首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The levels of reduced glutathione (GSH) in the liver and brain of newborn rats were independent of the birth mechanism (Cesarean section or natural birth). A significant increase of GSH content could be demonstrated 3 h after birth in the liver only. 2. The influence of reversible hypoxia (9 vol. % O2 in the respired air for one hour) on GSH and oxidized glutathione (GSSG) levels and the content of thiobarbituric acid (TBA) reagible products were investigated in the liver and brain of newborn rats in dependence on the duration of reoxygenation. Only small changes were observed in the liver indicating a relative resistance of this organ to hypoxic stress and reoxygenation. Distinct effects were found in the brain, indicating that the glutathione status is altered by increased lipid peroxidation.  相似文献   

2.
We determined the effects of immobilization stress on antioxidant status, protein oxidation and lipid peroxidation in brain, liver, kidney, heart and stomach of rats. Sixteen male Wistar rats (3 months old) were divided into controls (C) and immobilization stress group (IS). IS rats were immobilized for 180 min/day for 15 days. Plasma corticosterone levels were increased in IS group. Copper,zinc-superoxide dismutase activities were increased in brain, liver and kidney, but decreased in the heart and stomach after immobilization. Catalase activities were increased in brain, kidney and heart, and decreased in liver and stomach. Selenium-dependent glutathione peroxidase activities were decreased in brain and kidney, but increased in heart and stomach. Reduced glutathione levels were decreased, while protein carbonyl, conjugated dienes and thiobarbituric acid-reactive substances levels were increased in all tissues. Our results showed that the response of antioxidant defense system to stress differs for each tissue, and protein oxidation and lipid peroxidation is induced by immobilization stress in peripheral tissues.  相似文献   

3.
The content of monoamines and their metabolites in different parts of the brain: mesencephalic reticular formation, locus coeruleus, sensomotor cortex was studied by high-performance liquid chromatography in rats with different zoo-social position. Content of dopamine and serotonin in the brain structures studied was found to be different in dominants and subdominants. Maximal changes of monoamines under immobilization stress were observed in dominants.  相似文献   

4.
Liver, Brain, and Heart Metallothionein Induction by Stress   总被引:4,自引:0,他引:4  
To date, stress has been reported to induce metallothionein (MT) synthesis in the liver only. In the present experiment, the effects of food and water deprivation alone or of immobilization stress plus food and water deprivation on liver, brain, and heart MT have been studied in adult male rats. Liver and brain MT levels were increased by immobilization stress as soon as 6 h after the onset of stress. Eighteen hours of immobilization, which is accompanied by food and water deprivation, further increased liver and brain MT levels and significantly increased heart MT content. A specific effect of immobilization was evident in all three tissues, because the effect of food and water deprivation alone was significantly lower than that of immobilization plus starvation. Changes in MT apparently were not related to changes in cytosolic Zn.  相似文献   

5.
Sprague-Dawley rats were stressed by immobilization from 30 to 300 minutes and the effects on serotonin (5-HT) and 5-hydroxy-indoleacetic acid (5-HIAA) content were determined in the cerebral cortex, diencephalon, striatum, hippocampus and the brain stem. In a subsequent study 5-HT turnover rate in these brain areas was estimated by measuring 5-HIAA accumulation 0, 30, 60 and 90 minutes after probenecid. The content of 5-HIAA and the turnover rate of 5-HT were significantly increased in the cerebral cortex shortly after the onset of immobilization. The content of 5-HIAA in the brainstem was increased by immobilization although 5-HT turnover rate was not increased. Short term increases in 5-HIAA content were observed in the striatum and hippocampus. However, no significant changes in 5-HT turnover rate were observed in either of these 2 brain areas. Immobilization did not affect 5-HIAA content or 5-HT turnover in the diencephalon. The sensitivity of the serotonergic system in the cerebral cortex to immobilization stress suggests that this brain region could be used in future studies of the interrelationships between stress and the brain serotonergic system.  相似文献   

6.
Emotional stress in rats resulted in blood-brain barrier increased permeability and brain parenchymal vessel disruptions. Stress induced microvascular damages were mainly observed in midbrain reticular formation. In this article the components of midbrain reticular formation were studied 1, 2, 4 and 6 weeks after immobilization stress. The destructive changes in some neurons, glia cells and myelin fibers were shown up to 6 weeks after immobilization. The signs of the recovery were also observed. It was supposed that the brain parenchymal vessel damages under emotional stress were due to the stress induced locus coeruleus dysfunctions.  相似文献   

