首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alveolar type II cells express a high affinity receptor for pulmonary surfactant protein A (SP-A), and the interaction of SP-A with these cells leads to inhibition of surfactant lipid secretion. We have investigated the binding of native and modified forms of SP-A to isolated rat alveolar type II cells. Native and deglycosylated forms of SP-A readily competed with 125I-SP-A for cell surface binding. Alkylation of SP-A with excess iodoacetamide yielded forms of SP-A that did not inhibit surfactant lipid secretion and did not compete with 125I-SP-A for cell surface binding. Reductive methylation of SP-A with H2CO and NaCNBH3 yielded forms of SP-A with markedly reduced receptor binding activity that also exhibited significantly reduced capacity to inhibit lipid secretion. Modification of SP-A with cyclohexanedione reversibly altered cell surface binding and the activity of SP-A as an inhibitor of lipid secretion. Two monoclonal antibodies that block the function of SP-A as an inhibitor of lipid secretion completely prevented the high affinity binding of SP-A to type II cells. A monoclonal antibody that recognizes epitopes on SP-A but failed to block the inhibition of secretion also failed to completely attenuate high affinity binding to the receptor. Concanavalin A inhibits phospholipid secretion of type II cells by a mechanism that is reversed in the presence of excess alpha-methylmannoside. Concanavalin A did not block the high affinity binding of 125I-SP-A to the receptor. Neither the high affinity binding nor the inhibitor activity of SP-A was prevented by the presence of mannose or alpha-methylmannoside. The SP-A derived from humans with alveolar proteinosis is a potent inhibitor of surfactant lipid secretion but failed to completely displace 125I-SP-A binding from type II cells. From these data we conclude that: 1) cell surface binding activity of rat SP-A is directly related to its capacity to inhibit surfactant lipid secretion; 2) monoclonal antibodies directed against SP-A can be used to map binding domains for the receptor; 3) the lectin activity of SP-A against mannose ligands does not appear to be essential for cell surface binding; 4) concanavalin A does not compete with SP-A for receptor binding; and 5) the human SP-A derived from individuals with alveolar proteinosis exhibits different binding characteristics from rat SP-A.  相似文献   

2.
The binding of pulmonary surfactant protein A (SP-A) to glycolipids was examined in the present study. The direct binding of SP-A on a thin-layer chromatogram was visualized using 125I-SP-A as a probe. 125I-SP-A bound to galactosylceramide and asialo-GM2, but failed to exhibit significant binding to GM1, GM2, asialo-GM1, sulfatide, and Forssman antigen. The study of 125I-SP-A binding to glycolipids coated onto microtiter wells also revealed that SP-A bound to galactosylceramide and asialo-GM2. SP-A bound to galactosylceramides with non-hydroxy or hydroxy fatty acids, but showed no binding to either glucosylceramide or galactosylsphingosine. Excess native SP-A competed with 125I-SP-A for the binding to asialo-GM2 and galactosylceramide. Specific antibody to rat SP-A inhibited 125I-SP-A binding to glycolipids. In spite of chelation of Ca2+ with EDTA or EGTA, SP-A retained a significant binding to glycolipids. Inclusion of excess monosaccharides in the binding buffer reduced the glycolipid binding of SP-A, but failed to achieve complete abolishment. The oligosaccharide isolated from asialo-GM2 is also effective at reducing 125I-SP-A binding to the solid-phase asialo-GM2. From these data, we conclude that SP-A binds to galactosylceramide and asialo-GM2, and that both saccharide and ceramide moieties in the glycolipid molecule are important for the binding of SP-A to glycolipids.  相似文献   

