首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report here a novel method to simultaneously detect CpG methylation and single nucleotide polymorphisms (SNPs) using denaturing high performance liquid chromatography (DHPLC). PCR products of bisulfite-modified CpG islands were separated using DHPLC. BstUI digestion and DNA sequencing were used in confirmation studies. Consistent with the BstUI digestion assay, the 294 bp PCR product of the modified hMLH1 promoter showed different retention times between the methylated cell lines (RKO and Cla, 6.7 min) and the unmethylated cell lines (PACM82 and MGC803, 6.2 min). No hMLH1 methylation was observed in 13 primary gastric carcinomas and their matched normal tissues. One hMLH1 SNP was detected in gastric cancer patients, in both cancer and normal tissues. DNA sequencing revealed that the SNP is a G→A variation at –93 nt of the hMLH1 promoter. A two-peak chromatogram was also obtained in the 605 bp PCR product of the Cox-2 promoter of the AGS, HEK293 and MKN45 cell lines by DHPLC. Another peak corresponding to methylated CpG islands was observed on the chromatogram of the Cox-2-methylated AGS cell line after bisulfite treatment. In conclusion, methylation in homoallelic and heteroallelic CpG islands could be detected rapidly and reliably by bisulfiteDHPLC. A SNP in the target sequence could also be detected at the same time.  相似文献   

2.
3.
The cytosine DNA methylation and demethylation have a role in regulating plant responses to the environment by affecting the promoter regions of most plant defense-related genes through the CpG islands or the CCGG motifs. Salicylic acid, a defense and signaling plant hormone, is seen playing crucial role in the variation of the methylome. In this study, the effects of salicylic acid and feeding of the millet headminer (Heliocheilus albipunctella de Joannis) on pearl millet DNA methylome changes were evaluated through MSAP epigenotyping during panicle development. The results showed that millet headminer feeding increased the level of genomic methylation while application of salicylic acid caused DNA demethylation occurring mostly at external cytosine and accompanied by a decrease of the number of larvae per panicle. This suggests that hemimethylation (external cytosine methylation) has key role in regulating defense responses and conferring tolerance to pearl millet through salicylic acid application.  相似文献   

4.
5.
The effect of DNA cytosine methylation on promoter activity was assessed using a transient expression system employing pHrasCAT. This 551 bp Ha-ras-1 gene promoter region is enriched with 84 CpG dinucleotides, six functional GC boxes, and is prototypic of many genes possessing CpG islands in their promoter regions. Bacterial modification enzymes HhaI methyl transferase (MTase) and HpaII MTase, alone or in combination with a human placental DNA methyltransferase (HP MTase) that methylates CpG sites in a generalized manner, including asymmetric elements such as GC box CpG's, were used to methylate at different types of sites in the promoter. Methylation of HhaI and HpaII sites reduced CAT expression by approximately 70%-80%, whereas methylation at generalized CpG sites with HP MTase inactivated the promoter by greater than 95%. The inhibition of H-ras promoter activity was not attributable to methylation-induced differences in DNA uptake or stability in the cell, topological form of the plasmid, or methylation effects in non-promoter regions.  相似文献   

6.
The testis-enriched genes ZNF230/Znf230 are located on human chromosome 11p15/mouse chromosome 7 near conserved imprinting control regions. Typical CpG islands (CGIs) extend from the promoter to the first exon in each of these genes. To investigate the correlation between the methylation status of the above CGIs and the expression patterns of the two genes, we performed bisulfite genomic sequencing of genomic DNA from human and mouse tissues and cells. The results showed that the CGIs of ZNF230/Znf230 were completely unmethylated in all selected tissues and cells, regardless of the expression levels of the two genes. Further experiments using Znf230-second-exon-knockout mice to investigate the imprinting status of Znf230 showed that its expression was not affected by genomic imprinting. However, an in vitro methylation assay illustrated that the methylation of these CpG sites could repress the expression of the luciferase reporter gene. Furthermore, chromatin immunoprecipitation with anti-Specificity protein 1 (Sp1) antibody showed that Sp1 could bind to the CGIs in the ZNF230/Znf230 gene promoter. Thus, we propose that the unmethylated state of ZNF230/Znf230 CGIs may be a prerequisite for their expression but not sufficient for their abundant expression in the testis, and that Sp1 binding may be one factor involved in preserving the methylation-free state of ZNF230/Znf230 CGIs.  相似文献   

