首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Ectopically expressed human K(V)10.1 channels are relevant players in tumor biology. However, their function as ion channels at the plasma membrane does not totally explain their crucial role in tumors. Both in native and heterologous systems, it has been observed that a majority of K(V)10.1 channels remain at intracellular locations. In this study we investigated the localization and possible roles of perinuclear K(V)10.1. We show that K(V)10.1 is expressed at the inner nuclear membrane in both human and rat models; it co-purifies with established inner nuclear membrane markers, shows resistance to detergent extraction and restricted mobility, all of them typical features of proteins at the inner nuclear membrane. K(V)10.1 channels at the inner nuclear membrane are not all transported directly from the ER but rather have been exposed to the extracellular milieu. Patch clamp experiments on nuclei devoid of external nuclear membrane reveal the existence of channel activity compatible with K(V)10.1. We hypothesize that K(V)10.1 channels at the nuclear envelope might participate in the homeostasis of nuclear K(+), or indirectly interact with heterochromatin, both factors known to affect gene expression.  相似文献   

3.
Neuronal Kv3 voltage-gated K(+) channels have two absolutely conserved N-glycosylation sites. Here, it is shown that Kv3.1, 3.3, and 3.4 channels are N-glycosylated in rat brain. Digestion of total brain membranes with peptide N glycosidase F (PNGase F) produced faster migrating immunobands than those of undigested membranes. Additionally, partial PNGase F digests showed that both sites are occupied by oligosaccharides. Neuraminidase treatment produced a smaller immunoband shift relative to PNGase F treatment. These results indicate that both sites are highly available and occupied by N-linked oligosaccharides for Kv3.1, 3.3, and 3.4 in rat brain, and furthermore that at least one oligosaccharide is of complex type. Additionally, these results point to an extracytoplasmic S1-S2 linker in Kv3 proteins expressed in native membranes. We suggest that N-glycosylation processing of Kv3 channels is critical for the expression of K(+) currents at the surface of neurons, and perhaps contributes to the pathophysiology of congenital disorders of glycosylation.  相似文献   

4.
In response to a prolonged membrane depolarization, inactivation autoregulates the activity of voltage-gated ion channels. Slow inactivation involving a localized constriction of the selectivity filter (P/C-type mechanism) is prevalent in many voltage-gated K+ channels of the Kv1 subfamily. However, the generalization of this mechanism to other Kv channel subfamilies has remained uncertain and controversial. In agreement with a “foot-in-the-door” mechanism and the presence of ion-ion interactions in the pore, elevated external K+ slows the development of P/C-type inactivation and accelerates its recovery. In sharp contrast and resembling the regulation of the hippocampal A-type K+ current, we found that Kv4.x channels associated with KChIP-1 (an auxiliary subunit) exhibit accelerated inactivation and unaffected recovery from inactivation when exposed to elevated external K+. This regulation depends on the ability of a permeant ion to enter the selectivity filter (K+ = Rb+ = NH4+ > Cs+ > Na+); and the apparent equilibrium dissociation constant of a single regulatory site is 8 mM for K+. By applying a robust quantitative global kinetic modeling approach to all macroscopic properties over a 210-mV range of membrane potentials, we determined that elevated external K+ inhibits unstable closed states outside the main activation pathway and thereby promotes preferential closed-state inactivation. These results suggest the presence of a vestigial and unstable P/C-type mechanism of inactivation in Kv4 channels and strengthen the concept of novel mechanisms of closed-state inactivation. Regulation of Kv4 channel inactivation by hyperkalemia may help to explain the pathophysiology of electrolyte imbalances in excitable tissues.  相似文献   

5.
Hyaluronan is synthesized within the cytoplasm and exported into the extracellular matrix through the cell membrane of fibroblasts by the MRP5 transporter. In order to meet the law of electroneutrality, a cation is required to neutralize the emerging negative hyaluronan charges. As we previously observed an inhibiting of hyaluronan export by inhibitors of K(+) channels, hyaluronan export was now analysed by simultaneously measuring membrane potential in the presence of drugs. This was done by both hyaluronan import into inside-out vesicles and by inhibition with antisense siRNA. Hyaluronan export from fibroblast was particularly inhibited by glibenclamide, ropivacain and BaCl(2) which all belong to ATP-sensitive inwardly-rectifying K(ir) channel inhibitors. Import of hyaluronan into vesicles was activated by 150 mM KCl and this activation was abolished by ATP. siRNA for the K(+) channels K(ir)3.4 and K(ir)6.2 inhibited hyaluronan export. Collectively, these results indicated that hyaluronan export depends on concurrent K(+) efflux.  相似文献   