7.
Several parameters of the cytoplasmic enzymatic antioxidant system of the liver and brain of the rat have been investigated under conditions of immobilization stress and of an antioxidant preparation in the diet of animals. These included superoxide dismutase (SOD) and glutathione reductase (GR) activities and nonspecific NADPH oxidation. Only changes in the activity of SOD both in the liver and brain were revealed. In the liver of animals that receive no preparation, a decrease in the activity of SOD after 30-min immobilization and its restoration after a 360-min immobilization were observed. In the brain, the activity of SOD decreased only in preconditioned animals after 30 and 360 min of exposure to stress. In addition, the activity of SOD in the brain of preconditioned animals, both stressed and unstressed, was lower than in the corresponding groups of control animals. It is probable that, under the conditions of immobilization stress, the level of reactive oxygen species (ROS) and as a consequence the activity of SOD decrease. The intake of an antioxidant preparation under these conditions seems to be not correct.  相似文献   

8.
The changes in DOPA and catecholamine (adrenaline, noradrenaline, dopamine) levels were investigated in noradrenaline- and dopamine-synthesizing brain nuclei of Wistar rats after prolonged immobilization stress on catecholamine analyzer (BAS, USA) using HPLC technique. Distinct DOPA and catecholamine changes were observed in locus ceruleus + nucleus subceruleus (1. c + n. sc) and substantia nigra at any stage after immobilization (right after immobilization and 15 and 30 days later). The most prominent alterations in noradrenaline content were detected in 1. c + n. sc. 30 days after immobilization NA level in these nuclei was 1.5 times higher, as compared to the control one. It is suggested that the increasing noradrenaline level in 1. c + n. sc. plays a defensive role in survival of rats after immobilization stress.  相似文献   

9.
The effect of acute hypoxic hypobaric hypoxia on the content of reduced glutathione and the activity of glutathione peroxidase, glutathione reductase, glucose-6-phosphate dehydrogenase and glutathione S-transferase, as well as 5'-nucleotidase in homogenates of juvenile male rats under conditions of varying photoperiodic duration: natural conditions of illumination, continuous illumination and continuous darkness were studied. Photoperiodic changes were revealed in the glutathione system of the control animals: the activity of glutathione peroxidase, glutathione reductase and glucose-6-phosphate dehydrogenase reduces under constant light, while the activity of glutathione peroxidase and glutathione S-transferase increases under conditions of constant darkness. The greatest inhibitory effect on the state of the glutathione system is brought about by constant light in case of acute hypoxia: the content of reduced glutathione decreases along with a sharp drop of the activity of glutathione S-transferase and glucose-6-phosphate dehydrogenase, observed against the background of decreased glutathione reductase activity. Permanent dark conditions eliminate partially or completely the negative effect of acute hypoxia on the glutathione system of the brain. The obtained results are indicator of a possibility of protecting role of melatonin in case of acute hypoxia.  相似文献   

10.
The changes in lactate dehydrogenase (LDG) isoenzyme content in the various brain areas were studied in intact Wistar rats and upon immobilization stress. LDG fraction levels were compared to BP changes during immobilization. The proportion of "anaerobic" LDG fractions was higher and the proportion of "aerobic" fractions lower in the dorsal area of midbrain substantia reticularis than in medulla oblongata reticular formation. The changes in LDG fraction content related to BP alterations during immobilization were observed in dorsal and ventral areas of midbrain (but not medulla oblongata) substantia reticularis. The proportion of anaerobic LDG4 fraction in the dorsal area of midbrain substantia reticularis was higher in rats with hypertensive responses, than in hypotensive animals. The changes in LDG5 fraction content were opposite. In the ventral area of midbrain reticular formation BP reduction was accompanied by a significant rise in "anaerobic" and a decrease in "aerobic" LDG fraction levels. The data obtained indicate certain differences in the intensity of aerobic and anaerobic processes of carbohydrate degeneration in various areas of substantia reticularis in control rats, as well as the correlation of changes in energy metabolism in the brain with BP alterations during emotional stress.  相似文献   