7.
8.
CpG islands are GC-rich regions located in the promoter regions of housekeeping genes and many tissue-specific genes. While most CpG islands are normally unmethylated, island methylation can occur and is associated with silencing of the corresponding gene. Experiments with transgenic mice and DNA transfection in pluripotential embryonic cells have led to the conclusion that the information required for protecting the islands from methylation is contained within the CpG islands themselves and have identified Sp1 binding sites as an important element in establishing and/or maintaining the methylation-free state of CpG islands. To examine the generality of these observations, we analyzed the methylation of one of the mouse Igf2 CpG islands and its flanks in transgenic mice. We observed that the undermethylated state of this region is dependent on the presence of a separate cis-regulatory element, the H19 enhancers. These tissue-specific enhancers had a ubiquitous, non-tissue-specific effect on island region methylation. Structural alterations outside of the island and these enhancers also affected this region's methylation. These findings indicate that the methylation of some CpG island-containing regions is more sensitive than previously believed to the activity of distant cis-regulatory elements and to structural alterations in nonisland sequences in cis.  相似文献   

9.
Methylation of CpG islands spanning promoter regions is associated with control of gene expression. However, it is considered that methylation of exonic CpG islands without promoter is not related to gene expression, because such exonic CpG islands are usually distant from the promoter. Whether methylation of exonic CpG islands near the promoter, as in the case of a CpG-rich intronless gene, causes repression of the promoter remains unknown. To gain insight into this issue, we investigated the distribution and methylation status of CpG dinucleotides in the mouse Tact1/Actl7b gene, which is intronless and expressed exclusively in testicular germ cells. The region upstream to the gene was poor in CpG, with CpG dinucleotides absent from the core promoter. However, a CpG island was found inside the open reading frame (ORF). Analysis of the methylation status of the Tact1/Actl7b gene including the 5′-flanking area demonstrated that all CpG sites were methylated in somatic cells, whereas these sites were unmethylated in the Tact1/Actl7b-positive testis. Trans fection experiments with in vitro-methylated constructs indicated that methylation of the ORF but not 5′ upstream repressed Tact1/Actl7b promoter activity in somatic cells. Similar effects of ORF methylation on the promoter activity were observed in testicular germ cells. These are the first results indicating that methylation of the CpG island in the ORF represses its promoter in somatic cells and demethylation is necessary for gene expression in spermatogenic cells.  相似文献   

10.
11.
12.
Epigenetics describes the heritable changes in gene function that occur independently to the DNA sequence. The molecular basis of epigenetic gene regulation is complex, but essentially involves modifications to the DNA itself or the proteins with which DNA associates. The predominant epigenetic modification of DNA in mammalian genomes is methylation of cytosine nucleotides (5-MeC). DNA methylation provides instruction to gene expression machinery as to where and when the gene should be expressed. The primary target sequence for DNA methylation in mammals is 5''-CpG-3'' dinucleotides (Figure 1). CpG dinucleotides are not uniformly distributed throughout the genome, but are concentrated in regions of repetitive genomic sequences and CpG "islands" commonly associated with gene promoters (Figure 1). DNA methylation patterns are established early in development, modulated during tissue specific differentiation and disrupted in many disease states including cancer. To understand the biological role of DNA methylation and its role in human disease, precise, efficient and reproducible methods are required to detect and quantify individual 5-MeCs.This protocol for bisulphite conversion is the "gold standard" for DNA methylation analysis and facilitates identification and quantification of DNA methylation at single nucleotide resolution. The chemistry of cytosine deamination by sodium bisulphite involves three steps (Figure 2). (1) Sulphonation: The addition of bisulphite to the 5-6 double bond of cytosine (2) Hydrolic Deamination: hydrolytic deamination of the resulting cytosine-bisulphite derivative to give a uracil-bisulphite derivative (3) Alkali Desulphonation: Removal of the sulphonate group by an alkali treatment, to give uracil. Bisulphite preferentially deaminates cytosine to uracil in single stranded DNA, whereas 5-MeC, is refractory to bisulphite-mediated deamination. Upon PCR amplification, uracil is amplified as thymine while 5-MeC residues remain as cytosines, allowing methylated CpGs to be distinguished from unmethylated CpGs by presence of a cytosine "C" versus thymine "T" residue during sequencing.DNA modification by bisulphite conversion is a well-established protocol that can be exploited for many methods of DNA methylation analysis. Since the detection of 5-MeC by bisulphite conversion was first demonstrated by Frommer et al.1 and Clark et al.2, methods based around bisulphite conversion of genomic DNA account for the majority of new data on DNA methylation. Different methods of post PCR analysis may be utilized, depending on the degree of specificity and resolution of methylation required. Cloning and sequencing is still the most readily available method that can give single nucleotide resolution for methylation across the DNA molecule.  相似文献   