6.
It has been shown that A2A adenosine receptors are implicated in pain modulation. The precise mechanism by which activation of A2A receptors produces analgesic effects, however, remains unclear. The aim of this study was to investigate the possible involvement of apamin-sensitive calcium-activated potassium channels (SKCa) and voltage-gated potassium (Kv) channels in A2A receptor activation-induced analgesic effects. Using mice, we evaluated the influence of apamin, a non specific blocker of SKCa channels, Lei-Dab7 (an analog of scorpion Leiurotoxin), a selective blocker of SKCa2 channels, and kaliotoxin (KTX) a Kv channel blocker, on the CGS 21680 (A2A adenosine receptor agonist)-induced increases in hot plate and tail pinch latencies. All drugs were injected in mice via the intracerebroventricular route. We found that apamin and Lei-Dab7, but not KTX, reduced antinociception produced by CGS21680 on the hot plate and tail pinch tests in a dose dependent manner. Lei-Dab 7 was more potent than apamin in this regard. We conclude that SKCa but not Kv channels are implicated in CGS 21680-induced antinociception.  相似文献   

7.
Summary The control of K+ channels in the insulin-secreting cell line RINm5F has been investigated by patch-clamp singlechannel current recording experiments. The unitary current events recorded from cell-attached patches are due to large and small inwardly rectifying ATP-sensitive K+ channels with conductance properties similar to the two channels previously identified in primary cultured rat islet cells (Findlay, I., Dunne, M.J., & Petersen, O. H.J. Membrane Biol. 88:165–172, 1985). Cell permeabilization through brief exposure to 10 m digitonin or 0.05% saponin (outside the isolated membrane patch area) results in a dramatic increase in current through the cell-attached patch due to opening of many large and small K+-selective channels. These channels are inhibited in a dose-dependent manner by ATP applied to the bath (near-complete inhibition by 5mm ATP). During prolonged ATP exposure (1–5 min) the initial inhibition is followed by partial recovery of channel activity, although further activation does occur when ATP is subsequently removed. From the maximal number of coincident channel openings in the permeabilized cells (in the absence of ATP), it is estimated that there are on average 12 large ATP-sensitive K+ channels per membrane patch, but in the intact cells less than 5% of the membrane patches exhibited three or more coincident K+ channel openings, indicating the degree to which the channels are inhibited in the resting condition by endogenous ATP. Stimulation of RINm5F cells to secrete insulin was carried out by challenging intact cells with 10mm d-glyceraldehyde.d-glyceraldehyde induced depolarization of the membrane from about –70 to –20 mV and evoked a marked reduction in the open-state probability of both the large and small ATP-sensitive channels.d-glyceraldehyde also induced action potentials in a number of cases. All effects of stimulation were largely transient, lasting about 100 sec. The two ATP-sensitive K+ channels are probably responsible for the resting potential and play a crucial role in coupling metabolism to membrane depolarization.  相似文献   

8.
The effects of changes in membrane cholesterol on ion currents were investigated in pituitary GH3 cells. Depletion of membrane cholesterol by exposing cells to methyl-beta-cyclodextrin (MbetaCD), an oligosaccharide, resulted in an increase in the density of Ca2+-activated K+ current (IK(Ca)). However, no significant change in IK(Ca) density was demonstrated in GH3 cells treated with a mixture of MbetaCD and cholesterol. Cholesterol depletion with MbetaCD (1.5 mg/ml) slightly suppressed the density of voltage-dependent L-type Ca2+ current. In inside-out patches recorded from MbetaCD-treated cells, the activity of large-conductance Ca2+-activated K+ (BK(Ca)) channels was enhanced with no change in single-channel conductance. In MbetaCD-treated cells, voltage-sensitivity of BK(Ca) channels was increased; however, no change in Ca2+-sensitivity could be demonstrated. A negative correlation between adjacent closed and open times in BK(Ca) channels was observed in MbetaCD-treated cells. In inside-out patches from MbetaCD-treated cells, dexamethasone (30 microM) applied to the intracellular surface did not increase BK(Ca)-channel activity, although caffeic acid phenethyl ester and cilostazol still opened its probability effectively. However, no modification in the activity of ATP-sensitive K+ channels could be seen in MbetaCD-treated cells. Current-clamp recordings demonstrated that the cholesterol depletion maneuver with MbetaCD reduced the firing of action potentials. Therefore, the increase in BK(Ca)-channel activity induced by membrane depletion may influence the functional activities of neurons or neuroendocrine cells if similar results occur in vivo.  相似文献   

