首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Anthocyanins are natural bioactive pigments in plants that play important roles in many physiological functions. They are found in various tissues and can protect plants against different stress conditions. Anthocyanins are synthesized and accumulate in nutritional organs, which is crucial for plants to adapt to and resist adverse environmental conditions, including high exposure to light, ultraviolet light, low temperatures, drought, pests and disease. Some progress has been made in understanding the adaptability of anthocyanin to the external environment. Begonia semperflorens is an excellent model for studying the function and regulation of anthocyanin synthesis. To investigate the biosynthesis and regulation of anthocyanins, RNA sequencing techniques were employed to investigate anthocyanin biosynthesis induced by low temperature in B. semperflorens leaves. A total of 74,779 unigenes with a mean length of 1249 bp were assembled. Functional annotations were implemented using five protein databases. Differentially expressed genes involved in the process of anthocyanin biosynthesis were identified. This study represents the first report of a broad-scale gene expression study on B. semperflorens.  相似文献   

4.
Abstract

Anthocyanins are secondary metabolites, which play important roles in the physiology of plants. In tomato (Solanum lycopersicum L.), anthocyanins are normally synthesized only in vegetative tissues. M375 is a mutant unable to produce anthocyanins in leaves and stems. In this study, we investigated the anthocyanin biosynthetic pathway in M375 and in its genetic background, Alice, in order to find out where the anthocyanin biosynthesis is blocked, along the pathway, in the mutant. Anthocyanins accumulation was enhanced by sucrose only in the wild type, even though the expression of several genes involved in anthocyanin biosynthesis was normal in both the genotypes. Genes coding for the final steps along the anthocyanin biosynthetic pathway were, however, less expressed in the M375 when compared to the wild type.  相似文献   

5.
冬性植物红菜薹在不同温度处理下花青素积累的分子机制   总被引:1,自引:0,他引:1  
芸薹属植物红菜薹(Brassica rapa)是一种常见的蔬菜,它的花茎和叶柄表皮中均积累有花青素。为了解红菜薹中花青素合成的分子机制,进行了花青素含量的测定和花青素合成相关基因的表达分析。研究结果表明,叶柄表皮中的花青素含量显著高于叶片(去主脉)的花青素含量。同时,叶柄表皮花青素合成相关基因的表达水平高于叶柄(去表皮)和叶片(去主脉)的表达水平,这表明红菜薹中花青素的合成调控发生在转录水平。BrMYBA1仅在叶柄表皮中表达,但BrbHLH1和BrWD40在叶片和叶柄表皮中均能检测到表达。因此,BrMYBA1的转录激活可能与红菜薹的花青素合成相关。连续低温处理时,红菜薹叶柄表皮中的花青素含量逐渐增加,而该组织中花青素合成的结构基因表达水平逐渐降低。  相似文献   

6.
7.
8.
植物色素主要有花青素、类胡萝卜素和生物碱类色素三大类,其中花青素是决定大部分被子植物组织或器官颜色的重要色素。花青素通过类黄酮途径合成,该途径是生物学上研究较多且较为清楚的代谢途径之一。近年来的研究表明,在该途径中除了查尔酮合成酶(chalcone synthase,CHS)、查尔酮异构酶(chalcone isomerase,CHI)和黄烷酮-3-羟化酶(flavanone-3-hydrolase,F3H)起着关键作用外,二氢黄酮醇-4-还原酶(dihydroflavonol 4-reductase,DFR)对花青素的合成也至关重要。DFR可催化3种二氢黄酮醇和2种黄烷酮生成5种不同的花青素前体,且DFR基因家族不同成员对各个底物的催化效率不同,因此它在一定程度上决定着植物中花青素的种类和含量,从而影响植物组织或器官的颜色。该文对近年来国内外有关DFR在花青素合成过程中的生物学功能与调控,包括DFR的特征、作用机制和系统进化以及环境、转录因子和一些结构基因与DFR的关系等方面的研究进展进行了综述,以期为DFR今后的研究和利用基因工程改变植物组织或器官的颜色提供理论依据。  相似文献   

9.
The usual red color of young leaves of peach (Prunus persica f. atropurpurea) is due to the accumulation of anthocyanin. Real-time PCR analysis revealed a strong correlation between the expression levels of anthocyanin biosynthetic genes and anthocyanin content in leaves at different developmental stages. The expression profiles of both anthocyanin biosynthetic genes and photorespiratory genes showed significant changes in leaves held in the dark or exposed to heat stress, compared with controls. The expression of anthocyanin biosynthetic genes dramatically decreased in peach red leaves following dark or heat treatments, resulting in a significant decrease of anthocyanin accumulation. However, the photorespiration-related genes GDCH and GOX exhibited increased expression in peach leaves after dark or heat treatment. Moreover, the expression levels of GDCH and GOX in the Arabidopsis chi/f3h mutant that does not accumulate anthocyanins were higher than in the wild type. Overall, these results support the hypothesis that photorespiration-related genes might be involved in the regulation of anthocyanin biosynthesis. This finding provides a new insight into our understanding of the mechanism underlying the control of anthocyanin biosynthesis in plants.  相似文献   

