首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
Wang L  Guo F  Wei S  Zhao R 《Peptides》2011,32(6):1313-1319
Exendin 1-39 amide (Ex-4) and its truncated form exendin 9-39 amide (Ex-9) are peptides of non-mammalian nature, which act as an agonist and antagonist, respectively, of the glucagon-like peptide-1 (GLP-1) receptor in mammals. GLP-1 is an intestinal peptide that plays an important role in the regulation of glucose metabolism and glucose uptake in skeletal muscle; however, the effects of its two analogs (Ex-4 and Ex-9) on myofiber properties are still unclear. Here, we report the effects of Ex-4 and Ex-9 alone or in combination on the myosin heavy chain (MyHC) type composition and the glucose uptake capacity in differentiated C2C12 myotubes. Neither Ex-4 nor Ex-9 altered basal glucose uptake, whereas Ex-9 significantly increased insulin-stimulated glucose uptake, suggesting enhanced insulin sensitivity. The mRNA expression of MyHC I and 2A as well as the percentage of MyHC I protein was remarkably increased in Ex-9-treated myotubes. In contrast, Ex-4, alone or in combination with Ex-9, caused a significant reduction in MyHC 2A mRNA expression and the percentage of MyHC I protein. Consistent with the MyHC type switching peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α expression in myotubes was remarkably increased by Ex-9 yet was significantly inhibited by Ex-4. In addition, intracellular concentrations of free Ca2+ were increased in all treatment groups, but only Ex-9-treated myotubes showed higher calcineurin A protein content. Taken together, our data suggest that Ex-9 promotes oxidative differentiation in myotubes to improve cell insulin sensitivity, probably through calcineurin and PGC-1α mediated pathways.  相似文献   

3.
4.
The present paper describes the isolation and linkage mapping of two isoforms of skeletal muscle myosin heavy chain in pig. Two partial cDNAs (pAZMY4 and pAZMY7), coding for the porcine myosin heavy chain-2B and -β respectively, have been isolated from a pig skeletal muscle cDNA library. Four RFLPs were detected with the putative porcine skeletal myosin heavy chain-2B probe (pAZMY4) and one RFLP was identified with the putative myosin heavy chain-β probe (pAZMY7). Two myosin heavy chain loci were mapped by linkage analysis performed with the five RFLPs against the PiGMaP linkage consortium ResPig database: the MYH1 locus, which identifies the fast skeletal muscle myosin heavy chain gene cluster, was located at the end of the map of porcine chromosome 12, while the MYH7 locus, which identifies the myosin heavy chain-α/-β gene cluster, was assigned to the long arm of porcine chromosome 7.  相似文献   

5.
6.
7.
Studies of skeletal muscle disuse, either in patients on bed rest or experimentally in animals (immobilization), have demonstrated that decreased protein synthesis is common, with transient parallel increases in protein degradation. Muscle disuse atrophy involves a process of transition from slow to fast myosin fiber types. A shift toward glycolysis, decreased capacity for fat oxidation, and substrate accumulation in atrophied muscles have been reported, as has accommodation of the liver with an increased gluconeogenic capacity. Recent studies have modeled skeletal muscle disuse by using cyclic stretch of differentiated myotubes (C2C12), which mimics the loading pattern of mature skeletal muscle, followed by cessation of stretch. We utilized this model to determine the metabolic changes using non-targeted metabolomics analysis of the media. We identified increases in amino acids resulting from muscle atrophy-induced protein degradation (largely sarcomere) that occurs with muscle atrophy that are involved in feeding the Kreb’s cycle through anaplerosis. Specifically, we identified increased alanine/proline metabolism (significantly elevated proline, alanine, glutamine, and asparagine) and increased α-ketoglutaric acid, the proposed Kreb’s cycle intermediate being fed by the alanine/proline metabolic anaplerotic mechanism. Additionally, several unique pathways not clearly delineated in previous studies of muscle unloading were seen, including: (1) elevated keto-acids derived from branched chain amino acids (i.e. 2-ketoleucine and 2-keovaline), which feed into a metabolic pathway supplying acetyl-CoA and 2-hydroxybutyrate (also significantly increased); and (2) elevated guanine, an intermediate of purine metabolism, was seen at 12 h unloading. Given the interest in targeting different aspects of the ubiquitin proteasome system to inhibit protein degradation, this C2C12 system may allow the identification of direct and indirect alterations in metabolism due to anaplerosis or through other yet to be identified mechanisms using a non-targeted metabolomics approach.  相似文献   