3.
Phospholipids are the major components of pulmonary surfactant. Dipalmitoylphosphatidylcholine is believed to be especially essential for the surfactant function of reducing the surface tension at the air-liquid interface. Surfactant protein A (SP-A) with a reduced denatured molecular mass of 26-38 kDa, characterized by a collagen-like structure and N-linked glycosylation, interacts strongly with a mixture of surfactant-like phospholipids. In the present study the direct binding of SP-A to phospholipids on a thin layer chromatogram was visualized using 125I-SP-A as a probe, so that the phospholipid specificities of SP-A binding and the structural requirements of SP-A and phospholipids for the binding could be examined. Although 125I-SP-A bound phosphatidylcholine and sphingomyeline, it was especially strong in binding dipalmitoylphosphatidylcholine, but failed to bind phosphatidylglycerol, phosphatidylinositol, phosphatidylethanolamine, and phosphatidylserine. Labeled SP-A also exhibited strong binding to distearoylphosphatidylcholine, but weak binding to dimyristoyl-, 1-palmitoyl-2-linoleoyl-, and dilinoleoylphosphatidylcholine. Unlabeled SP-A readily competed with labeled SP-A for phospholipid binding. SP-A strongly bound dipalmitoylglycerol produced by phospholipase C treatment of dipalmitoylphosphatidylcholine, but not palmitic acid. This protein also failed to bind lysophosphatidylcholine produced by phospholipase A2 treatment of dipalmitoylphosphatidylcholine. 125I-SP-A shows almost no binding to dipalmitoylphosphatidylglycerol and dipalmitoylphosphatidylethanolamine. The addition of 10 mM EGTA into the binding buffer reduced much of the 125I-SP-A binding to phospholipids. Excess deglycosylated SP-A competed with labeled SP-A for binding to dipalmitoylphosphatidylcholine, but the excess collagenase-resistant fragment of SP-A failed. From these data we conclude that 1) SP-A specifically and strongly binds dipalmitoylphosphatidylcholine, 2) SP-A binds the nonpolar group of phospholipids, 3) the second positioned palmitate is involved in dipalmitoylphosphatidylcholine binding, and 4) the specificities of polar groups of dipalmitoylglycerophospholipids also appear to be important for SP-A binding, 5) the phospholipid binding activity of SP-A is dependent upon calcium ions and the integrity of the collagenous domain of SP-A, but not on the oligosaccharide moiety of SP-A. SP-A may play an important role in the regulation of recycling and intra- and extracellular movement of dipalmitoylphosphatidylcholine.  相似文献   

4.
Surfactant protein A (SP-A) binds to alveolar type II cells through a specific high-affinity cell membrane receptor, although the molecular nature of this receptor is unclear. In the present study, we have identified and characterized an SP-A cell surface binding protein by utilizing two chemical cross-linkers: profound sulfo-SBED protein-protein interaction reagent and dithiobis(succinimidylpropionate) (DSP). Sulfo-SBED-biotinylated SP-A was cross-linked to the plasma membranes isolated from rat type II cells, and the biotin label was transferred from SP-A to its receptor by reduction. The biotinylated SP-A-binding protein was identified on blots by using streptavidin-labeled horseradish peroxidase. By using DSP, we cross-linked SP-A to intact mouse type II cells and immunoprecipitated the SP-A-receptor complex using anti-SP-A antibody. Both of the cross-linking approaches showed a major band of 63 kDa under reduced conditions that was identified as the rat homolog of the human type II transmembrane protein p63 (CKAP4/ERGIC-63/CLIMP-63) by matrix-assisted laser desorption ionization and nanoelectrospray tandem mass spectrometry of tryptic fragments. Thereafter, we confirmed the presence of p63 protein in the cross-linked SP-A-receptor complex by immunoprobing with p63 antibody. Coimmunoprecipitation experiments and functional assays confirmed specific interaction between SP-A and p63. Antibody to p63 could block SP-A-mediated inhibition of ATP-stimulated phospholipid secretion. Both intracellular and membrane localized pools of p63 were detected on type II cells by immunofluorescence and immunobloting. p63 colocalized with SP-A in early endosomes. Thus p63 closely interacts with SP-A and may play a role in the trafficking or the biological function of the surfactant protein.  相似文献   