10.
11.
Anthocyanins are the largest and best studied group of plant pigments. However, not very much is known about the fate of these phenolic pigments after they have accumulated in the cell vacuoles of plant tissues. We have previously shown that magnesium treatment of ornamentals during the synthesis of anthocyanins in the flowers or foliage caused an increase in the pigment concentration. In this study, we characterized the effect of magnesium on the accumulation of anthocyanin in red cell suspension originating from Vitis vinifera cv. Gamay Red grapes. Magnesium treatment of the cells caused a 2.5- to 4.5-fold increase in anthocyanin concentration, with no substantial induction of the biosynthetic genes. This treatment inhibited the degradation of anthocyanins occurring in the cells, and changed the ratio between different anthocyanins determining cell color, with an increase in the relative concentration of the less stable pigment molecules. The process by which magnesium treatment affects anthocyanin accumulation is still not clear. However, the results presented suggest at least part of its effect on anthocyanin accumulation stems from inhibition of the pigments’ catabolism. When anthocyanin biosynthesis was inhibited, magnesium treatments prevented the constant degradation of anthocyanins in the cell suspension. Future understanding of the catabolic processes undergone by anthocyanins in plants may enable more efficient inhibition of this process and increased accumulation of these pigments, and possibly of additional phenolic compounds.  相似文献   

12.
13.
14.
15.
Anthocyanins are red, purple, or blue plant pigments that belong to the family of polyphenolic compounds collectively called flavonoids. Their demonstrated antioxidant properties and economic importance to the dye, fruit, and cut-flower industries have driven intensive research into their metabolic biosynthetic pathways. In order to produce stable, glycosylated anthocyanins from colorless flavanones such as naringenin and eriodictyol, a four-step metabolic pathway was constructed that contained plant genes from heterologous origins: flavanone 3β-hydroxylase from Malus domestica, dihydroflavonol 4-reductase from Anthurium andraeanum, anthocyanidin synthase (ANS) also from M. domestica, and UDP-glucose:flavonoid 3-O-glucosyltransferase from Petunia hybrida. Using two rounds of PCR, each one of the four genes was first placed under the control of the trc promoter and its own bacterial ribosome-binding site and then cloned sequentially into vector pK184. Escherichia coli cells containing the recombinant plant pathway were able to take up either naringenin or eriodictyol and convert it to the corresponding glycosylated anthocyanin, pelargonidin 3-O-glucoside or cyanidin 3-O-glucoside. The produced anthocyanins were present at low concentrations, while most of the metabolites detected corresponded to their dihydroflavonol precursors, as well as the corresponding flavonols. The presence of side product flavonols is at least partly due to an alternate reaction catalyzed by ANS. This is the first time plant-specific anthocyanins have been produced from a microorganism and opens up the possibility of further production improvement by protein and pathway engineering.  相似文献   

16.
17.
18.
19.
20.
The production of anthocyanins in fruit tissues is highly controlled at the developmental level. We have studied the expression of flavonoid biosynthesis genes during the development of bilberry (Vaccinium myrtillus) fruit in relation to the accumulation of anthocyanins, proanthocyanidins, and flavonols in wild berries and in color mutants of bilberry. The cDNA fragments of five genes from the flavonoid pathway, phenylalanine ammonia-lyase, chalcone synthase, flavanone 3-hydroxylase, dihydroflavonol 4-reductase, and anthocyanidin synthase, were isolated from bilberry using the polymerase chain reaction technique, sequenced, and labeled with a digoxigenin-dUTP label. These homologous probes were used for determining the expression of the flavonoid pathway genes in bilberries. The contents of anthocyanins, proanthocyanidins, and flavonols in ripening bilberries were analyzed with high-performance liquid chromatography-diode array detector and were identified using a mass spectrometry interface. Our results demonstrate a correlation between anthocyanin accumulation and expression of the flavonoid pathway genes during the ripening of berries. At the early stages of berry development, procyanidins and quercetin were the major flavonoids, but the levels decreased dramatically during the progress of ripening. During the later stages of ripening, the content of anthocyanins increased strongly and they were the major flavonoids in the ripe berry. The expression of flavonoid pathway genes in the color mutants of bilberry was reduced. A connection between flavonol and anthocyanin synthesis in bilberry was detected in this study and also in previous data collected from flavonol and anthocyanin analyses from other fruits. In accordance with this, models for the connection between flavonol and anthocyanin syntheses in fruit tissues are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号