8.
Seven myosin heavy chains (MyHC) are expressed in mammalian skeletal muscle in spatially and temporally regulated patterns. The timing, distribution, and quantitation of MyHC expression during development and early postnatal life of the mouse are reported here. The three adult fast MyHC RNAs (IIa, IIb, and IId/x) are expressed in the mouse embryo and each mRNA has a distinct temporal and spatial distribution. In situ hybridization analysis demonstrates expression of IIb mRNA by 14.5 dpc, which proceeds developmentally in a rostral to caudal pattern. IId/x and IIa mRNAs are detectable 2 days later. Ribonuclease protection assays demonstrate that the three adult fast genes are expressed at approximately equal levels relative to each other in the embryo but at quite low levels relative to the two developmental isoforms, embryonic and perinatal. Just after birth major changes in the relative proportions of different MyHC RNAs and protein occur. In all cases, RNA expression and protein expression appear coincident. The changes in MyHC RNA and protein expression are distinct in different muscles and are restricted in some cases to particular regions of the muscle and do not always reflect their distribution in the adult.  相似文献   

9.
10.
11.
M J Morgan  P T Loughna 《FEBS letters》1989,255(2):427-430
Work induced hypertrophy of the slow postural soleus and the fast phasic plantaris muscles was produced by tenotomy of the synergistic gastrocnemius muscle. Increases in weight of both muscles were associated with proportionately even larger increases in total RNA and mRNA levels. Alterations in levels of specific myosin heavy chain (MHC) isoform mRNAs were measured using the slot blot procedure with radioactively labelled oligonucleotides as probes. Type 1 MHC gene expression was unaffected in both muscles by work overload, whereas type 2a was deinduced in the soleus and type 2b was deinduced in the plantaris. The neonatal MHC gene was transiently reinduced in the plantaris.  相似文献   

12.
In skeletal muscle, calcineurin is crucial for myocyte differentiation and in the determination of the slow oxidative fibre phenotype, both processes being important determinants of muscle performance, metabolic health and meat-animal production. Fibre type is defined by the isoform identity of the skeletal myosin heavy chain (MyHC). We have examined the responses of the major MyHC genes to calcineurin signalling during fibre formation of muscle C2C12 cells. We have found that calcineurin acts as a signal to up-regulate the fast-oxidative MyHC2a gene and to down-regulate the faster MyHC2x and MyHC2b genes in a manner that appears to be NFAT-independent. Contrary to expectation, the up-regulation of MyHCslow by calcineurin seems to be time-dependent and is only detectable once the initial differential expression of the post-natal fast MyHC genes has been established. The simultaneous elevated expression of MyHC2a and the repression of MyHC2x and MyHC2b expression indicate that both processes (elevation and repression) are actively coordinated during oxidative fibre conversion. We have further determined that muscle LIM protein (MLP), a calcineurin-binding Z-line co-factor, is induced by calcineurin and that its co-expression with calcineurin has an additive effect on MyHCslow expression. Hence, post-natal fast MyHCs are important early effector targets of calcineurin, whereas MyHCslow up-regulation is mediated in part by calcineurin-induced MLP. This work was supported by the Biotechnology and Biological Sciences Research Council and was carried out in collaboration with the company Genus.  相似文献   

13.
Proteosome inhibitors such as bortezomib (BTZ) have been used to treat muscle wasting in animal models. However, direct effect of BTZ on skeletal muscle cells has not been reported. In the present study, our data showed that C2C12 cells exhibited a dose-dependent decrease in cell viability in response to increasing concentrations of BTZ. Consistent with the results of cell viability, Annexin V/PI analysis showed a significant increase in apoptosis after exposing the cells to BTZ for 24 h. The detection of cleaved caspase-3 further confirmed apoptosis. The apoptosis induced by BTZ was associated with reduced expression of p-ERK. Cell cycle analysis revealed that C2C12 cells underwent G2/M cell cycle arrest when incubated with BTZ for 24 h. Furthermore, BTZ inhibited formation of multinucleated myotubes. The inhibition of myotube formation was accompanied by decreased expression of Myogenin. Our data suggest that BTZ induces cell death and inhibits differentiation of C2C12 cells at clinically relevant doses.  相似文献   

14.
An attempt was made to determine whether or not the concentration of NFATc1 (nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1) in nuclear and cytoplasmic extracts is related to an increase in the concentration of fibers containing type IIa myosin heavy chains under modeled gravitational unloading of m. soleus. Experiments were carried out on Wistar rats using the Morey-Holton tail suspension model. It was found that the soleus contains three isoforms of NFATc1 (140, 110, and 86 kDa). Under unloading, the 140-kDa isoform is translocated into the nucleus, the concentration of the 110-kDa isoform in the cytoplasmic extract decreases, and the concentration of the 86-kDa isoform in the nuclear extract increases. Under gravitational unloading of the muscle, the concentration of fibers containing type IIa myosin heavy chains increases. The increase in the concentration of the 140-and 86-kDa NFATc1 isoforms in the nucleus is accompanied by a decrease in the fraction of muscle fibers containing type I myosin heavy chains and an increase in the fraction containing type IIa chains.  相似文献   

