首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Islet amyloid polypeptide (IAPP), amylin, is the constituent peptide of pancreatic islet amyloid deposits which form in islets of Type 2 diabetic subjects. Human IAPP is synthesized as a 67-residue propeptide in islet beta-cells and colocalized with insulin in beta-cell granules. The mature 37-amino acid peptide is produced by proteolysis at pairs of basic residues at the C- and N-termini of the mature peptide. To determine the enzymes responsible for proteolysis and their activity at the potential cleavage sites, synthetic human proIAPP was incubated (0.5-16 h) with recombinant prohormone convertases, PC2 or PC3 at appropriate conditions of calcium and pH. The products were analysed by MS and HPLC. Proinsulin was used as a control and was cleaved by both recombinant enzymes resulting in intermediates. PC3 was active initially at the N-terminal-IAPP junction and later at the C-terminus, whereas initial PC2 activity was at the IAPP-C-terminal junction. Processing at the basic residues within the C-terminal flanking peptide rarely occurred. There was no evidence for substantial competition for the processing enzymes when the combined substrates proinsulin and proIAPP were incubated with both PC2 and PC3. As proinsulin cleavage is sequential in vivo (PC3 active at the B-chain-C-peptide junction, followed by PC2 at A chain-C-peptide junction), these data suggest that proteolysis of proIAPP and proinsulin is coincident in secretory granules and increased proinsulin secretion in diabetes could be accompanied by increased production of proIAPP.  相似文献   

2.
Abnormal proteolytic processing of amyloid precursor protein (APP) is thought to be central to the formation and deposition of beta amyloid peptide in Alzheimer's disease. A putative "secretase" activity normally releases an amino-terminal APP fragment by cleaving APP at residues within the beta amyloid peptide thereby precluding amyloidogenesis. In order to better understand the requirements for APP cleavage by secretase, we have expressed a modified cDNA construct representing the 751-amino acid isoform of APP (APP-REP) and mutated APP-REP proteins in cultured cells. Here, we show that: (a) APP-REP is predominantly associated with membranes; (b) intracellular turnover and processing of APP-REP is similar to that reported for the intact APP protein; (c) secretion appears unaltered by introduction of the glutamate to glutamine mutation found in the APP gene of patients suffering from hereditary cerebral hemorrhage with amyloidosis of Dutch origin; (d) a mutation in which the 18 juxtamembranous amino acids encompassing the secretase site are deleted also allows release of an amino-terminal fragment into the conditioned medium; and (e) kinetics of cleavage of APP-REP and its mutated derivatives are similar. These results indicate that the secretory cleavage of the extracellular amino-terminal fragments of APP-REP can occur in the presence of different novel juxtamembranous amino acid sequences.  相似文献   

3.
Amyloid deposits derived from the amylin peptide accumulate within pancreatic islet beta-cells in most cases of type-2 diabetes mellitus (T2Dm). Human amylin 'oligomers' are toxic to these cells. Using two different experimental techniques, we found that H(2)O(2) was generated during the aggregation of human amylin into amyloid fibrils. This process was greatly stimulated by Cu(II) ions, and human amylin was retained on a copper affinity column. In contrast, rodent amylin, which is not toxic, failed to generate any H(2)O(2) and did not interact with copper. We conclude that the formation of H(2)O(2) from amylin could contribute to the progressive degeneration of islet cells in T2Dm.  相似文献   

4.
Activated microglia surrounding amyloid beta-containing senile plaques synthesize interleukin-1, an inflammatory cytokine that has been postulated to contribute to Alzheimer's disease pathology. Studies have demonstrated that amyloid beta treatment causes increased cytokine release in microglia and related cell cultures. The present work evaluates the specificity of this cellular response by comparing the effects of amyloid beta to that of amylin, another amyloidotic peptide. Both lipopolysaccharide-treated THP-1 monocytes and mouse microglia showed significant increases in mature interleukin-1beta release 48 h following amyloid beta or human amylin treatment, whereas nonfibrillar rat amylin had no effect on interleukin-1beta production by THP-1 cells. Lipopolysaccharide-stimulated THP-1 cells treated with amyloid beta or amylin also showed increased release of the proinflammatory cytokines tumor necrosis factor-alpha and interleukin-6, as well as the chemokines interleukin-8 and macrophage inflammatory protein-1alpha and -1beta. THP-1 cells incubated with fibrillar amyloid beta or amylin in the absence of lipopolysaccharide also showed significant increases of both interleukin-1beta and tumor necrosis factor-alpha mRNA. Furthermore, treatment of THP-1 cells with amyloid fibrils resulted in an elevated expression of the immediate-early genes c-fos and junB. These studies provide further evidence that fibrillar amyloid peptides can induce signal transduction pathways that initiate an inflammatory response that is likely to contribute to Alzheimer's disease pathology.  相似文献   

