首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
The physical, endocrine, and metabolic responses of livestock to road transport have been evaluated by conventional hematological and biochemistry parameters for more than 20 years. However, these measures are relatively insensitive to subtle metabolic adaptations. We applied NMR-based metabonomics to assess system-wide metabolic responses as expressed in urine and serum of a large cohort of animals (n = 80) subjected to 12 and 48 h road transport. The profiling of (1)H NMR spectra revealed that the transported animals experienced altered gut and energy metabolism, muscle catabolism, and possibly a renal response. The animals transported for 48 h exhibited a deeper metabolic response to the transport event and a complex and expanded metabolic trajectory over the 72 h recovery period. Intriguingly, excretion of acyl glycines and a dicarboxylic acid was observed after transport and during recovery, implicating peroxisomal fatty acid oxidation as a metabolic response to transport-induced stress.  相似文献   

2.
The metabolomic approach has been widely used in toxicology to investigate mechanisms of toxicity. To understand the mammalian system??s response to nickel exposure, we analysed the NiCl2 induced metabolomic changes in urine of rats using 1H nuclear magnetic resonance (1H NMR) spectroscopy together with clinically relevant biochemical parameters. Male Sprague?CDawley rats were administered intraperitoneally with NiCl2 at doses of 4, 10 and 20?mg/kg body weight. Urine samples were collected at 8, 16, 24, 72, 96 and 120?h post treatment. The metabolomic profile of rat urine showed prominent changes in citrate, dimethylamine, creatinine, choline, trimethylamine oxide (TMAO), phenyl alanine and hippurate at all doses. Principal component analysis of urine 1H NMR spectra demonstrated the dose and time dependent development of toxicity. The metabolomic time trajectory, based on pattern recognition analysis of 1H NMR spectra of urine, illustrated clear separation of pre and post treatments (temporal). Only animals treated with a low dose of NiCl2 returned to normal physiology. The 1H NMR spectral data correlated well with the clinically relevant nephrotoxic biomarkers. The urinary metabolomic phenotyping for NiCl2 induced nephrotoxicity was defined according to the predictive ability of the known metabolite biomarkers, creatinine, citrate and TMAO. The current approach demonstrates that metabolomics, one of the most important platform in system biology, may be a promising tool for identifying and characterizing biochemical responses to toxicity.  相似文献   

3.
Individual human health is determined by a complex interplay between genes, environment, diet, lifestyle, and symbiotic gut microbial activity. Here, we demonstrate a new "nutrimetabonomic" approach in which spectroscopically generated metabolic phenotypes are correlated with behavioral/psychological dietary preference, namely, "chocolate desiring" or "chocolate indifferent". Urinary and plasma metabolic phenotypes are characterized by differential metabolic biomarkers, measured using 1H NMR spectroscopy, including the postprandial lipoprotein profile and gut microbial co-metabolism. These data suggest that specific dietary preferences can influence basal metabolic state and gut microbiome activity that in turn may have long-term health consequences to the host. Nutrimetabonomics appears as a promising approach for the classification of dietary responses in populations and personalized nutritional management.  相似文献   

4.
We describe the results of metabolic studies in a 17-year-old woman with diabetes mellitus which was the initial manifestation of idiopathic chronic calcifying pancreatitis (CCP). These studies were done on 2 occasions, 5 months and 5 years after the onset of diabetes, when her diabetes could be managed by glibenclamide and insulin, respectively. Five months after the onset of diabetes, oral glucose produced a small increase in insulin and a paradoxical rise in both glucagon immunoreactivity (GI) and growth hormone (GH). BY contrast, arginine-stimulated responses of the three hormones were normal. No increase in GI and a blunted rise in GH resulted from an insulin-induced decrease in blood glucose. Five years later, when CCP was demonstrated by roentogenologic examinations and tests of pancreatic exocrine function, oral glucose was followed by a flat and depressed response of C-peptide immunoreactivity and a markedly elevated response of gut glucagon-like-immunoreactivity (gut GLI). There were delayed and extremely low responses of pancreatic polypeptide to a test meal, irrespective whether or not her diabetes required treatment with insulin. These results demonstrate that CCP can cause diabetes in adolescents, as it does in adults, and that the adolescent woman described here had impaired responses of PP and gut GLI as well as insulin, GI and GH, especially to changes in blood glucose levels.  相似文献   