13.
14.
15.
16.

Background

Hepatocellular carcinoma (HCC) is one of the most common cancers and frequently presents with an advanced disease at diagnosis. There is only limited knowledge of genome-scale methylation changes in HCC.

Methods and Findings

We performed genome-wide methylation profiling in a total of 47 samples including 27 HCC and 20 adjacent normal liver tissues using the Illumina HumanMethylation450 BeadChip. We focused on differential methylation patterns in the promoter CpG islands as well as in various less studied genomic regions such as those surrounding the CpG islands, i.e. shores and shelves. Of the 485,577 loci studied, significant differential methylation (DM) was observed between HCC and adjacent normal tissues at 62,692 loci or 13% (p<1.03e-07). Of them, 61,058 loci (97%) were hypomethylated and most of these loci were located in the intergenic regions (43%) or gene bodies (33%). Our analysis also identified 10,775 differentially methylated (DM) loci (17% out of 62,692 loci) located in or surrounding the gene promoters, 4% of which reside in known Differentially Methylated Regions (DMRs) including reprogramming specific DMRs and cancer specific DMRs, while the rest (10,315) involving 4,106 genes could be potential new HCC DMR loci. Interestingly, the promoter-related DM loci occurred twice as frequently in the shores than in the actual CpG islands. We further characterized 982 DM loci in the promoter CpG islands to evaluate their potential biological function and found that the methylation changes could have effect on the signaling networks of Cellular development, Gene expression and Cell death (p = 1.0e-38), with BMP4, CDKN2A, GSTP1, and NFATC1 on the top of the gene list.

Conclusion

Substantial changes of DNA methylation at a genome-wide level were observed in HCC. Understanding epigenetic changes in HCC will help to elucidate the pathogenesis and may eventually lead to identification of molecular markers for liver cancer diagnosis, treatment and prognosis.  相似文献   

17.
Abnormal phenotypes in cloned pigs can be partly due to changes in epigenetic modifications such as methylation levels of promoter CpG islands. Neuronatin is an imprinted gene, conserved in human, pig, cattle and mouse, which is expressed exclusively from the paternal allele. Three CpG islands located in the promoter region of the porcine neuronatin gene have the potential to regulate the gene expression by cytosine methylation. To illustrate whether neuronatin was differentially expressed among nuclear transfer macroglossia–positive and nuclear transfer macroglossia–negative pigs and in vitro‐fertilized pigs, we detected its expression level by qRT‐PCR and further quantified methylation levels by pyrosequencing DNA from the liver. The results showed that neuronatin was expressed at a significantly higher level in livers of nuclear transfer macroglossia‐positive pigs compared with normal cloned and in vitro‐fertilized pigs. Livers of nuclear transfer macroglossia‐positive pigs also had a significantly lower methylation level at CpG island 2 and CpG island 3 in the promoter region.  相似文献   