11.
Increased oxidative stress is believed to be an important factor in the development of diabetic complications. In this study, the effect of diabetes on the susceptibility of synaptosomes to oxidative stress, induced by the oxidizing system ascorbate/Fe2+, on the activity of antioxidant enzymes and on the levels of glutathione and vitamin E was investigated. Synaptosomes were isolated from brain of 29-weeks-old Goto-Kakizaki (GK) rats, a model of non-insulin dependent diabetes mellitus and from normal Wistar rats. Synaptosomes isolated from GK rats displayed a lower susceptibility to lipid peroxidation, as assessed by quantifying thiobarbituric acid reactive substances (TBARS), than normal rats (5.33 +/- 0.79 and 7.58 +/- 0.7 nmol TBARS/mg protein, respectively). In the absence of oxidants, no significant differences were found between the levels of peroxidation in synaptosomes of diabetic or control rats. Superoxide dismutase (SOD), glutathione peroxidase and glutathione reductase activities were unaltered in the brain of diabetic rats. There were no statistically significant differences in fatty acid composition of total lipids and reduced glutathione levels in synaptosomes of diabetic and control rats. The decreased susceptibility to membrane lipid peroxidation of diabetic rats synaptosomes correlated with a 1.3-fold increase in synaptosomal vitamin E levels. Vitamin E levels in plasma were also higher in diabetic rats (21.32 micromol/l) as compared to normal rats (15.13 micromol/l). We conclude that the increased resistance to lipid peroxidation in GK rat brain synaptosomes may be due to the increased vitamin E content, suggesting that diabetic animals might develop enhanced defense systems against brain oxidative stress.  相似文献   

12.
To assess the effect of chronic ethanol ingestion in the content of the reduced forms of coenzymes Q9 (ubiquinol-9) and Q10 (ubiquinol-10) as a factor contributing to oxidative stress in liver and brain, male Wistar rats were fed ad libitum a basal diet containing either 10 or 2.5 mg alpha-tocopherol/100 g diet (controls), or the same basal diet plus a 32% ethanol-25% sucrose solution. After three months treatment, ethanol chronically-treated rats showed identical growth rates to the isocalorically pair-fed controls, irrespectively of alpha-tocopherol dietary level. Lowering dietary alpha-tocopherol led to a decreased content of this vitamin in the liver and brain of control rats, without changes in that of ubiquinol-9, and increased levels of hepatic ubiquinol-10 and total glutathione (tGSH), accompanied by a decrease in brain tGSH. At the two levels of dietary alpha-tocopherol, ethanol treatment significantly decreased the content of hepatic alpha-tocopherol and ubiquinols 9 and 10. This effect was significantly greater at 10 mg alpha-tocopherol/100 g diet than at 2.5, whereas those of tGSH were significantly elevated by 43% and 9%, respectively. Chronic ethanol intake did not alter the content of brain alpha-tocopherol and tGSH, whereas those of ubiquinol-9 were significantly lowered by 20% and 14% in rats subjected to 10 and 2.5 mg alpha-tocopherol/100 g diet, respectively. It is concluded that chronic ethanol intake at two levels of dietary alpha-tocopherol induces a depletion of hepatic alpha-tocopherol and ubiquinols 9 and 10, thus contributing to ethanol-induced oxidative stress in the liver tissue. This effect of ethanol is dependent upon the dietary level of alpha-tocopherol, involves a compensatory enhancement in hepatic tGSH availability, and is not observed in the brain tissue, probably due to its limited capacity for ethanol biotransformation and glutathione synthesis.  相似文献   

13.
The aim of this work was to investigate the production of oxidative damage in homogenized kidney, liver and brain of spontaneously hypertensive rats (SHR), as well as the involvement of angiotensin (Ang) II in this process. Groups of 12-week-old SHR and Wistar Kyoto rats (WKY) were given 10 mg/kg/day losartan in the drinking water during 14 days. Other groups of WKY and SHR without treatment were used as controls. The production of thiobarbituric acid reactive substances (TBARS), reduced glutathione (GSH) and the activity of the antioxidant enzymes catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (Gpx) were determined. No significant difference in TBARS was observed between untreated SHR or WKY rats; GSH content was lower in the liver but higher in the brain of SHR compared to WKY rats. In tissues from the SHR group, SOD and Gpx activities were reduced, whereas CAT activity was slightly increased in kidney. TBARS levels did not change in WKY rats after losartan administration, but were reduced in SHR liver and brain. Losartan treatment decreased GSH content in WKY kidney, but increased GSH in SHR liver. The activity of the antioxidant enzymes was not modified by losartan in WKY rats; however, their activities increased in tissues from treated SHR. The lower activity of antioxidant enzymes in tissues from hypertensive rats compared to those detected in normotensive controls, indicates oxidative stress production. Ang II seems to play no role in this process in normotensive animals, although AT1 receptor blockade in SHR enhances the enzymatic activity indicating that Ang II is implicated in oxidative stress generation in the hypertensive animals.  相似文献   