5.
《Autophagy》2013,9(7):783-785
Alcohol abuse is the leading etiologic factor of pancreatitis, although many heavy drinkers do not develop pancreatic damage. Alcohol promotes pancreatitis through a combination of remote (e.g., increased gut permeability to bacterial products such as lipopolysaccharide) and more proximal effects (e.g., altered pancreatic cholinergic inputs), including oxidative damage at the level of the pancreatic acinar cell. Recent evidence indicates that alcohol exposure to rodents disturbs proteostasis in the exocrine pancreas, an effect counterbalanced by homeostatic processes that include both the unfolded protein response (UPR) and autophagy. A corollary to this notion is that pancreatitis results when adaptive responses are insufficiently robust to alleviate the cellular stress caused by alcohol.  相似文献   

6.
Alcohol abuse is the leading etiologic factor of pancreatitis, although many heavy drinkers do not develop pancreatic damage. Alcohol promotes pancreatitis through a combination of remote (e.g., increased gut permeability to bacterial products such as lipopolysaccharide) and more proximal effects (e.g., altered pancreatic cholinergic inputs), including oxidative damage at the level of the pancreatic acinar cell. Recent evidence indicates that alcohol exposure to rodents disturbs proteostasis in the exocrine pancreas, an effect counterbalanced by homeostatic processes that include both the unfolded protein response (UPR) and autophagy. A corollary to this notion is that pancreatitis results when adaptive responses are insufficiently robust to alleviate the cellular stress caused by alcohol.  相似文献   

7.
The response of pancreatic exocrine secretion to cholecystokinin (CCK), has been studied in experimental acute pancreatitis induced in rats by supramaximal doses of caerulein. Several doses of caerulein were used (4, 20 and 40 micrograms/Kg) and each one was administered by four subcutaneous injections over 3 h at hourly intervals. Pancreatic juice was collected 9 h after the first injection. The caerulein-treated animals showed a statistically significant increase in serum amylase levels. Secretory activity of ductular cells remained unchanged in all the caerulein-treated animals, but total protein and amylase secretion decreased significantly at all the caerulein doses used, both in resting conditions and under stimulation with CCK (1.25 micrograms/Kg/h). Despite this the acinar cells of rats treated with the lowest dose of caerulein retained a certain degree of secretory function since amylase activity in pancreatic juice was greater than in other groups of rats treated with higher doses of caerulein. Moreover, the percentage of increase observed in total protein and amylase in response to CCK respect to basal secretion is similar to that of the untreated animals. At higher doses (20 and 40 micrograms/Kg) the secretory capacity in response to CCK was inhibited. Therefore CCK administration in slight acute pancreatitis could be used as a therapy since it favours the secretion of pancreatic enzymes at percentual levels similar to those of the controls.  相似文献   

8.
Surgical trauma initiates a complex series of metabolic host responses designed to maintain homeostasis and ensure survival. (1)H NMR spectroscopy was applied to intraoperative urine and plasma samples as part of a strategy to analyze the metabolic response of Wistar rats to a laparotomy model. Spectral data were analyzed by multivariate statistical analysis. Principal component analysis (PCA) confirmed that surgical injury is responsible for the majority of the metabolic variability demonstrated between animals (R2 Urine = 81.2% R2 plasma = 80%). Further statistical analysis by orthogonal projection to latent structure discriminant analysis (OPLS-DA) allowed the identification of novel urinary metabolic markers of surgical trauma. Urinary levels of taurine, glucose, urea, creatine, allantoin, and trimethylamine-N-oxide (TMAO) were significantly increased after surgery whereas citrate and 2-oxoglutarate (2-OG) negatively correlated with the intraoperative state as did plasma levels of betaine and tyrosine. Plasma levels of lipoproteins such as VLDL and LDL also rose with the duration of surgery. Moreover, the microbial cometabolites 3-hydroxyphenylpropionate, phenylacetylglycine, and hippurate correlated with the surgical insult, indicating that the gut microbiota are highly sensitive to the global homeostatic state of the host. Metabonomic profiling provides a global overview of surgical trauma that has the potential to provide novel biomarkers for personalized surgical optimization and outcome prediction.  相似文献   