18.
Shen L  Kondo Y  Guo Y  Zhang J  Zhang L  Ahmed S  Shu J  Chen X  Waterland RA  Issa JP 《PLoS genetics》2007,3(10):2023-2036
The role of CpG island methylation in normal development and cell differentiation is of keen interest, but remains poorly understood. We performed comprehensive DNA methylation profiling of promoter regions in normal peripheral blood by methylated CpG island amplification in combination with microarrays. This technique allowed us to simultaneously determine the methylation status of 6,177 genes, 92% of which include dense CpG islands. Among these 5,549 autosomal genes with dense CpG island promoters, we have identified 4.0% genes that are nearly completely methylated in normal blood, providing another exception to the general rule that CpG island methylation in normal tissue is limited to X inactivation and imprinted genes. We examined seven genes in detail, including ANKRD30A, FLJ40201, INSL6, SOHLH2, FTMT, C12orf12, and DPPA5. Dense promoter CpG island methylation and gene silencing were found in normal tissues studied except testis and sperm. In both tissues, bisulfite cloning and sequencing identified cells carrying unmethylated alleles. Interestingly, hypomethylation of several genes was associated with gene activation in cancer. Furthermore, reactivation of silenced genes could be induced after treatment with a DNA demethylating agent or in a cell line lacking DNMT1 and/or DNMT3b. Sequence analysis identified five motifs significantly enriched in this class of genes, suggesting that cis-regulatory elements may facilitate preferential methylation at these promoter CpG islands. We have identified a group of non-X-linked bona fide promoter CpG islands that are densely methylated in normal somatic tissues, escape methylation in germline cells, and for which DNA methylation is a primary mechanism of tissue-specific gene silencing.  相似文献   

19.
抑癌基因p16和白血病致癌因子Ralb与白血病的发生密切相关,其启动子区CpG岛的甲基化对基因表达具有重要作用.本文旨在分析p16、Ralb基因启动子区CpG岛甲基化位点信息,并比较这两个基因在小鼠骨髓细胞和原代培养的骨髓细胞中甲基化状态的差异.运用"MethPrimer"软件预测p16、Ralb基因启动子区的CpG岛,设计甲基化特异性引物.利用重亚硫酸盐测序法(BSP)检测甲基化位点信息.结果显示,p16有1个CpG岛,岛上21个CpG位点全部未发生甲基化;Ralb有2个CpG岛,CpG岛1上的5个CpG位点全部呈甲基化状态,而CpG岛2上的17个CpG位点全部呈非甲基化状态,且小鼠骨髓细胞和体外原代培养的骨髓细胞中两基因的甲基化状态一致.表明p16、Ralb基因甲基化状态未受外界培养条件的影响而改变,提示在与两基因甲基化相关的研究中体外试验可替代体内试验.  相似文献   

20.
To determine if ethanol consumption and alcoholism cause global DNA methylation disturbances, we examined alcoholics and controls using methylation specific microarrays to detect all annotated gene and non-coding microRNA promoters and their CpG islands. DNA was isolated and immunoprecipitated from the frontal cortex of 10 alcoholics and 10 age and gender-matched controls then labeled prior to co-hybridization. A modified Kolmogorov–Smirnov test was used to predict differentially enriched regions (peaks) from log-ratio estimates of amplified vs input DNA. More than 180,000 targets were identified for each subject which correlated with > 30,000 distinct, integrated peaks or high probability methylation loci. Peaks were mapped to regions near 17,810 separate annotated genes per subject representing hypothetical methylation targets. No global methylation differences were observed between the two subject groups with 80% genetic overlap, but extreme methylation was observed in both groups at specific loci corresponding with known methylated genes (e.g., H19) and potentially other genes of unknown methylation status. Methylation density patterns targeting CpG islands visually correlated with recognized chromosome banding. Our study provides insight into global epigenetic regulation in the human brain in relationship to controls and potentially novel targets for hypothesis generation and follow-up studies of alcoholism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号