5.
《Biophysical journal》2020,118(5):1142-1151
The polypeptide hormone islet amyloid polypeptide (IAPP) forms islet amyloid in type 2 diabetes, a process which contributes to pancreatic β-cell dysfunction and death. Not all species form islet amyloid, and the ability to do so correlates with the primary sequence. Humans form islet amyloid, but baboon IAPP has not been studied. The baboon peptide differs from human IAPP at three positions containing K1I, H18R, and A25T substitutions. The K1I substitution is a rare example of a replacement in the N-terminal region of amylin. The effect of this mutation on amyloid formation has not been studied, but it reduces the net charge, and amyloid prediction programs suggest that it should increase amyloidogenicity. The A25T replacement involves a nonconservative substitution in a region of IAPP that is believed to be important for aggregation, but the effects of this replacement have not been examined. The H18R point mutant has been previously shown to reduce aggregation in vitro. Baboon amylin forms amyloid on the same timescale as human amylin in vitro and exhibits similar toxicity toward cultured β-cells. The K1I replacement in human amylin slightly reduces toxicity, whereas the A25T substitution accelerates amyloid formation and enhances toxicity. Photochemical cross-linking reveals that the baboon amylin, like human amylin, forms low-order oligomers in the lag phase of amyloid formation. Ion-mobility mass spectrometry reveals broadly similar gas phase collisional cross sections for human and baboon amylin monomers and dimers, with some differences in the arrival time distributions. Preamyloid oligomers formed by baboon amylin, but not baboon amylin fibers, are toxic to cultured β-cells. The toxicity of baboon oligomers and lack of significantly detectable toxicity with exogenously added amyloid fibers is consistent with the hypothesis that preamyloid oligomers are the most toxic species produced during IAPP amyloid formation.  相似文献   

6.
Islet amyloid polypeptide (IAPP) is a recently discovered pancreatic islet hormone which is stored with insulin in beta cell granules. IAPP may have a significant role in the development of Type 2 diabetes mellitus due to its propensity to form islet cell-disrupting amyloid deposits, and by opposing the action of insulin in peripheral tissues. Most evidence to-date suggests that an intrinsic structural motif of IAPP is linked to the amyloidogenicity of IAPP, and that this motif occurs only in those species (e.g., humans and cats) that also develop age-associated or Type 2 diabetes We utilized polymerase chain reaction methodology in this study to obtain the IAPP nucleotide and protein sequences of the dog, a species not known to develop islet amyloid. We show that dog IAPP contains the same putative amyloidogenic sequence (GAILS) at residues 24-28 as human and cat IAPP, and that although dogs do not develop islet amyloid they do develop IAPP-derived amyloid in association with neoplastic beta cells (i.e., insulinomas). These results provide strong evidence that the amyloidogenicity of IAPP is linked to at least two prerequisites: a species-specific amyloidogenic structural motif, and aberrations in the synthesis (or processing) of IAPP which leads to increased concentration of IAPP in the local milieau.  相似文献   