9.
This work describes an exploratory NMR metabonomic study of second trimester maternal urine and plasma, in an attempt to characterize the metabolic changes underlying prenatal disorders and identify possible early biomarkers. Fetal malformations have the strongest metabolic impact in both biofluids, suggesting effects due to hypoxia (leading to hypoxanthine increased excretion) and a need for enhanced gluconeogenesis, with higher ketone bodies (acetone and 3-hydroxybutyric acid) production and TCA cycle demand (suggested by glucogenic amino acids and cis-aconitate overproduction). Choline and nucleotide metabolisms also seem affected and a distinct plasma lipids profile is observed for mothers with fetuses affected by central nervous system malformations. Urine from women who subsequently develop gestational diabetes mellitus exhibits higher 3-hydroxyisovalerate and 2-hydroxyisobutyrate levels, probably due to altered biotin status and amino acid and/or gut metabolisms (the latter possibly related to higher BMI values). Other urinary changes suggest choline and nucleotide metabolic alterations, whereas lower plasma betaine and TMAO levels are found. Chromosomal disorders and pre-preterm delivery groups show urinary changes in choline and, in the latter case, in 2-hydroxyisobutyrate. These results show that NMR metabonomics of maternal biofluids enables the noninvasive detection of metabolic changes associated to prenatal disorders, thus unveiling potential disorder biomarkers.  相似文献   

10.
Individual and topographical variation in the metabolic profiles of multiple human gastrointestinal tract (GIT) biopsies have been characterized using high-resolution magic-angle spinning (HRMAS) 1H NMR spectroscopy and pattern recognition. Samples from antrum, duodenum, jejunum, ileum, and transverse colon were obtained from 8 male and 8 female participants. Each gut region generated a highly characteristic metabolic profile consistent with the varying structural and functional properties of the tissue at different longitudinal levels of the gut. The antral (stomach) mucosa contained higher levels of choline, glycogen, phosphorylethanolamine, and taurine than other gut regions. The spatially close regions of the duodenum and jejunum were equivalent in terms of their gross biochemical composition with high levels of choline, glutathione, glycerophosphocholine (GPC), and lipids relative to other gut regions. The ileal mucosa showed poor discrimination from the duodenum and jejunum tissues and generated strong amino acids signatures but had relative low GPC signals. The colon (large intestine) was high in acetate, glutamate, inositols, and lactate and low in creatine, GPC, and taurine compared to the small intestine. These longitudinal metabolic variations in the human GIT could be attributed to functional variations in energy metabolism, osmoregulation, gut microbial activity, and oxidative protection. This work indicates that 1H HRMAS NMR studies may be of value in analyzing local metabolic variation due to pathological processes in gut biopsies.  相似文献   

11.
Pancreatic islet β cell tumor is the most common islet cell tumor. A well-characterized tumor progression in Rip1-Tag2 mice undergoes five stages, involving normal, hyperplasia, angiogenic islets, tumorigenesis and invasive carcinoma. 1H NMR based metabonomics was applied to identify potential biomarkers for monitoring pancreatic islet β cell tumor progression in Rip1-Tag2 mice. Multivariate analysis results showed the serum metabonome at hyperplasia stage shared the similar characteristics with the ones at normal stage as a result of slight proliferation of pancreatic islet β cells. At angiogenic islets stage, the up-regulated glycolysis, disturbed choline and phospholipid metabolism composed the metabolic signature. In addition to the changes mentioned above, several metabolites were identified as early biomarkers for tumorigenesis, including increased methionine, citrate and choline, and reduced acetate, taurine and glucose, which suggested the activated energy and amino acid metabolism. All the changes were aggravated at invasive carcinoma stage, coupled with notable changes in alanine, glutamate and glycine. Moreover, the distinct metabolic phenotype was found associated with the implanting of SV40 large T antigen in Rip1-Tag2 mice. The combined metabolic and multivariate statistics approach provides a robust method for screening the biomarkers of disease progression and examining the association between gene and metabolism.  相似文献   

