content was 13% lower (P = 0.16) in the PPE-treated group. There was no significant difference in airway resistance (P = 0.7). The failure stress at which isolated parenchymal tissues break during stretching was 40% lower in the PPE-treated mice (P = 0.002). These findings suggest that, after elastolytic injury, abnormal collagen remodeling may play a significant role in all aspects of lung functional changes and mechanical forces, leading to progressive emphysema.  相似文献   

15.
In the current study, we hypothesize that senescent-dependent changes between airway and lung parenchymal tissues of C57BL/6J (B6) mice are not synchronized with respect to altered lung mechanics. Furthermore, aging modifications in elastin fiber and collagen content of the airways and lung parenchyma are remodeling events that differ with time. To test these hypotheses, we performed quasi-static pressure-volume (PV) curves and impedance measurements of the respiratory system in 2-, 20-, and 26-mo-old B6 mice. From the PV curves, the lung volume at 30 cmH(2)O pressure (V(30)) and respiratory system compliance (Crs) were significantly (P < 0.01) increased between 2 and 20 mo of age, representing about 80-84% of the total increase that occurred between 2 and 26 mo of age. Senescent-dependent changes in tissue damping and tissue elastance were analogous to changes in V(30) and Crs; that is, a majority of the parenchymal alterations in the lung mechanics occurred between 2 and 20 mo of age. In contrast, significant decreases in airway resistance (R) occurred between 20 and 26 mo of age; that is, the decrease in R between 2 and 20 mo of age represented only 29% (P > 0.05) of total decrease occurring through 26 mo. Morphometric analysis of the elastic fiber content in lung parenchyma was significantly (P < 0.01) decreased between 2 and 20 mo of age. To the contrary, increased collagen content was significantly delayed until 26 mo of age (P < 0.01, 2 vs. 26 mo). In conclusion, our data demonstrate that senescent-dependent changes in airway and lung tissue mechanics are not synchronized in B6 mice. Moreover, the reduction in elastic fiber content with age is an early lung remodeling event, and the increased collagen content in the lung parenchyma occurs later in senescence.  相似文献   

16.
赵晓琴  陈强  覃桦 《蛇志》2010,22(3):210-213
目的研究大剂量乌司他丁在急性肺损伤/急性呼吸窘迫综合征中的治疗效果。方法回顾性分析2006年1月至2010年1月广西医科大学第一附属医院ICU收治的154例ALI/ARDS患者的临床资料,根据治疗方案分为乌司他丁组(UTI组)(n=80),对照组(n=74)。记录两组患者开始治疗、治疗第3天、治疗第7天的生命体征、动脉血气分析、血生化检查结果;记录患者在ICU治疗的转归。应用SPSS 13.0软件对结果进行统计学分析。结果经治疗3天UTI组呼吸频率低于对照组;动脉血气分析提示两组患者PaO2、PaO2/Fi O2、SaO2均有上升,UTI组PaO2/Fi O2略低于对照组(P0.01),而两组患者PaO2、SaO2比较无统计学差异。UTI组与对照组的死亡率比较(UTI组52.5%,对照组52.7%,P=0.980)无统计学差异,机械通气时间UTI组低于对照组[UTI组(14.8±3.9)天,对照组(16.7±4.2)天,P=0.020]。根据ALI/ARDS发生的病因分为肺内源性及肺外源性进行亚组分析(A组:肺内源性ALI/ARDS,使用UTI治疗;B组:肺内源性ALI/ARDS,不使用UTI治疗;C组:肺外源性ALI/ARDS,使用UTI治疗;D组:肺外源性ALI/ARDS,不使用UTI治疗),发现乌司他丁对肺外源性ALI/ARDS患者(C组)的ICU时间、ICU内死亡率及机械通气时间均低于不使用UTI的患者(D组)。结论大剂量乌司他丁用于ALI/ARDS的临床治疗可有效改善患者氧合指数,减少机械通气时间,且高血糖的发生率低,尤其是乌司他丁治疗肺外源性ALI/ARDS患者的预后优于肺内源性的ALI/ARDS。  相似文献   