5.
Metabolism of surfactant protein (SP) A and dipalmitoylphosphatidylcholine (DPPC) was assessed in alveolar macrophages isolated from granulocyte-macrophage colony-stimulated factor (GM-CSF) gene-targeted [GM(-/-)] mice, wild-type mice, and GM(-/-) mice expressing GM-CSF under control of the SP-C promoter element (SP-C-GM). Although binding and uptake of (125)I-SP-A were significantly increased in alveolar macrophages from GM(-/-) compared with wild type or SP-C-GM mice, catabolism of (125)I-SP-A was markedly decreased in GM(-/-) mice. Association of [(3)H]DPPC with alveolar macrophages from GM(-/-), wild-type, and SP-C-GM mice was similar; however, catabolism of DPPC was markedly reduced in cells from GM(-/-) mice. Fluorescence-activated cell sorter analysis demonstrated decreased catabolism of rhodamine-labeled dipalmitoylphosphatidylethanolamine by alveolar macrophages from GM(-/-) mice. GM-CSF deficiency was associated with increased SP-A uptake by alveolar macrophages but with impaired surfactant lipid and SP-A degradation. These findings demonstrate the important role of GM-CSF in the regulation of alveolar macrophage lipid and SP-A catabolism.  相似文献   

6.
Pulmonary surfactant is secreted by the type II alveolar cells of the lung, and this secretion is induced by secretagogues of several types (e.g., ionomycin, phorbol esters, and terbutaline). Secretagogue-induced secretion is inhibited by surfactant-associated protein A (SP-A), which binds to a specific receptor (SPAR) on the surface of type II cells. The mechanism of SP-A-activated SPAR signaling is completely unknown. The phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 rescued surfactant secretion from inhibition by SP-A. In order to directly demonstrate a role for PI3K in SPAR signaling, PI3K activity was immunoprecipitated from type II cell extracts. PI3K activity increased rapidly after SP-A addition to type II cells. Since many receptors that activate PI3K do so through tyrosine-specific protein phosphorylation, antisera to phosphotyrosine, insulin-receptor substrate-1 (IRS-1), or SPAR were also examined. These antisera coimmunoprecipitated PI3K activity that was stimulated by SP-A. In addition, the tyrosine-specific protein kinase inhibitors genistein and herbimycin A blocked the action of SP-A on surfactant secretion. We conclude that SP-A signals to regulate surfactant secretion through SPAR, via pathways that involve tyrosine phosphorylation, include IRS-1, and entail activation of PI3K. This activation leads to inhibition of secretagogue-induced secretion of pulmonary surfactant.  相似文献   

7.
Binding specificity of the major surfactant protein SP-A from human and dog lung has been investigated. Radiobinding experiments have shown that both proteins bind in a Ca(2+)-dependent manner to galactose, mannose, fucose, and glucose linked to bovine serum albumin. These results are in accord with a previous study in which monosaccharides were linked to agarose (Haagsman, H. P., Hawgood, S., Sargeant, T., Buckley, D., White, R. T., Drickamer, K., and Benson, B. J. (1987) J. Biol. Chem. 262, 13877-13880). Chromatogram overlays in conjunction with in situ liquid secondary ion mass spectrometry (TLC-LSIMS) of several purified glycosphingolipids and neoglycolipids as well as binding assays with glycolipids immobilized on plastic wells, demonstrate recognition of galactose (human and dog SP-A), glucose, and lactose (human SP-A) in association with specific lipids. In addition, the occurrence of several neutral and acidic glycosphingolipids in human and rat extracellular surfactants and rat alveolar type II cells is described. Selected components among the neutral glycolipids are bound by radiolabeled human SP-A; these are identified by TLC-LSIMS as predominantly ceramide mono- and disaccharides (human surfactant) and ceramide tri- and tetrasaccharides (rat surfactant and type II cells). A recombinant carbohydrate recognition domain (CRD) of human SP-A inhibits the binding of human SP-A to galactosyl ceramide and to galactose- and mannose-bovine serum albumin, indicating that the CRD is directly involved in the binding of SP-A to these ligands. These results provide evidence for a novel type of binding specificity for proteins that have Ca(2+)-dependent CRDs and raise the possibility that glycosphingolipids are endogenous ligands for SP-A.  相似文献   