12.
The effective treatment of pancreatic cancer relies on the diagnosis of the disease at an early stage, a difficult challenge. One major obstacle in the development of diagnostic biomarkers of early pancreatic cancer has been the dual expression of potential biomarkers in both chronic pancreatitis and cancer. To better understand the limitations of potential protein biomarkers, we used ICAT technology and tandem mass spectrometry-based proteomics to systematically study protein expression in chronic pancreatitis. Among the 116 differentially expressed proteins identified in chronic pancreatitis, most biological processes were responses to wounding and inflammation, a finding consistent with the underlining inflammation and tissue repair associated with chronic pancreatitis. Furthermore 40% of the differentially expressed proteins identified in chronic pancreatitis have been implicated previously in pancreatic cancer, suggesting some commonality in protein expression between these two diseases. Biological network analysis further identified c-MYC as a common prominent regulatory protein in pancreatic cancer and chronic pancreatitis. Lastly five proteins were selected for validation by Western blot and immunohistochemistry. Annexin A2 and insulin-like growth factor-binding protein 2 were overexpressed in cancer but not in chronic pancreatitis, making them promising biomarker candidates for pancreatic cancer. In addition, our study validated that cathepsin D, integrin beta1, and plasminogen were overexpressed in both pancreatic cancer and chronic pancreatitis. The positive involvement of these proteins in chronic pancreatitis and pancreatic cancer will potentially lower the specificity of these proteins as biomarker candidates for pancreatic cancer. Altogether our study provides some insights into the molecular events in chronic pancreatitis that may lead to diverse strategies for diagnosis and treatment of these diseases.  相似文献   

13.

Background

Pancreatic cancer is the fourth leading cause of cancer death in Western countries, with the lowest 1-year survival rate among commonly diagnosed cancers. Reliable biomarkers for pancreatic cancer diagnosis are lacking and are urgently needed to allow for curative surgery. As microRNA (miRNA) recently emerged as candidate biomarkers for this disease, we explored in the present pilot study the differences in salivary microRNA profiles between patients with pancreatic tumors that are not eligible for surgery, precancerous lesions, inflammatory disease or cancer-free patients as a potential early diagnostic tool.

Methods

Whole saliva samples from patients with pancreatic cancer (n = 7), pancreatitis (n = 4), IPMN (n = 2), or healthy controls (n = 4) were obtained during endoscopic examination. After total RNA isolation, expression of 94 candidate miRNAs was screened by q(RT)PCR using Biomark Fluidgm. Human-derived pancreatic cancer cells were xenografted in athymic mice as an experimental model of pancreatic cancer.

Results

We identified hsa-miR-21, hsa-miR-23a, hsa-miR-23b and miR-29c as being significantly upregulated in saliva of pancreatic cancer patients compared to control, showing sensitivities of 71.4%, 85.7%, 85,7% and 57%, respectively and excellent specificity (100%). Interestingly, hsa-miR-23a and hsa-miR23b are overexpressed in the saliva of patients with pancreatic cancer precursor lesions. We found that hsa-miR-210 and let-7c are overexpressed in the saliva of patients with pancreatitis as compared to the control group, with sensitivity of 100% and 75%, and specificity of 100% and 80%, respectively. Last hsa-miR-216 was upregulated in cancer patients as compared to patients diagnosed with pancreatitis, with sensitivity of 50% and specificity of 100%. In experimental models of PDAC, salivary microRNA detection precedes systemic detection of cancer cells markers.

Conclusions

Our novel findings indicate that salivary miRNA are discriminatory in pancreatic cancer patients that are not eligible for surgery. In addition, we demonstrate in experimental models that salivary miRNA detection precedes systemic detection of cancer cells markers. This study stems for the use of salivary miRNA as biomarker for the early diagnosis of patients with unresectable pancreatic cancer.  相似文献   

