首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
《Autophagy》2013,9(7):917-919
The neuronal protein alpha-synuclein is thought to be central in the pathogenesis of Parkinson’s Disease (PD). Excessive wild type alpha-synuclein levels can lead to PD in select familial cases and alpha-synuclein protein accumulation occurs in sporadic PD. Therefore, elucidation of the mechanisms that control alpha-synuclein levels is critical for PD pathogenesis and potential therapeutics. The subject of alpha-synuclein degradation has been controversial. Previous work show that, in an assay with isolated liver lysosomes, purified wild type alpha-synuclein is degraded by the process of Chaperone Mediated Autophagy (CMA). Whether this actually occurs in a cellular context has been unclear. In our most recent work, we find that wild type alpha-synuclein, but not the closely related protein beta-synuclein, is indeed degraded by CMA in neuronal cells, including primary postnatal ventral midbrain neurons. Macroautophagy, but not the proteasome, also contributes to alpha-synuclein degradation. Therefore, two separate lysosomal pathways, CMA and macroautophagy, degrade wild type alpha-synuclein in neuronal cells. It is hypothesized that impairment of either of these two pathways, or of more general lysosomal function, may be an initiating factor in alpha-synuclein accumulation and sporadic PD pathogenesis.

Addendum to: Vogiatzi T, Xilouri M, Vekrellis K, Stefanis L. Wild type α-synuclein is degraded by chaperone mediated autophagy and macroautophagy in neuronal cells. J Biol Chem 2008; In press.  相似文献   

2.
3.
《Autophagy》2013,9(12):2166-2168
Abnormal aggregation of SNCA/α-synuclein plays a crucial role in Parkinson disease (PD) pathogenesis. SNCA levels determine its toxicity, and its accumulation, even to a small extent, may be a risk factor for neurodegeneration. One of the main pathways for SNCA degradation is chaperone-mediated autophagy (CMA), a selective form of autophagy, while aberrant SNCA may act as a CMA inhibitor. In the current punctum we summarize our recent data showing that induction of CMA, via overexpression of the protein controlling its rate-limiting step, the lysosomal receptor LAMP2A, effectively decreases SNCA levels and ameliorates SNCA-induced neurodegeneration, both in neuronal cell culture systems and in the rat brain. Such findings suggest that modulation of LAMP2A and, consequently, CMA, represents a viable therapeutic target for PD and other synucleinopathies where SNCA accumulation and aggregation plays a fundamental role.  相似文献   

4.
Parkinson disease (PD) is a progressive neurodegenerative movement disorder characterized pathologically by abnormal SNCA/α-synuclein protein inclusions in neurons. Impaired lysosomal autophagic degradation of cellular proteins is implicated in PD pathogenesis and progression. Heterozygous GBA mutations, encoding lysosomal GBA/glucocerebrosidase (glucosidase, β, acid), are the greatest genetic risk factor for PD, and reduced GBA and SNCA accumulation are related in PD models. Here we review our recent human brain tissue study demonstrating that GBA deficits in sporadic PD are related to the early accumulation of SNCA, and dysregulation of chaperone-mediated autophagy (CMA) pathways and lipid metabolism.  相似文献   

5.
Degradation of alpha-synuclein by proteasome   总被引:12,自引:0,他引:12  
Mutations in alpha-synuclein are known to be associated with Parkinson's disease (PD). The coexistence of this neuronal protein with ubiquitin and proteasome subunits in Lewy bodies in sporadic disease suggests that alterations of alpha-synuclein catabolism may contribute to the pathogenesis of PD. The degradation pathway of alpha-synuclein has not been identified nor has the kinetics of this process been described. We investigated the degradation kinetics of both wild-type and A53T mutant 6XHis-tagged alpha-synuclein in transiently transfected SH-SY5Y cells. Degradation of both isoforms followed first-order kinetics over 24 h as monitored by the pulse-chase method. However, the t((1)/(2)) of mutant alpha-synuclein was 50% longer than that of the wild-type protein (p < 0.01). The degradation of both recombinant proteins and endogenous alpha-synuclein in these cells was blocked by the selective proteasome inhibitor beta-lactone (40 microM), indicating that both wild-type and A53T mutant alpha-synuclein are degraded by the ubiquitin-proteasome pathway. The slower degradation of mutant alpha-synuclein provides a kinetic basis for its intracellular accumulation, thus favoring its aggregation.  相似文献   