14.
Several studies have been suggested that long-term exposure to stress has detrimental effects on various brain functions and leads to neurodegenerative changes. However, the precise mechanism by which stress induces brain damage or neurodegenerative change is still a matter of debate. This study investigated the damage of neuronal cells involving in the expression of iNOS, NR1, and GFAP in various brain regions and characterized the change of sphingolipid metabolites as a biomarker of physiological change in serum after 3 weeks of repeated immobilization. In this report, the expression of iNOS, GFAP and NR1 in the brain of rats exposed to chronic immobilization stress was investigated. The expression of iNOS, GFAP and NR1 was elevated in the cortex and hippocampal area after 3 weeks of repeated immobilization. Immunoreactivity for GFAP and vimentin, as a marker of reactive gliosis, was also elevated in the cortex and hippocampus. The level of sphingolipids was measured in order to assess the changes in sphingolipid metabolites in the serum of rats exposed to stress. Interestingly, the level of So-1-P was increased in the plasma of rats subjected to 6-h immobilization stress than repeated immobilization. To further investigate the modulating effect of increased So-1-P in various brain regions, So-1-P was infused into the lateral cerebroventricle at a rate of 100 pmol/10 μl/h for 7 days. The expression of iNOS and NR1 was elevated in the cortex, hippocampus, striatum, and cerebellum after So-1-P infusion into the cerebroventricle, while the level of GFAP was elevated in the hippocampus and striatum. Interestingly, the expression levels of iNOS, GFAP, and NR1 were increased by the direct application of So-1-P to cultured cortical cells. These results suggest that NO production via iNOS expression, the NR1 expression, the activation of astrocytes, and the elevation of So-1-P may cause neurodegenerative changes in rats subjected to chronic immobilization and that the elevation of So-1-P by stress exposure would be one of the stress signal molecules.  相似文献   

15.
Physiological stress is known to produce analgesia and memory disruption. Brain renin angiotensin system (RAS) has been reported to participate in stress response and plays a role in the processing of sensory information. Angiotensin receptors (AT), particularly AT1 subtypes have been reported to be distributed in brain areas that are intimately associated with stress response. The purpose of present study was to examine the modulation of AT1 receptor in the immobilization stress and angiotensin II (AngII)-induced analgesia and impaired retention, and to determine whether resultant behavioral changes involve common sensory signals. Result of present experiments showed that immobilization stress in mice and rats, and intracerebroventricular (ICV) administration of AngII (10 and 20 ng) in rats produced an increase in tail-flick latency. Similarly, post training administration of AngII or immobilization stress produced impairment of retention tested on plus-maze learning and on passive avoidance step-down task. Both these responses were sensitive to reversal by prior treatment with losartan (10 and 20 mg/kg), an AT1 AngII receptor antagonist. On the other hand, naloxone, an opiate antagonist preferentially attenuated the stress and AngII-induced analgesia and retention deficit induced by immobilization stress, but failed to reverse the AngII induced retention deficit. These results suggest immobilization stress-induced analgesia and impaired retention involves the participation of brain RAS. Further, failure of naloxone to reverse AngII-induced retention impairment shows. AngII-induced behavioral changes are under control of different sensory inputs.  相似文献   

16.
The function of hypothalamo-hypophyseal-adrenocortical system was studied in rats with inherited stress-sensitive arterial hypertension (ISSAH). The rats have been bred from the outbred Wistar strain. It was found that plasma corticosteroid level in ISSAH rats was lower after immobilization stress and higher after stress induced by a combination of stress-factors (ether, 0.7 ml blood loss, novel situation), as compared to Wistar rats. ISSAH rats also showed a reduced reaction to intracerebroventricular noradrenaline (10 micrograms) injection. It was concluded that the changes of noradrenergig brain mechanisms can be responsible for the alterations in the central regulation of blood pressure and adrenocortical function in ISSAH rats.  相似文献   