15.
16.
17.
18.
Myosin is one of the most important skeletal muscle proteins. It is composed of myosin heavy chains and myosin light chains that exist with different isoforms coded by different genes. We studied the porcine myosin heavy chain 2B (MYH4) and the porcine skeletal muscle myosin regulatory light chain 2 (HUMMLC2B) genes. A single nucleotide polymorphism (SNP), identified for each gene, was used for linkage mapping of MYH4 and HUMMLC2B to porcine chromosome (Sscr) 12 and Sscr 3, respectively. The mapping of these two genes was confirmed by using a porcine-rodent radiation hybrid panel, even if for MYH4 the LOD score and the retention fraction were low. Allele frequencies at the two loci were studied in a sample of 307 unrelated pigs belonging to seven different pig breeds. Moreover the distribution of the alleles at these two loci was analysed in groups of pigs with extreme divergent (positive and negative) estimated breeding values (EBV) for four meat production traits that have undergone selection in Italian heavy pigs.  相似文献   

19.
O‐linked β‐N‐acetylglucosaminylation (O‐GlcNAcylation) regulates many cellular processes including the cell cycle, cell signaling, and protein trafficking. Dysregulation of O‐GlcNAcylation may be involved in the development of insulin resistance and type 2 diabetes. Therefore, it is necessary to identify cellular proteins that are induced by elevated O‐GlcNAcylation. Here, using adenosine 5′‐triphosphate affinity chromatography, we employed a proteomic approach in order to identify differentially expressed proteins in response to treatment with the O‐GlcNAcase inhibitor, O‐(2‐acetamido‐2‐deoxy‐d ‐glucopyranosylidene)amino‐N‐phenylcarbamate (PUGNAc), in mouse C2C12 myotube cells. Among 205 selected genes, we identified 68 nucleotide‐binding proteins, 14 proteins that have adenosinetriphosphatase activity, and 10 proteins with ligase activity. Upregulation of proteins, including ubiquitin‐activating enzyme E1, proteasome subunit 20S, cullin‐associated NEDD8‐dissociated protein 1, ezrin, and downregulation of the protein nucleoside diphosphate kinase B, were confirmed by western blot analysis. In particular, we found that the protein ubiquitination level in C2C12 cells was increased by PUGNAc treatment. This is the first report of quantitative proteomic profiles of myotube cells after treatment with PUGNAc, and our results demonstrate the potential to enhance understanding of the relationship between insulin resistance, O‐GlcNAc, and PUGNAc in the future. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Summary A culture system for adult rat cardiac muscle cells has been established without exposure of cells to serum at any step of the procedure. The methodology has been standardized and optimized to obtain better quality and high yield of cells and culture. Subsequent to enzyme perfusion, the release of myocytes from enzyme-perfused tissues was carried out in enzyme-free Joklik's medium instead of exposing cells to proteolytic enzyme(s) as done previously. Approximately 5 million cylindrical muscle cells per ventricle were obtained. The culture medium contained Eagle's minimum essential medium with Earle's salts, basic fibroblast growth factor, epidermal growth factor, insulin, transferrin, selenium, norepinephrine, triiodothyronine (T3), bovine serum albumin, nonessential amino acids, and ascorbic acid. The plating efficiency of the experimental cultures was comparable to that of the control cultures grown in the presence of serum. The cells in the serum-free medium contained myofibrillar and myosin isoforms characteristics of the adult myocytes. The cells underwent cellular reorganization comparable to that of the controls. The initial phase of reorganization involved the breakdown of myofibrils and extrusion of mitochondria, degraded myofibrils, and other cellular organelles. The latter phase of reorganization included myofibrillogenesis and organellogenesis resulting in the development of myofibrillar apparatus with cellular organelles. Myocytes were contractile throughout the culture period. Cardiac myocytes grown, in serum-free medium expressed the predominant myosin isoform V1 similar to their counterparts in vivo. T3 is essential for the expression of isomyosin V1. This study demonstrates that adult cardiac muscle cells can be maintained in long-term serum-free culture from seeding to termination. The cells in serum-free conditions maintain at least two differentiated characteristics of adult myocytes investigated, namely, abundant organized myofibrils and predominant myosin isoform V1. This work is supported by grant DCB-8709594 from the National Science Foundation, Washington, DC  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号