8.
A glycoprotein of Mr 26-36,000 (SP-A) is an abundant phospholipid-associated protein in pulmonary surfactant. SP-A enhances phospholipid reuptake and inhibits secretion by Type II epithelial cells in vitro. We have used two electron microscopic cytochemical methods to demonstrate selective binding and uptake of SP-A by rat pulmonary Type II epithelial cells. Using an immunogold bridging technique, we showed that SP-A binding was selective for Type II cell surfaces. Binding was dose dependent and saturable, reaching maximal binding at approximately 10 ng/ml. On warming to 23 degrees C, SP-A binding sites were clustered in coated pits on the cell surface. To characterize the internalization and intracellular routing of SP-A, we used the biotinyl ligand-avidin-gold technique. Biotinyl SP-A was bound by rat Type II epithelial cells as described above. On warming, biotinyl SP-A was seen in association with coated vesicles and was subsequently located in endosomes and multivesicular bodies. Biotinyl SP-A-gold complexes were seen in close approximation to lamellar bodies 10-60 min after warming. Binding of biotinyl SP-A was inhibited by competition with unlabeled SP-A. These results support the concept that Type II epithelial cells bind and internalize SP-A by receptor-mediated endocytosis. This newly described uptake system may play a role in the recycling of surfactant components or mediate the actions of SP-A on surfactant phospholipid secretion.  相似文献   

9.
10.
Lung surfactant protein A (SP-A) is the most abundant surfactant-associated protein present in the lung. A receptor for SP-A has been shown to be present on A549 alveolar type II cells and on other cell types, including alveolar macrophage. The SP-A receptor on A549 cells has been identified as the collectin receptor, or C1q receptor, which binds several structurally-related ligands. SP-A contains C-type lectin domains, but the role of carbohydrate binding by SP-A in physiological and pathological phenomena is not yet established. In this paper we report the binding of SP-A to pollen from Populus nigra italica (Lombardy Poplar), Poa pratensis (Kentucky blue grass),Secale cerale (cultivated rye) and Ambrosia elatior (short ragweed). Saturable and concentration dependent binding of SP-A to pollen grains was observed. Interaction of SP-A with pollen grains takes place through waterextractable components, in which the major species present, in Lombardy poplar pollen,are 57 kD and 7 kD (glyco)proteins. The binding of SP-A to pollen grains and their aqueous extracts was calcium ion dependent and was inhibited by mannose, and is therefore mediated by the lectin domain. Binding of SP-A to pollen grains was found to mediate adhesion of pollen grains to A549 cells. The results suggest that pollen grains or other carbohydrate-bearing particles (e. g. microorganisms) could potentially interact with different cell types via the collectin receptor (C1q Receptor) in the presence of SP-A.  相似文献   

11.
12.
We have analyzed interaction of recombinant human surfactant protein A (SP-A) with isolated rat alveolar macrophages in the electron microscope. SP-A coated onto gold particles of different diameter is bound and internalized by macrophages. Binding and uptake occurs via coated membrane structures. SP-A gold particles are transported to secondary lysosomes. Binding and uptake is specific; i.e., excess of SP-A inhibits SP-A gold particle binding and uptake by 67% and depends on the presence of divalent cations. In experiments with ManBSA (5 x 10(-6) M) inhibition is 60%, but no inhibition occurs with GalBSA. The mannose-dependent interaction of SP-A particles with macrophages is not due to the mannose-specific receptor on the cell surface of macrophages as shown in experiments with macrophages exhibiting reduced mannose receptor activity. These cells show reduced binding and uptake of mannan gold particles (42% inhibition) but no reduction of SP-A gold particle binding and uptake. Furthermore, mannan gold particles do not compete with binding of SP-A gold particles.  相似文献   

13.
14.
Surfactant-associated protein A (SP-A) is a component of pulmonary surfactant that binds to a specific receptor (SPAR) on the surface of type II alveolar cells of the lung and regulates gene expression and surfactant secretion. Previously we have shown that activation of SPAR by SP-A binding initiates a signal through pathways that involve tyrosine phosphorylation, include IRS-1, and entail activation of phosphatidylinositol 3-kinase (PI3K). In other cell types, cytokines that activate the PI3K signaling pathway promote cell survival. Therefore we investigated whether there was an effect of SP-A on apoptosis as measured by DNA laddering, FACS analysis, TUNEL assay, and annexin V binding. SP-A protected primary cultures of rat type II alveolar cells against the apoptotic effects of etoposide and UV light and also protected the H441 human Clara lung tumor cell line against staurosporine-induced apoptosis. The protective effects of SP-A were abrogated by inhibition of either tyrosine-specific protein kinase activity or PI3K. SP-A/SPAR interaction thus initiates a signaling pathway that regulates apoptosis in type II cells. These findings may be important in understanding the pathogenesis of acute lung injury and pulmonary tumorigenesis and may suggest new therapeutic options.  相似文献   