6.
Parkinson's disease (PD) is an age-related neurodegenerative disease with unknown etiology. Growing evidence from genetic, pathologic, animal modeling, and biochemical studies strongly support the theory that abnormal aggregation of alpha-synuclein plays a critical role in the pathogenesis of PD. Protein aggregation is an alternative folding process that competes with the native folding pathway. Whether or not a protein is subject to the aggregation process is determined by the concentration of the protein as well as thermodynamic properties inherent to each polypeptide. An increase in cellular concentration of alpha-synuclein has been associated with the disease in both familial and sporadic forms of PD. Thus, maintenance of the intraneuronal steady state levels of alpha-synuclein below the critical concentration is a key challenge neuronal cells are facing. Expression of the alpha-synuclein gene is under the control of environmental factors and aging, the two best-established risk factors for PD. Studies also suggest that the degradation of this protein is mediated by proteasomal and autophagic pathways, which are two mechanisms that are related to the pathogenesis of PD. Recently, vesicle-mediated exocytosis has been suggested as a novel mechanism for disposal of neuronal alpha-synuclein. Relocalization of the protein to specific compartments may be another method for increasing its local concentration. Regulation of the neuronal steady state levels of alpha-synuclein has significant implications in the development of PD, and understanding the mechanism may disclose potential therapeutic targets for PD and other related diseases.  相似文献   

7.
Parkinson disease (PD) is the most common neurodegenerative movement disorder. An increase in the amount of alpha-synuclein protein could constitute a cause of PD. Alpha-synuclein is degraded at least partly by chaperone-mediated autophagy (CMA). The I93M mutation in ubiquitin C-terminal hydrolase L1 (UCH-L1) is associated with familial PD. However, the relationship between alpha-synuclein and UCH-L1 in the pathogenesis of PD has remained largely unclear. In this study, we found that UCH-L1 physically interacts with LAMP-2A, the lysosomal receptor for CMA, and Hsc70 and Hsp90, which can function as components of the CMA pathway. These interactions were abnormally enhanced by the I93M mutation and were independent of the monoubiquitin binding of UCH-L1. In a cell-free system, UCH-L1 directly interacted with the cytosolic region of LAMP-2A. Expression of I93M UCH-L1 in cells induced the CMA inhibition-associated increase in the amount of alpha-synuclein. Our findings may provide novel insights into the molecular links between alpha-synuclein and UCH-L1 and suggest that aberrant interaction of mutant UCH-L1 with CMA machinery, at least partly, underlies the pathogenesis of PD associated with I93M UCH-L1.  相似文献   

8.
Four recent papers related specifically to the familial form of Parkinson's disease reinforce the idea that endogenous levels of alpha-synuclein can strongly influence disease phenotype. Two recent publications of alpha-synuclein-duplication mutations show that the severity of familial Parkinsonian phenotype is dependent upon SNCA gene dosage and corresponding protein levels. Familial point mutations in SNCA were found to impair the efficient lysosomal degradation of alpha-synuclein, potentially resulting in elevated levels of alpha-synuclein. Conversely, the complete knockout of SNCA has little effect on transgenic mice. It is now clear that the regulation of alpha-synuclein levels has potential significance in the pathogenesis and treatment of sporadic PD.  相似文献   