14.
The time-course of metabolic events following response to a model hepatotoxin ethionine (800 mg/kg) was investigated over a 7 day period in rats using high-resolution (1)H NMR spectroscopic analysis of urine and multivariate statistics. Complementary information was obtained by multivariate analysis of (1)H MAS NMR spectra of intact liver and by conventional histopathology and clinical chemistry of blood plasma. (1)H MAS NMR spectra of liver showed toxin-induced lipidosis 24 h postdose consistent with the steatosis observed by histopathology, while hypertaurinuria was suggestive of liver injury. Early biochemical changes in urine included elevation of guanidinoacetate, suggesting impaired methylation reactions. Urinary increases in 5-oxoproline and glycine suggested disruption of the gamma-glutamyl cycle. Signs of ATP depletion together with impairment of the energy metabolism were given from the decreased levels in tricarboxylic acid cycle intermediates, the appearance of ketone bodies in urine, the depletion of hepatic glucose and glycogen, and also hypoglycemia. The observed increase in nicotinuric acid in urine could be an indication of an increase in NAD catabolism, a possible consequence of ATP depletion. Effects on the gut microbiota were suggested by the observed urinary reductions in the microbial metabolites 3-/4-hydroxyphenyl propionic acid, dimethylamine, and tryptamine. At later stages of toxicity, there was evidence of kidney damage, as indicated by the tubular damage observed by histopathology, supported by increased urinary excretion of lactic acid, amino acids, and glucose. These studies have given new insights into mechanisms of ethionine-induced toxicity and show the value of multisystem level data integration in the understanding of experimental models of toxicity or disease.  相似文献   

15.
Single low and high doses of several compounds with known renal toxic effects (para-aminophenol, puromycin aminonucleoside, sodium chromate, and hexachlorobutadiene,) or known liver toxic effects (galactosamine, allyl alcohol, and thioacetamide) were administered to male Wistar rats in groups of 4 or 8 for each compound. Predose urine samples (Day 0) and samples from post-dosing (Days 1–4) were collected for each rat and monitored by 1D 1H NMR. Principal component analysis (PCA) of the NMR spectra was used to investigate differences between dose levels for each compound individually. The findings from PCA at both dose levels for each compound were examined in the context of the corresponding clinical chemistry and pathology data collected during the study. The PCA clustering of NMR spectra from rats dosed with each individual compound were shown to be associated with the measured levels of creatinine, BUN, AST, ALT and histopathology findings. Finally, scaled-to-maximum, aligned, and reduced trajectories (SMART) analysis was applied to compare the temporal metabolic trajectories obtained for each animal at each dose level of the administered compounds. By day 4, the SMART trajectories for allyl alcohol and hexachlorobutadiene had returned to predose levels indicating a recovery response, however, the high dose SMART trajectories for para-aminophenol, puromycin aminonucleoside, sodium chromate, and galactosamine did not appear to return to predose levels indicating a prolonged toxic effect.  相似文献   

16.
BACKGROUND/AIM: Insulin-like growth factor-1 (IGF-1) and other growth factors overexpression was reported in acute pancreatitis. Previous studies have shown the protective effect of epidermal growth factor (EGF), Hepatocyte Growth Factor (HGF) and Fibroblast Growth Factor (FGF) in the course of experimental acute pancreatitis. The aim of our studies was to determine the effect of IGF-1 administration on the development of caerulein-induced pancreatitis. METHODS: Acute pancreatitis was induced by infusion of caerulein (10 micro/kg/h) for 5 h. IGF-1 was administrated twice at the doses: 2, 10, 50, or 100 micro/kg s.c. RESULTS: Administration of IGF-1 without induction of pancreatitis increased plasma interleukin-10 (IL-10). Infusion of caerulein led to development of acute edematous pancreatitis. Histological examination showed pancreatic edema, leukocyte infiltration and vacuolization of acinar cells. Also, acute pancreatitis led to an increase in plasma lipase and interleukin 1beta (IL-1beta) level, whereas pancreatic DNA synthesis and pancreatic blood flow were decreased. Treatment with IGF-1, during induction of pancreatitis, increased plasma IL-10 and attenuated the pancreatic damage, what was manifested by histological improvement of pancreatic integrity, the partial reversion of the drop in pancreatic DNA synthesis and pancreatic blood flow, and the reduction in pancreatitis-evoked increase in plasma amylase, lipase and IL-1beta level. Protective effect of IGF-1 administration was dose-dependent. Similar strong protective effect was observed after IGF-1 at the dose 2 x 50 and 2 x 100 microg/kg. CONCLUSIONS: (1) Administration of IGF-1 attenuates pancreatic damage in caerulein-induced pancreatitis; (2) This effect is related, at least in part, to the increase in IL-10 production, the reduction in liberation of IL-1beta and the improvement of pancreatic blood flow.  相似文献   