17.
It is well known that chronic exposure to lead (Pb(+2)) alters a variety of behavioral tasks in rats and mice. Here, we investigated the effect of flaxseed oil (1,000?mg/kg) on lead acetate (20?mg/kg)-induced brain oxidative stress and neurotoxicity in rats. The levels of Pb(+2), lipid peroxidation, nitric oxide (NO), and reduced glutathione (GSH) and the activity of catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), glutathione-S-transferase (GST), and glutathione peroxidase (GPx) were determined in adult male albino rats. The level of Pb(+2) was markedly elevated in brain and blood of rats. This leads to enhancement of lipid peroxidation and NO production in brain with concomitant reduction in GSH, CAT, SOD, GR, GST, and GPx activities. These findings were associated with DNA fragmentation. In addition, lead acetate induced brain injury as indicated by histopathological changes of the brain. Treatment of rats with flaxseed oil resulted in marked improvement in most of the studied parameters as well as histopathological features. These findings suggest to the conclusion that flaxseed oil significantly decreased the adverse harmful effects of lead acetate exposure on the brain as well as Pb(+2)-induced oxidative stress.  相似文献   

18.
The distribution of metallothionein-I (MT) in several areas of the brain and its induction by immobilization stress has been studied in the rat. MT content was highest in hippocampus and midbrain and lowest in frontal cortex and pons plus medulla oblongata. Immobilization stress for 18 hours (which was accompanied by food and water deprivation) significantly increased MT levels in the frontal cortex, pons plus medulla oblongata and hypothalamus, but not in midbrain and hippocampus. The effect of stress on MT levels was specific as food and water deprivation along had no significant effect on MT levels in any of the brain areas studied. The effect of stress on MT levels was independent of changes in cytosolic Zn content; this was generally unaffected by stress or food and water deprivation but decreased in pons plus medulla oblongata from stressed rats. The results suggest that MT is induced more significantly in the brain areas that are usually involved in the response of animals to stress.  相似文献   

19.
In this study, we assessed the effects of ginsenoside Re (GRe) administration on repeated immobilization stressinduced behavioral alterations using the forced swimming test (FST), the elevated plus maze (EPM), and the active avoidance conditioning test (AAT). Additionally, we examined the effect of GRe on the central adrenergic system by observing changes in neuronal tyrosine hydroxylase (TH) immunoreactivity and brain-derived neurotrophic factor (BDNF) mRNA expression in the rat brain. Male rats received 10, 20, or 50 mg/kg GRe (i.p.) 30 min before daily exposures to repeated immobilization stress (2 h/day) for 10 days. Activation of the hypothalamic-pituitary-adrenal (HPA) axis in response to repeated immobilization was confirmed by measuring serum levels of corticosterone (CORT) and the expression of corticotrophin-releasing factor (CRF) in the hypothalamus. Repeated immobilization stress increased immobility in the FST and reduced openarm exploration in the EPM test. It also increased the probability of escape failures in the AAT test, indicating a reduced avoidance response. Daily administration of GRe during the repeated immobilization stress period significantly inhibited the stress-induced behavioral deficits in these behavioral tests. Administration of GRe also significantly blocked the increase in TH expression in the locus coeruleus (LC) and the decrease in BDNF mRNA expression in the hippocampus. Taken together, these findings indicate that administration of GRe prior to immobilization stress significantly improved helpless behaviors and cognitive impairment, possibly through modulating the central noradrenergic system in rats. These findings suggest that GRe may be a useful agent for treating complex symptoms of depression, anxiety, and cognitive impairment.  相似文献   

20.
The blood pressure (BP) dynamics and catecholamine (CA) levels in the brain regions of August and Wistar rats were studied two hours after immobilization in order to elucidate the central neurochemical mechanisms leading to the destruction of BR self-regulation under emotional stress during the experiment. The BP level did not differ from the normal. The CA concentration in the hypothalamus, midbrain, isthmus rhombencephali and medulla oblongata underwent considerable changes. It is suggested that the mechanism of the CA changes in both strains of the rats exposed to stress is similar in the hypothalamus and medulla oblongata while both strains of the rats studied showed specificity in the activity of NA-synthesizing neurons of the isthmus rhombencephali and DA-synthesizing neurons of the midbrain that might be a cause of different resistance of cardiovascular functions during the later stage of immobilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号