15.
Pulmonary surfactant is a complex mixture of lipids and proteins, of which surfactant protein A (SP-A) is the most abundant glycoprotein. The SP-A molecule has several distinct structural features that include a lectin-like domain, sharing structural features with other mammalian lectins. We have tested the hypothesis that lectin activity of the SP-A molecule is required for the binding to its receptor on the surface of alveolar Type II cells. By using colloidal gold immunocytochemistry in conjunction with electron microscopy, we evaluated the ability of mannosylated proteins to inhibit canine SP-A binding to rat Type II cells in vitro. After preincubation of SP-A with the mannosylated protein horse-radish peroxidase (HRP), SP-A was incubated with isolated filter-grown Type II cells. HRP did not alter the binding of SP-A to the Type II cell surface. Evidence that SP-A did bind to HRP was shown by coincident observation of gold-labeled SP-A and HRP precipitates. These results provide visual evidence that the lectin activity associated with SP-A is not required for its binding to receptor on rat alveolar Type II epithelial cells.  相似文献   

16.
Abstract

Specific agents are necessary to target therapies to certain cell types, both to maximize benefit and to minimize damage to healthy cells. Immunoliposomes (IL) may help to target the delivery of therapeutic drugs and DNA molecules to specific cells or organs. We describe here the characterization in vitro of an immunoliposome incorporating A2R, a monoclonal antibody that recognizes a receptor for surfactant protein-A (SP-A) present on both type II pneumocytes and the epithelium of the conducting airways. A2R-immunoliposomes (A2R-IL) containing β-galactosidase as a marker were prepared by coupling derivatized A2R to liposomes made of phosphatidylcholine and cholesterol. Control IL were prepared similarly, but incorporated normal IgG instead of A2R (IgG-IL), or no Ig (Null-IL). Type II cells in primary explant cell culture were treated with either A2R-IL, IgG-IL, or null-IL. We found highly significant differences in binding between specific and nonspecific IL: 31.44% of type II cells incubated with A2R-IL showed transfer of the β-gal. Pretreatment of the type II cells with SP-A blocked SP-A receptors and reduced the uptake of A2R-IL almost to background levels. As SP-A receptor is present on the cells of the conducting airways, we tested tracheal explants for their ability to take up A2R-IL, and found that these cells, similarly, could be targeted by A2R-IL. Thus, this immunoliposome could facilitate future study and therapies directed at type II alveolar cells and/or tracheobroncheal epithelium.  相似文献   

17.
18.
19.
Type II cells and macrophages are the major cells involved in the alveolar clearance and catabolism of surfactant. We measured type II cell and macrophage contributions to the catabolism of saturated phosphatidylcholine and surfactant protein A (SP-A) in mice. We used intratracheally administered SP-A labeled with residualizing (125)I-dilactitol-tyramine, radiolabeled dipalmitoylphosphatidylcholine ([(3)H]DPPC), and its degradation-resistant analog [(14)C]DPPC-ether. At 15 min and 7, 19, 29, and 48 h after intratracheal injection, the mice were killed; alveolar lavage was then performed to recover macrophages and surfactant. Type II cells and macrophages not recovered by the lavage were subsequently isolated by enzymatic digestion of the lung. Radioactivity was measured in total lung, lavage fluid macrophages, alveolar washes, type II cells, and lung digest macrophages. Approximately equal amounts of (125)I-dilactitol-tyramine-SP-A and [(14)C]DPPC-ether associated with the macrophages (lavage fluid plus lung digest) and type II cells when corrected for the efficiency of type II cell isolation. Eighty percent of the macrophage-associated radiolabel was recovered from lung digest macrophages. We conclude that macrophages and type II cells contribute equally to saturated phosphatidylcholine and SP-A catabolism in mice.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号