17.
Nutritional metabonomics: applications and perspectives   总被引:1,自引:0,他引:1  
Nowadays, nutrition focuses on improving health of individuals through diet. Current nutritional research aims at health promotion, disease prevention, and performance improvement. Modern analytical platforms allow the simultaneous measurement of multiple metabolites providing new insights in the understanding of the functionalities of cells and whole organisms. Metabonomics, "the quantitative measurement of the dynamic multiparametric metabolic response of living systems to pathophysiological stimuli or genetic modifications", provides a systems approach to understanding global metabolic regulations of organisms. This concept has arisen from various applications of NMR and MS spectroscopies to study the multicomponent metabolic composition of biological fluids, cells, and tissues. The generated metabolic profiles are processed by multivariate statistics to maximize the recovery of information to be correlated with well-determined stimuli such as dietary intervention or with any phenotypic data or diet habits. Metabonomics is thus uniquely suited to assess metabolic responses to deficiencies or excesses of nutrients and bioactive components. Furthermore, metabonomics is used to characterize the metabolic phenotype of individuals integrating genetic polymorphism, metabolic interactions with commensal and symbiotic partners such as gut microflora, as well as environmental and behavioral factors including dietary preferences. This paper reports several experimental key aspects in nutritional metabonomics, reviews its applications employing targeted and holistic approach analysis for the study of the metabolic responses following dietary interventions. It also reports the assessment of intra- and inter-individual variability in animal and human populations. The potentialities of nutritional metabonomics for the discovery of new biomarkers and the characterization of metabolic phenotypes are discussed in a context of their possible utilizations for personalized nutrition to provide health maintenance at the individual level.  相似文献   

18.

Objective

The purpose of this study was to investigate the expression of collagen type I and the mRNA level of its regulatory factor, TGF-β1, in tissue samples of acute pancreatitis and to determine the significance of collagen type I in predisposition to pancreatic fibrosis during acute pancreatitis.

Methods

Sprague–Dawley rats were divided into an experimental group (30 rats) and a control group (12 rats). The rats in the experimental group were intraperitoneally injected with cerulein to induce acute pancreatitis. The distribution and expression of collagen type I in the pancreatic tissues were examined by immunohistochemical staining. The mRNA level of TGF-β1 was determined by real-time polymerase chain reaction (PCR).

Results

(1) Collagen type I was localized in the cytoplasm of pancreatic acinar cells. With pancreatitis progressed, strong positive staining for collagen type I covered whole pancreatic lobules, whereas, the islet tissue, interlobular area, and pancreatic necrotic area were negative for collagen type I. (2) The level of TGF-β1 mRNA in rats from the experimental group increased gradually the establishment of acute pancreatitis, and was significantly higher than that in the control group at every time point.

Conclusions

(1) During acute pancreatitis, pancreatic acinar cells, not pancreatic stellate cells as traditionally believed, were the naïve effector cells of collagen type I. (2) TGF-β1 played a key role in regulating collagen I expression during acute pancreatitis.  相似文献   

19.
20.
The stochastic dynamics of T cell receptor (TCR) signaling are studied using a mathematical model intended to capture kinetic proofreading (sensitivity to ligand-receptor binding kinetics) and negative and positive feedback regulation mediated, respectively, by the phosphatase SHP1 and the MAP kinase ERK. The model incorporates protein-protein interactions involved in initiating TCR-mediated cellular responses and reproduces several experimental observations about the behavior of TCR signaling, including robust responses to as few as a handful of ligands (agonist peptide-MHC complexes on an antigen-presenting cell), distinct responses to ligands that bind TCR with different lifetimes, and antagonism. Analysis of the model indicates that TCR signaling dynamics are marked by significant stochastic fluctuations and bistability, which is caused by the competition between the positive and negative feedbacks. Stochastic fluctuations are such that single-cell trajectories differ qualitatively from the trajectory predicted in the deterministic approximation of the dynamics. Because of bistability, the average of single-cell trajectories differs markedly from the deterministic trajectory. Bistability combined with stochastic fluctuations allows for switch-like responses to signals, which may aid T cells in making committed cell-fate decisions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号