9.
The gamma-KTx-type scorpion toxins specific for K+ channels were found to interact with ERG channels on the turret region, while alpha-KTx3.2 Agitoxin-2 binds to the pore region of the Shaker K+ channel, and alpha-KTx5.3 BmP05 binds to the intermediate region of the small-conductance calcium-activated K-channel (SK(Ca)). In order to explore the critical residues for gamma-KTx binding, we determined the NMR structure of native gamma-KTx1.1 (CnErg1), a 42 amino acid residues scorpion toxin isolated from the venom of the Mexican scorpion Centruro?des noxius Hoffmann, and we used computational evolutionary trace (ET) analysis to predict possible structural and functional features of interacting surfaces. The 1H-NMR three-dimensional solution structure of native ergtoxin (CnErg1) was solved using a total of 452 distance constraints, 13 3J(NH-Halpha) and 10 hydrogen bonds. The structure is characterized by 2 segments of alpha-helices and a triple-stranded antiparallel beta-sheet stabilized by 4 disulfide bridges. The ET and structural analysis provided indication of the presence of two important amino acid residue clusters, one hydrophobic and the other hydrophilic, that should be involved in the surface contact between the toxin and the channel. Some features of the proposed interacting surface are discussed.  相似文献   

10.
Mammalian voltage-gated K+ channels are assemblies of pore-forming alpha-subunits and modulating beta-subunits. To operate correctly, Kv4 alpha-subunits in the heart and central nervous system require recently identified beta-subunits of the neuronal calcium sensing protein family called K+ channel-interacting proteins (KChIPs). Here, Kv4.2.KChIP2 channels are purified, integrity of isolated complexes confirmed, molar ratio of the subunits determined, and subunit valence established. A complex has 4 subunits of each type, a stoichiometry expected for other channels employing neuronal calcium sensing beta-subunits.  相似文献   

11.
Interaction of large conductance Ca(2+)- and voltage-activated K(+) (BK(Ca)) channels with Na(+)/K(+)-ATPase, caveolin-1, and cholesterol was studied in human melanoma IGR39 cells. Functional BK(Ca) channels were enriched in caveolin-rich and detergent-resistant membranes, i.e. rafts, and blocking of the channels by a specific BK(Ca) blocker paxilline reduced proliferation of the cells. Disruption of rafts by selective depletion of cholesterol released BK(Ca) channels from these domains with a consequent increase in their activity. Consistently, cholesterol enrichment of the cells increased the proportion of BK(Ca) channels in rafts and decreased their activity. Immunocytochemical analysis showed that BK(Ca) channels co-localize with Na(+)/K(+)-ATPase in a cholesterol-dependent manner, thus suggesting their co-presence in rafts. Supporting this, ouabain, a specific blocker of Na(+)/K(+)-ATPase, inhibited BK(Ca) whole-cell current markedly in control cells but not in cholesterol-depleted ones. This inhibition required the presence of external Na(+). Collectively, these data indicate that the presence of Na(+)/K(+)-ATPase in rafts is essential for efficient functioning of BK(Ca) channels, presumably because the pump maintains a low intracellular Na(+) proximal to the BK(Ca) channel. In conclusion, cholesterol could play an important role in cellular ion homeostasis and thus modulate many cellular functions and cell proliferation.  相似文献   

12.
Voltage-gated K(+) channels comprise a central pore enclosed by four voltage-sensing domains (VSDs). While movement of the S4 helix is known to couple to channel gate opening and closing, the nature of S4 motion is unclear. Here, we substituted S4 residues of Kv7.1 channels by cysteine and recorded whole-cell mutant channel currents in Xenopus oocytes using the two-electrode voltage-clamp technique. In the closed state, disulfide and metal bridges constrain residue S225 (S4) nearby C136 (S1) within the same VSD. In the open state, two neighboring I227 (S4) are constrained at proximity while residue R228 (S4) is confined close to C136 (S1) of an adjacent VSD. Structural modeling predicts that in the closed to open transition, an axial rotation (approximately 190 degrees) and outward translation of S4 (approximately 12 A) is accompanied by VSD rocking. This large sensor motion changes the intra-VSD S1-S4 interaction to an inter-VSD S1-S4 interaction. These constraints provide a ground for cooperative subunit interactions and suggest a key role of the S1 segment in steering S4 motion during Kv7.1 gating.  相似文献   