9.
Kabuta T  Wada K 《Autophagy》2008,4(6):827-829
Ubiquitin C-terminal hydrolase L1 (UCH-L1) is expressed abundantly in neurons and has been reported to be a major target of oxidative/carbonyl damage associated with sporadic Parkinson's disease (PD). The I93M mutation in UCH-L1 is also associated with familial PD. We recently reported that UCH-L1 physically interacts with LAMP-2A, the lysosomal receptor for chaperone-mediated autophagy (CMA), and Hsc70 and Hsp90, both of which can function as components of the CMA pathway. We found that the levels of these interactions were aberrantly increased by the I93M mutation, and that expression of I93M UCH-L1 in cells induced the CMA inhibition-associated increase in the amount of alpha-synuclein, a risk factor for PD. The interactions of UCH-L1 with LAMP-2A, Hsc70 and Hsp90 were also abnormally enhanced by carbonyl modification of UCH-L1. We propose that aberrant interactions of UCH-L1 variants with CMA machinery, at least partly, underlie the pathogenesis of I93M UCH-L1-associated PD, and possibly of sporadic PD. Our findings may provide novel insights into the links between familial and sporadic PD.  相似文献   

10.
An increasing wealth of data indicates a close relationship between the presynaptic protein alpha-synuclein and Parkinson’s disease (PD) pathogenesis. Alpha-synuclein protein levels are considered as a major determinant of its neurotoxic potential, whereas secreted extracellular alpha-synuclein has emerged as an additional important factor in this regard. However, the manner of alpha-synuclein degradation in neurons remains contentious. Both the ubiquitin–proteasome system (UPS) and the autophagy–lysosome pathway (ALP)—mainly macroautophagy and chaperone-mediated autophagy—have been suggested to contribute to alpha-synuclein turnover. Additionally, other proteases such as calpains, neurosin, and metalloproteinases have been also proposed to have a role in intracellular and extracellular alpha-synuclein processing. Both UPS and ALP activity decline with aging and such decline may play a pivotal role in many neurodegenerative conditions. Alterations in these major proteolytic pathways may result in alpha-synuclein accumulation due to impaired clearance. Conversely, increased alpha-synuclein protein burden promotes the generation of aberrant species that may impair further UPS or ALP function, generating thus a bidirectional positive feedback loop leading to neuronal death. In the current review, we summarize the recent findings related to alpha-synuclein degradation, as well as to alpha-synuclein-mediated aberrant effects on protein degradation systems. Identifying the factors that regulate alpha-synuclein association to cellular proteolytic pathways may represent potential targets for therapeutic interventions in PD and related synucleinopathies.  相似文献   

11.
12.

Background

The mechanisms through which aberrant α-synuclein (ASYN) leads to neuronal death in Parkinson''s disease (PD) are uncertain. In isolated liver lysosomes, mutant ASYNs impair Chaperone Mediated Autophagy (CMA), a targeted lysosomal degradation pathway; however, whether this occurs in a cellular context, and whether it mediates ASYN toxicity, is unknown. We have investigated presently the effects of WT or mutant ASYN on the lysosomal pathways of CMA and macroautophagy in neuronal cells and assessed their impact on ASYN-mediated toxicity.

Methods and Findings

Novel inducible SH-SY5Y and PC12 cell lines expressing human WT and A53T ASYN, as well as two mutant forms that lack the CMA-targeting motif were generated. Such forms were also expressed in primary cortical neurons, using adenoviral transduction. In each case, effects on long-lived protein degradation, LC3 II levels (as a macroautophagy index), and cell death and survival were assessed. In both PC12 and SH-SY5Y cycling cells, induction of A53T ASYN evoked a significant decrease in lysosomal degradation, largely due to CMA impairment. In neuronally differentiated SH-SH5Y cells, both WT and A53T ASYN induction resulted in gradual toxicity, which was partly dependent on CMA impairment and compensatory macroautophagy induction. In primary neurons both WT and A53T ASYN were toxic, but only in the case of A53T ASYN did CMA dysfunction and compensatory macroautophagy induction occur and participate in death.