7.
Islet amyloid is a pathologic characteristic of the pancreas in type 2 diabetes comprised mainly of the beta-cell peptide islet amyloid polypeptide (IAPP; amylin). We used a pulse-chase approach to investigate the kinetics of processing and secretion of the IAPP precursor, proIAPP, in beta cells. By only 20 min after synthesis, a COOH-terminally processed proIAPP intermediate (approximately 6 kDa) was already present in beta cells. Formation of this NH2-terminally extended intermediate was not prevented by arresting secretory pathway transport at the trans-Golgi network (TGN) by either brefeldin A or temperature blockade, suggesting that this initial cleavage step occurs in the TGN before entry of (pro)IAPP into granules. Mature IAPP (approximately 4 kDa) was not detected until 60 min of chase, suggesting that NH2-terminal cleavage occurs in granules. Cells chased in low glucose without Ca2+ or with diazoxide, to block regulated release, secreted both proIAPP (approximately 8 kDa) and a partially processed form (approximately 6 kDa) via the constitutive secretory pathway. Stimulation of regulated secretion resulted in secretion primarily of mature IAPP as well as low levels of both unprocessed (approximately 8 kDa) and partially processed (approximately 6 kDa) proIAPP. We conclude that normal processing of proIAPP is a two-step process initiated by cleavage at its COOH terminus (likely by prohormone convertase 1/3 in the TGN) followed by cleavage at its NH2 terminus (by prohormone convertase 2 in granules) to form IAPP. Both proIAPP and its NH2-terminally extended intermediate appear to be normal secretory products of the beta cell that can be released via either the regulated or constitutive secretory pathways.  相似文献   

8.
Search for proteases responsible for an altered processing of APP which generates intermediates containing beta/A4 peptide is preceding to understand the formation of beta amyloid deposits characteristic of Alzheimer's disease, since many studies reveal that APP is ordinarily processed so as not to generate beta amyloid. Here, we have examined the action of thrombin, a serine protease in the blood clotting, in APP processing. Thrombin cleaved the mouse recombinant APP695 in vitro, resulting in the accumulation of 28 kDa fragment. The immunoblot analysis showed that the fragment is derived from the carboxy-terminal side of the recombinant APP695. Further, amino acid sequencing exhibited that the fragment is generated by the cleavage at Arg 510-Ile 511 and therefore includes entire beta/A4 peptide. We consider that the 28 kDa fragment is a possible intermediate for beta/A4 peptide. Thus thrombin may be involved in the altered processing of APP.  相似文献   

9.
Islet amyloid polypeptide (a.k.a. IAPP, amylin) is a 37 amino acid hormone that has long been associated with the progression of type II diabetes mellitus (TIIDM) disease. The endocrine peptide hormone aggregatively misfolds to form amyloid deposits in and around the pancreatic islet β-cells that synthesize both insulin and IAPP, leading to a decrease in β-cell mass in patients with the disease. Extracellular IAPP amyloids induce β-cell death through the formation of reactive oxygen species, mitochondrial dysfunction, chromatin condensation, and apoptotic mechanisms, although the precise roles of IAPP in TIIDM are yet to be established. Here we review aspects of the normal physiological function of IAPP in glucose regulation together with insulin, and its misfolding which contributes to TIIDM, and may also play roles in other pathologies such as Alzheimer's and heart disease. We summarize information on expression of the IAPP gene, the regulation of the hormone by post-translational modifications, the structural properties of the peptide in various states, the kinetics of misfolding to amyloid fibrils, and the interactions of the peptide with insulin, membranes, glycosaminoglycans, and nanoparticles. Finally, we describe how basic research is starting to have a positive impact on the development of approaches to circumvent IAPP amyloidogenesis. These include therapeutic strategies aimed at stabilizing non-amyloidogenic states, inhibition of amyloid growth or disruption of amyloid fibrils, antibodies directed towards amyloid structures, and inhibition of interactions with cofactors that facilitate aggregation or stabilize amyloids.  相似文献   

10.
The beta-amyloid peptide is derived from a larger membrane bound protein and accumulates as amyloid in Alzheimer's diseased brains. beta-amyloid precursor protein (beta APP) proteolytically processed during constitutive secretion cannot be a source of deposited amyloid because this processing results in cleavage within the amyloidogenic peptide. To see if other secretory pathways could be responsible for generating potentially amyloidogenic molecules we tested the possibility that beta APP is targeted to the regulated secretory pathway. Stable AtT20 cell lines expressing exogenous human beta APP were genetically engineered. These cells were labeled with [35S]-methionine, and chased in the presence or absence of secretagogue. The beta APP both inside the cells and released from the cells was analyzed by immunoprecipitation and gel analysis. Quantitation of autoradiograms showed that virtually all of the synthesized beta APP was secreted by the constitutive pathway, and that no detectable (less than 1%) beta APP was targeted to the regulated secretory pathway.  相似文献   