17.
Inducible nitric oxide synthase (iNOS) contributes importantly to septic pulmonary protein leak in mice with septic acute lung injury (ALI). However, the role of alveolar macrophage (AM) iNOS in septic ALI is not known. Thus we assessed the specific effects of AM iNOS in murine septic ALI through selective AM depletion (via intratracheal instillation of clodronate liposomes) and subsequent AM reconstitution (via intratracheal instillation of donor iNOS+/+ or iNOS-/- AM). Sepsis was induced by cecal ligation and perforation, and ALI was assessed at 4 h: protein leak by the Evans blue (EB) dye method, neutrophil infiltration via myeloperoxidase (MPO) activity, and pulmonary iNOS mRNA expression via RT-PCR. In iNOS+/+ mice, AM depletion attenuated the sepsis-induced increases in pulmonary microvascular protein leak (0.3 +/- 0.1 vs. 1.4 +/- 0.1 microg EB.g lung(-1).min(-1); P < 0.05) and MPO activity (37 +/- 4 vs. 67 +/- 8 U/g lung; P < 0.05) compared with that shown in non-AM-depleted mice. In AM-depleted iNOS+/+ mice, septic pulmonary protein leak was restored by AM reconstitution with iNOS+/+ AM (0.9 +/- 0.3 microg EB.g lung(-1).min(-1)) but not with iNOS-/- donor AM. In iNOS-/- mice, sepsis did not induce pulmonary protein leak or iNOS mRNA expression, despite increased pulmonary MPO activity. However, AM depletion in iNOS-/- mice and subsequent reconstitution with iNOS+/+ donor AM resulted in significant sepsis-induced pulmonary protein leak and iNOS expression. Septic pulmonary MPO levels were similar in all AM-reconstituted groups. Thus septic pulmonary protein leak is absolutely dependent on the presence of functional AM and specifically on iNOS in AM. AM iNOS-dependent pulmonary protein leak was not mediated through changes in pulmonary neutrophil influx.  相似文献   

18.
Acute lung injury (ALI) is a syndrome that is characterised by acute inflammation and tissue injury that affects normal gas exchange in the lungs. Hallmarks of ALI include dysfunction of the alveolar-capillary membrane resulting in increased vascular permeability, an influx of inflammatory cells into the lung and a local pro-coagulant state. Patients with ALI present with severe hypoxaemia and radiological evidence of bilateral pulmonary oedema. The syndrome has a mortality rate of approximately 35% and usually requires invasive mechanical ventilation. ALI can follow direct pulmonary insults, such as pneumonia, or occur indirectly as a result of blood-borne insults, commonly severe bacterial sepsis. Although animal models of ALI have been developed, none of them fully recapitulate the human disease. The differences between the human syndrome and the phenotype observed in animal models might, in part, explain why interventions that are successful in models have failed to translate into novel therapies. Improved animal models and the development of human in vivo and ex vivo models are therefore required. In this article, we consider the clinical features of ALI, discuss the limitations of current animal models and highlight how emerging human models of ALI might help to answer outstanding questions about this syndrome.  相似文献   

19.
Mice with lung-specific expression of human matrix metalloproteinase-1 (MMP-1) develop emphysematous changes similar to those seen in smoking-induced emphysema in humans. Morphometric analyses of three transgenic lines [homozygous colony (Col) 34, Col 50, and Col 64] with varying temporal expression of MMP-1 were undertaken to determine the validity of this animal as a model of adult-onset emphysema. Line 50 mice, which have early expression of MMP-1 (14 days postconception), exhibited morphometric changes by 5 days of age. In contrast, homozygous line 34 and 64 with delayed expression (birth and 2 wk of age) were normal up until 4 wk of age when progressive changes in their mean linear intercept were first noted. In contrast, heterozygous mice from line 34 with lower transgene expression did not develop emphysema until 1 yr of age. The changes in mean linear intercept coincided with an increase in lung compliance. Emphysema in these mice was associated with decreased immunostaining for type III collagen within the alveolar septa. This study provides evidence that MMP-1 induces progressive adult-onset emphysema by the selective degradation of type III collagen within the alveolar wall.  相似文献   

20.
We recently showed that we can selectively and safely deplete most (average 85%) of the pulmonary intravascular macrophages in sheep by intravenously infusing liposomes containing dichloromethylene bisphosphonate. After a 1-h stable baseline, we made a 6-h comparison after a 30-min intravenous endotoxin infusion (1 microg/kg) between six anesthetized control lambs and six anesthetized lambs in which the intravascular macrophages had been depleted 24 h previously. Three of the control lambs had been macrophage depleted and allowed to recover their intravascular macrophage population for >/=2 wk. After depletion, both the early and late pulmonary arterial pressure rises were dramatically attenuated. Our main interest, however, was in the acute lung microvascular injury response. The early and late rises in lung lymph flow and the increase in lung lymph protein clearance (lymph flow x lymph-to-plasma protein concentration ratio) were >90% attenuated. We conclude the pulmonary intravascular macrophages are responsible for most of the endotoxin-induced pulmonary hypertension and increased lung microvascular leakiness in sheep, although the unavoidable injury of other intravascular macrophages by the depletion regime may also contribute something.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号