Conclusions

Expression of mutant A53T, and, in some cases, WT ASYN in neuronal cells leads to CMA dysfunction, and this in turn leads to compensatory induction of macroautophagy. Inhibition of these lysosomal effects mitigates ASYN toxicity. Therefore, CMA dysfunction mediates aberrant ASYN toxicity, and may be a target for therapeutic intervention in PD and related disorders. Furthermore, macroautophagy induction in the context of ASYN over-expression, in contrast to other settings, appears to be a detrimental response, leading to neuronal death.  相似文献   

13.
Understanding the molecular causes of Parkinson's disease   总被引:8,自引:0,他引:8  
Parkinson's disease (PD) is a neurodegenerative disease that is both common and incurable. The majority of cases are sporadic and of unknown origin but several genes have been identified that, when mutated, give rise to rare, familial forms of the disease. The principal genes that have been shown to cause PD are alpha-synuclein (SNCA), parkin, leucine-rich repeat kinase 2 (LRRK2), PTEN-induced putative kinase 1 (PINK1) and DJ-1. Here, we discuss what has been learnt from the study of these genes and what has been elucidated of the molecular pathways that lead to cell degeneration. Of importance is what these molecular events and pathways tell scientists of the common sporadic form of PD. Although complete knowledge of these genes' functions remains elusive, recent work implicates abnormal protein accumulation, protein phosphorylation, mitochondrial dysfunction and oxidative stress as common pathways to PD pathogenesis.  相似文献   

14.
Chaperone-mediated autophagy (CMA) involves the selective lysosomal degradation of cytosolic proteins such as SNCA (synuclein α), a protein strongly implicated in Parkinson disease (PD) pathogenesis. However, the physiological role of CMA and the consequences of CMA failure in the living brain remain elusive. Here we show that CMA inhibition in the adult rat substantia nigra via adeno-associated virus-mediated delivery of short hairpin RNAs targeting the LAMP2A receptor, involved in CMA's rate limiting step, was accompanied by intracellular accumulation of SNCA-positive puncta, which were also positive for UBIQUITIN, and in accumulation of autophagic vacuoles within LAMP2A-deficient nigral neurons. Strikingly, LAMP2A downregulation resulted in progressive loss of nigral dopaminergic neurons, severe reduction in striatal dopamine levels/terminals, increased astro- and microgliosis and relevant motor deficits. Thus, this study highlights for the first time the importance of the CMA pathway in the dopaminergic system and suggests that CMA impairment may underlie PD pathogenesis.  相似文献   

15.
To date, a plethora of studies have provided evidence favoring an association between Gaucher disease (GD) and Parkinson’s disease (PD). GD, the most common lysosomal storage disorder, results from the diminished activity of the lysosomal enzyme β-glucocerebrosidase (GCase), caused by mutations in the β-glucocerebrosidase gene (GBA). Alpha-synuclein (ASYN), a presynaptic protein, has been strongly implicated in PD pathogenesis. ASYN may in part be degraded by the lysosomes and may itself aberrantly impact lysosomal function. Therefore, a putative link between deficient GCase and ASYN, involving lysosomal dysfunction, has been proposed to be responsible for the risk for PD conferred by GBA mutations. In this current work, we aimed to investigate the effects of pharmacological inhibition of GCase on ASYN accumulation/aggregation, as well as on lysosomal function, in differentiated SH-SY5Y cells and in primary neuronal cultures. Following profound inhibition of the enzyme activity, we did not find significant alterations in ASYN levels, or any changes in the clearance or formation of its oligomeric species. We further observed no significant impairment of the lysosomal degradation machinery. These findings suggest that additional interaction pathways together with aberrant GCase and ASYN must govern this complex relation between GD and PD.  相似文献   