13.
The traffic of Kv4 K+ channels is regulated by the potassium channel interacting proteins (KChIPs). Kv4.2 expressed alone was not retained within the ER, but reached the Golgi complex. Coexpression of KChIP1 resulted in traffic of the channel to the plasma membrane, and traffic was abolished when mutations were introduced into the EF-hands with channel captured on vesicular structures that colocalized with KChIP1(2-4)-EYFP. The EF-hand mutant had no effect on general exocytic traffic. Traffic of Kv4.2 was coat protein complex I (COPI)-dependent, but KChIP1-containing vesicles were not COPII-coated, and expression of a GTP-loaded Sar1 mutant to block COPII function more effectively inhibited traffic of vesicular stomatitis virus glycoprotein (VSVG) than did KChIP1/Kv4.2 through the secretory pathway. Therefore, KChIP1seems to be targeted to post-ER transport vesicles, different from COPII-coated vesicles and those involved in traffic of VSVG. When expressed in hippocampal neurons, KChIP1 co-distributed with dendritic Golgi outposts; therefore, the KChIP1 pathway could play an important role in local vesicular traffic in neurons.  相似文献   

14.
ATP-sensitive K+ channels in inside-out membrane patches from dispersed rat pancreatic B-cells were studied using patch-clamp methods. The dose-response curve for ATP-induced channel inhibition was shifted to higher concentrations in the presence of ADP (2 mM). In glucose-free solution, the total intracellular concentration of ATP was 3.8 mM and of ADP 1.5 mM; glucose (20 mM) increased ATP and decreased ADP by approx. 40%. These results suggest that both ADP and ATP may be involved in regulating the activity of the glucose-sensitive K+ channel in intact B-cells.  相似文献   

15.
The choroid plexuses secrete, and maintain the composition of, the cerebrospinal fluid. K+ channels play an important role in these processes. In this study the molecular identity and properties of the delayed-rectifying K+ (Kv) conductance in rat choroid plexus epithelial cells were investigated. Whole cell K+ currents were significantly reduced by 10 nM dendrotoxin-K and 1 nM margatoxin, which are specific inhibitors of Kv1.1 and Kv1.3 channels, respectively. A combination of dendrotoxin-K and margatoxin caused a depolarization of the membrane potential in current-clamp experiments. Western blot analysis indicated the presence of Kv1.1 and Kv1.3 proteins in the choroid plexus. Furthermore, the Kv1.3 and Kv1.1 proteins appear to be expressed in the apical membrane of the epithelial cells in immunocytochemical studies. The Kv conductance was inhibited by 1 µM serotonin (5-HT), with maximum inhibition to 48% of control occurring in 8 min (P < 0.05 by Student's t-test for paired data). Channel inhibition by 5-HT was prevented by the 5-HT2C antagonist mesulergine (300 nM). It was also attenuated in the presence of calphostin C (a protein kinase C inhibitor). The conductance was partially inhibited by 1,2-dioctanoyl-sn-glycerol and phorbol 12-myristate 13-acetate, both of which activate protein kinase C. These data suggest that 5-HT acts at 5-HT2C receptors to activate protein kinase C, which inhibits the Kv channels. In conclusion, Kv1.1 and Kv1.3 channels make a significant contribution to K+ efflux at the apical membrane of the choroid plexus. delayed-rectifying potassium channel; serotonin  相似文献   

16.
Rat stimulated heavy gastric membranes enriched with (H+-K+)-ATPase, a marker for the apical membrane of the parietal cell, displayed a 32P-histone-dephosphorylating activity which appeared to be physically copurified with, but functionally independent of, the ATPase. The protein phosphatase activity was optimal at pH 7.5 and was inhibited by fluoride (50 mM), inorganic phosphate (50 mM), and p-chloromercuribenzoate (0.1 mM), but was insensitive to vanadate (1 mM). The 32P-phosphoproteins in the heavy gastric membranes were also dephosphorylated, apparently by their own membrane-bound phosphatase in the presence of Mg2+ at millimolar concentrations, which is likely to enhance membrane-membrane interaction. Heavy gastric membrane vesicles incubated with Mg2+ (2 mM) exhibited no alterations in K+-dependent ATP-hydrolyzing activity, Cl permeability, and protein and lipid compositions, but irreversibly lost the ATP, K+-dependent H+-pumping activity. Since valinomycin, a K+-specific ionophore, restored the intravesicular acidifying activity and an inhibitor of the protein phosphatase, inorganic phosphate, largely blocked the Mg2+-induced change in the membrane transport function, it is reasonable to propose that the phosphatase action on certain membrane proteins, possibly the putative K+ transporter or regulatory proteins, selectively decreases K+-conductance in the apical membranes of gastric parietal cells.  相似文献   