11.
Alzheimer's disease (AD) is characterized by the massive deposition in the brain of the 40-42-residue amyloid beta protein (A(beta)). While A(beta)1-40 predominates in the vascular system, A(beta)1-42 is the major component of the senile plaques in the neuropil. The concentration of both A(beta) species required to form amyloid fibrils in vitro is micromolar, yet soluble A(betas) found in normal and AD brains are in the low nanomolar range. It has been recently proposed that the levels of A(beta) sufficient to trigger amyloidogenesis may be reached intracellularly. To study the internalization and intracellular accumulation of the major isoforms of A(beta), we used THP-1 and IMR-32 neuroblastoma cells as models of human monocytic and/or macrophagic and neuronal lineages, respectively. We tested whether these cells were able to internalize and accumulate 125I-A(beta)1-40 and 125I-A(beta)1-42 differentially when offered at nanomolar concentrations and free of large aggregates, conditions that mimic a prefibrillar stage of A(beta) in AD brain. Our results showed that THP-1 monocytic cells internalized at least 10 times more 125I-A(betas) than IMR-32 neuroblastoma cells, either isolated or in a coculture system. Moreover, 125I-A(beta)1-42 presented a higher adsorption, internalization, and accumulation of undigested peptide inside cells, as opposed to 125I-A(beta)1-40. These results support that A(beta)1-42, the major pathogenic form in AD, may reach supersaturation and generate competent nuclei for amyloid fibril formation intracellularly. In light of the recently reported strong neurotoxicity of soluble, nonfibrillar A(beta)1-42, we propose that intracellular amyloidogenesis in microglia is a protective mechanism that may delay neurodegeneration at early stages of the disease.  相似文献   

12.
The polypeptide hormone amylin forms amyloid deposits in Type 2 diabetes mellitus and a 10-residue fragment of amylin (amylin(20-29)) is commonly used as a model system to study this process. Studies of amylin(20-29) and several variant peptides revealed that low levels of deamidation can have a significant effect on the secondary structure and aggregation behavior of these molecules. Results obtained with a variant of amylin(20-29), which has the primary sequence SNNFPAILSS, are highlighted. This peptide is particularly interesting from a technical standpoint. In the absence of impurities the peptide does not spontaneously aggregate and is not amyloidogenic. This peptide can spontaneously deamidate, and the presence of less than 5% of deamidation impurities leads to the formation of aggregates that have the hallmarks of amyloid. In addition, small amounts of deamidated material can induce amyloid formation by the purified peptide. These results have fundamental implications for the definition of an amyloidogenic sequence and for the standards of purity of peptides and proteins used for studies of amyloid formation.  相似文献   

13.
Human L68Q cystatin C is one of the known human amyloidogenic proteins. In its native state it is a monomer with alpha/beta structure. Experimental evidence suggests that L68Q variant associates into dimeric intermediates and that the dimers subsequently self-assemble to form amyloid deposits and insoluble fibrils. Details of the pathway of L68Q mutant amyloid formation are unclear; however, different experimental approaches with resolutions at molecular level have provided some clues. Probably, the stability and flexibility of monomeric L68Q variant play essential roles in the early steps of amyloid formation; thus, it is necessary to characterize early conformational changes of L68Q cystatin C monomers. In this paper, we demonstrate the possibility that the differences between the monomeric forms of wild-type (wt) cystatin C and its L68Q variant are responsible for higher tendency of the L68Q cystatin C amyloidogenesis. We started our studies with the simulations of wt and L68Q cystatin C monomers. Nanosecond time scale molecular dynamics simulations at 308K were performed using AMBER7.0 program. The results show that the structure of the L68Q monomer was changed, relative to the wt cystatin C structure. The results support earlier speculation that the L68Q point mutation would easily lead to dimer formation.  相似文献   

14.
Type II diabetes, in its late stages, is often associated with the formation of extracellular islet amyloid deposits composed of islet amyloid polypeptide (IAPP or amylin). IAPP is stored before secretion at millimolar concentrations within secretory granules inside the β-cells. Of interest, at these same concentrations in vitro, IAPP rapidly aggregates and forms fibrils, yet within secretory granules of healthy individuals, IAPP does not fibrillize. Insulin is also stored within the secretory granules before secretion, and has been shown in vitro to inhibit IAPP fibril formation. Because of insulin's inhibitory effect on IAPP fibrillization, it has been suggested that insulin may also inhibit IAPP-mediated permeabilization of the β-cell plasma membrane in vivo. We show that although insulin is effective at preventing fiber-dependent membrane disruption, it is not effective at stopping the initial phase of membrane disruption before fibrillogenesis, and does not prevent the formation of small IAPP oligomers on the membrane. These results suggest that insulin has a more complicated role in inhibiting IAPP fibrillogenesis, and that other factors, such as the low pH of the secretory granule, may also play a role.  相似文献   