16.
Alpha-Synuclein is degraded by both autophagy and the proteasome   总被引:19,自引:0,他引:19  
Parkinson's disease (PD) is characterized by the loss of dopaminergic neurons in the substantia nigra and the formation of aggregates (Lewy bodies) in neurons. alpha-Synuclein is the major protein in Lewy bodies and rare mutations in alpha-synuclein cause early-onset PD. Consequently, alpha-synuclein is implicated in the pathogenesis of PD. Here, we have investigated the degradation pathways of alpha-synuclein, using a stable inducible PC12 cell model, where the expression of exogenous human wild-type, A30P, or A53T alpha-synuclein can be switched on and off. We have used a panel of inhibitors/stimulators of autophagy and proteasome function and followed alpha-synuclein degradation in these cells. We found that not only is alpha-synuclein degraded by the proteasome, but it is also degraded by autophagy. A role for autophagy was further supported by the presence of alpha-synuclein in organelles with the ultrastructural features of autophagic vesicles. Since rapamycin, a stimulator of autophagy, increased clearance of alpha-synuclein, it merits consideration as a potential therapeutic for Parkinsons disease, as it is designed for chronic use in humans.  相似文献   

17.

Background

Chaperone-mediated autophagy (CMA) is a selective autophagy-lysosome protein degradation pathway. The role of CMA in normal neuronal functions and in neural disease pathogenesis remains unclear, in part because there is no available method to monitor CMA activity at the single-cell level.

Methodology/Principal Findings

We sought to establish a single-cell monitoring method by visualizing translocation of CMA substrates from the cytosol to lysosomes using the HaloTag (HT) system. GAPDH, a CMA substrate, was fused to HT (GAPDH-HT); this protein accumulated in the lysosomes of HeLa cells and cultured cerebellar Purkinje cells (PCs) after labeling with fluorescent dye-conjugated HT ligand. Lysosomal accumulation was enhanced by treatments that activate CMA and prevented by siRNA-mediated knockdown of LAMP2A, a lysosomal receptor for CMA, and by treatments that inactivate CMA. These results suggest that lysosomal accumulation of GAPDH-HT reflects CMA activity. Using this method, we revealed that mutant γPKC, which causes spinocerebellar ataxia type 14, decreased CMA activity in cultured PCs.

Conclusion/Significance

In the present study, we established a novel fluorescent-based method to evaluate CMA activity in a single neuron. This novel method should be useful and valuable for evaluating the role of CMA in various neuronal functions and neural disease pathogenesis.  相似文献   

18.
Parkinson disease (PD) belongs to a heterogeneous group of neurodegenerative disorders with movement alterations, cognitive impairment, and alpha-synuclein accumulation in cortical and subcortical regions. Jointly, these disorders are denominated Lewy body disease. Mutations in the parkin gene are the most common cause of familial parkinsonism, and a growing number of studies have shown that stress factors associated with sporadic PD promote parkin accumulation in the insoluble fraction. alpha-Synuclein and parkin accumulation and mutations in these genes have been associated with familial PD. To investigate whether alpha-synuclein accumulation might be involved in the pathogenesis of these disorders by interfering with parkin solubility, synuclein-transfected neuronal cells were transduced with lentiviral vectors expressing parkin. Challenging neurons with proteasome inhibitors or amyloid-beta resulted in accumulation of insoluble parkin and, to a lesser extent, alpha-tubulin. Similarly to neurons in the brains of patients with Lewy body disease, in co-transduced cells alpha-synuclein and parkin colocalized and co-immunoprecipitated. These effects resulted in decreased parkin and alpha-tubulin ubiquitination, accumulation of insoluble parkin, and cytoskeletal alterations with reduced neurite outgrowth. Taken together, accumulation of alpha-synuclein might contribute to the pathogenesis of PD and other Lewy body diseases by promoting alterations in parkin and tubulin solubility, which in turn might compromise neural function by damaging the neuronal cytoskeleton. These studies provide a new perspective on the potential nature of pathogenic alpha-synuclein and parkin interactions in Parkinson disease.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号