17.
We identify a new mechanism for the beta(1)-adrenergic receptor (beta(1)AR)-mediated regulation of human ether-a-go-go-related gene (HERG) potassium channel (Kv11.1). We find that the previously reported modulatory interaction between Kv11.1 channels and 14-3-3epsilon proteins is competed by wild type beta(1)AR by means of a novel interaction between this receptor and 14-3-3epsilon. The association between beta(1)AR and 14-3-3epsilon is increased by agonist stimulation in both transfected cells and heart tissue and requires cAMP-dependent protein kinase (PKA) activity. The beta(1)AR/14-3-3epsilon association is direct, since it can be recapitulated using purified 14-3-3epsilon and beta(1)AR fusion proteins and is abolished in cells expressing beta(1)AR phosphorylation-deficient mutants. Biochemical and electrophysiological studies of the effects of isoproterenol on Kv11.1 currents recorded using the whole-cell patch clamp demonstrated that beta(1)AR phosphorylation-deficient mutants do not recruit 14-3-3epsilon away from Kv11.1 and display a markedly altered agonist-mediated modulation of Kv11.1 currents compared with wild-type beta(1)AR, increasing instead of inhibiting current amplitudes. Interestingly, such differential modulation is not observed in the presence of 14-3-3 inhibitors. Our results suggest that the dynamic association of 14-3-3 proteins to both beta(1)AR and Kv11.1 channels is involved in the adrenergic modulation of this critical regulator of cardiac repolarization and refractoriness.  相似文献   

18.
Elementary K+ currents were recorded at 19 °C in cell-attached and in inside-out patches excised from neonatal rat heart myocytes. An outwardly rectifying K+ channel which prevented Na+ ions from permeating could be detected in about 10% of the patches attaining (at 5 mmol/l external K+ and between – 20 mV and + 20 mV) a unitary conductance of 66 +- 3.9 pS. K (outw.-rect.) + channels have one open and at least two closed states. Open probability and open rose steeply on shifting the membrane potential in the positive direction, thereby tending to saturate. Open probability (at –7 mV) was as low as 3 ± 1% but increased several-fold on exposing the cytoplasmic surface to Mg-ATP (100 mol/l) without a concomitant change of open. No channel activation occurred in response to ATP in the absence of cytoplasmic Mg–+. The cytoplasmic administration of the catalytic subunit of protein kinase A (120–150 /ml) or GTP--S (100 mol/l) caused a similar channel activation. GDP--S (100 mol/l) was also tested and found to be ineffective in this respect. This suggests that cardiac K (outw.-rect.) + channels are metabolically modulated by both cAMP-dependent phosphorylation and a G-protein. Offprint requests to: M. Kohlhardt  相似文献   

19.
Voltage-gated potassium (Kv) channels exist in the membranes of all living cells. Of the functional classes of Kv channels, the Kv1 channels are the largest and the best studies and are known to play essential roles in excitable cell function, providing an essential counterpoin to the various inward currents that trigger excitability. The serum potassium concentration [K o + ] is tightly regulated in mammals and disturbances can cause significant functional alterations in the electrical behavior of excitable tissues in the nervous system and the heart. At least some of these changes may be mediated by Kv channels that are regulated by changes in the extracellular K+ concentration. As well as changes in serum [K o + ], tissue acification is a frequent pathological condition known to inhibit Shaker and Kv1 voltage-gated potassium channels. In recent studies, it has become recognized that the acidification-induced inhibition of some Kv1 channels is K o + -dependent, and the suggestion has been made that pH and K o + may regulate the channels via a common mechanism. Here we discuss P/C type inactivation as the common pathway by which some Kv channels become unavailable at acid pH and lowered K o + . It is suggested that binding of protons to a regulatory site in the outer pore mouth of some Kv channels favors transitions to the inactivated state, whereas K+ ions exert countereffects. We suggest that modulation of the number of excitable voltage-gated K+ channels in the open vs inactivated states of the channels by physiological H+ and K+ concentrations represents an important pathway to control Kv channel function in health and disease.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号