15.
Islet amyloid polypeptide (IAPP or Amylin) is a 37-residue, C-terminally amidated pancreatic hormone, cosecreted with insulin that forms islet amyloid in type 2 diabetes. Islet amyloid formation is complex and characterizing preamyloid oligomers is an important topic because oligomeric intermediates are postulated to be the most toxic species produced during fibril formation. A range of competing models for early oligomers have been proposed. The role of the amidated C-terminus in amyloid formation by IAPP and in stabilizing oligomers is not known. Studies with unamidated IAPP have provided evidence for formation of an antiparallel dimer at pH 5.5, stabilized by stacking of His-18 and Tyr-37, but it is not known if this interaction is formed in the physiological form of the peptide. Analysis of a set of variants with a free and with an amidated C-terminus shows that disrupting the putative His-Tyr interaction accelerates amyloid formation, indicating that it is not essential. Amidation to generate the physiologically relevant form of IAPP accelerates amyloid formation, demonstrating that the advantages conferred by C-terminal amidation outweigh increased amyloidogenicity. The analysis of this variant argues that IAPP is not under strong evolutionary pressure to reduce amyloidogenicity. Analysis of an H18Q mutant of IAPP shows that the charge state of the N-terminus is an important factor controlling the rate of amyloid formation, even though the N-terminal region of IAPP is believed to be flexible in the amyloid fibers.  相似文献   

16.
Islet amyloid polypeptide (IAPP or Amylin) is a 37-residue, C-terminally amidated pancreatic hormone, cosecreted with insulin that forms islet amyloid in type 2 diabetes. Islet amyloid formation is complex and characterizing preamyloid oligomers is an important topic because oligomeric intermediates are postulated to be the most toxic species produced during fibril formation. A range of competing models for early oligomers have been proposed. The role of the amidated C-terminus in amyloid formation by IAPP and in stabilizing oligomers is not known. Studies with unamidated IAPP have provided evidence for formation of an antiparallel dimer at pH 5.5, stabilized by stacking of His-18 and Tyr-37, but it is not known if this interaction is formed in the physiological form of the peptide. Analysis of a set of variants with a free and with an amidated C-terminus shows that disrupting the putative His-Tyr interaction accelerates amyloid formation, indicating that it is not essential. Amidation to generate the physiologically relevant form of IAPP accelerates amyloid formation, demonstrating that the advantages conferred by C-terminal amidation outweigh increased amyloidogenicity. The analysis of this variant argues that IAPP is not under strong evolutionary pressure to reduce amyloidogenicity. Analysis of an H18Q mutant of IAPP shows that the charge state of the N-terminus is an important factor controlling the rate of amyloid formation, even though the N-terminal region of IAPP is believed to be flexible in the amyloid fibers.  相似文献   

17.
Abedini A  Tracz SM  Cho JH  Raleigh DP 《Biochemistry》2006,45(30):9228-9237
Islet amyloid deposits are a characteristic pathological hallmark of type 2 diabetes mellitus. Islet amyloid polypeptide (IAPP), also referred to as amylin, aggregates in the islet extracellular space to form amyloid deposits in up to 95% of patients with the disease. IAPP is stored with insulin in beta-islet cells and is processed in parallel by subtilisin-like prohormone convertases prior to secretion. There is indirect evidence that normal processing of the prohormone precursor, proIAPP, at the N-terminal cleavage site is defective in type 2 diabetes and results in secretion of an N-terminal extended proIAPP intermediate. The N-terminal flanking region of proIAPP is detected in amyloid deposits; however, the C-terminal flanking region is not. Immunohistochemical studies implicate the presence of the heparan sulfate proteoglycan (HSPG) perlecan in islet amyloid deposits, suggesting a role for HSPGs in mediating amyloid deposition in type 2 diabetes and implicating a binding domain in the N-terminus of proIAPP. Initial studies of proIAPP indicated that the HSPG binding region is contained within the first 30 residues. Here, we characterize the potential HSPG binding site of proIAPP in detail by analyzing a set of peptide fragments. Binding is tighter at low pH due to protonation of histidine residues. Deletion studies show that Arg-22 and His-29 play a role in binding. Reduction of the Cys-13 to Cys-18 disulfide leads to a noticeable decrease in binding. We demonstrate the ability of heparan sulfate to induce amyloid formation in N-terminal fragments of proIAPP. The oxidized peptide forms amyloid more rapidly than the reduced variant in the presence of heparan sulfate, but the reduced peptide ultimately forms more extensive amyloid deposits. The potential implications for islet amyloid formation in vivo are discussed.  相似文献   

18.
Zhang Q  Kelly JW 《Biochemistry》2005,44(25):9079-9085
The marked variation in clinical expression and age of familial amyloid disease onset is not well understood. One possibility is that metabolite modification(s) of a disease-associated mutant protein can change the energetics and propensity for misfolding, influencing the disease course. Each subunit of the transthyretin (TTR) tetramer has a single Cys residue that can exist in the SH form or as a mixed disulfide with the amino acid Cys or the peptide glutathione or fragments of the latter. The stability and amyloidogenicity of the clinically most important TTR variants (V30M and V122I) in their SH oxidation state were compared with those of their mixed disulfide adducts. All the Cys-10 mixed disulfide conjugates exhibited substantially decreased protein stability (urea, pH 7) and a higher rate and extent of amyloidogenesis (slightly acidic conditions). We also investigated the amyloidogenicity and stability of a C10S/V30M TTR double mutant which lacks the ability to make mixed disulfides, but retains the disease-associated V30M mutation. Unlike V30M TTR, this double mutant is nonamyloidogenic in transgenic mice. Our in vitro data reveal that the C10S/V30M and V30M TTR homotetramers have identical amyloidogenicity and stability, implying that Cys-10 mixed disulfide formation enhances amyloidogenesis in V30M transgenic mice. Given the high proportion of TTR subunits having mixed disulfide modifications in human plasma ( approximately 50%), and the data within demonstrating their increased amyloidogenicity, we submit that disulfide metabolite modifications have the potential to influence the course of amyloidoses, including TTR amyloidoses caused by mutations.  相似文献   

19.
Here we present atomic force microscopy images of the fibrils formed by human amylin(20-29). This peptide is a fragment of the polypeptide amylin, the major proteinaceous component of amyloid deposits found in cases of type-II diabetes mellitus. Our results demonstrate that the amylin(20-29) peptide fragment forms amyloid-like fibrils that display polymorphic structures. Twisting along the axis of fibrils was often observed in fibrils aged for 6 hours but disappeared in mature fibrils aged for longer time periods.  相似文献   

20.
Amyloid fibrillation causes serious neurodegenerative diseases and amyloidosis; however, the detailed mechanisms by which the structural states of precursor proteins in a lipid membrane-associated environment contribute to amyloidogenesis still remains to be elucidated. We examined the relationship between structural states of intrinsically-disordered wild-type and mutant α-synuclein (αSN) and amyloidogenesis on two-types of model membranes. Highly-unstructured wild-type αSN (αSNWT) and a C-terminally-truncated mutant lacking negative charges (αSN103) formed amyloid fibrils on both types of membranes, the model membrane mimicking presynaptic vesicles (Mimic membrane) and the model membrane of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC membrane). Unstructured αSNWT and αSN103 both bound to Mimic membranes in a helical conformation with similar binding affinity. Promotion and then inhibition of amyloidogenesis of αSNWT were observed as the concentration of Mimic lipids increased. We explain this by the two-state binding model: at lower lipid concentrations, binding of αSNWT to membranes enhances amyloidogenicity by increasing the local concentration of membrane-bound αSN and so promoting amyloid nucleation; at higher lipid concentrations, membrane-bound αSNWT is actually in a sense diluted by increasing the number of model membranes, which blocks amyloid fibrillation due to an insufficient bound population for productive nucleation. Meanwhile, αSN103 formed amyloid fibrils over the whole concentration of Mimic lipids used here without inhibition, revealing the importance of helical structures for binding affinity and negatively charged unstructured C-terminal region for modulating amyloidogenesis. We propose that membrane binding-induced initial conformations of αSN, its overall charge states, and the population of membrane-bound αSN are key determinants of amyloidogenesis on membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号