首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The endogenous polyamines spermine, spermidine and putrescine are present at high concentrations inside neurons and can be released into the extracellular space where they have been shown to modulate ion channels. Here, we have examined polyamine modulation of voltage-activated Ca2+ channels (VACCs) and voltage-activated Na+ channels (VANCs) in rat superior cervical ganglion neurons using whole-cell voltage-clamp at physiological divalent concentrations. Polyamines inhibited VACCs in a concentration-dependent manner with IC50s for spermine, spermidine, and putrescine of 4.7 ± 0.7, 11.2 ± 1.4, and 90 ± 36 mM, respectively. Polyamines caused inhibition by shifting the VACC half-activation voltage (V0.5) to depolarized potentials and by reducing total VACC permeability. The shift was described by Gouy-Chapman-Stern theory with a surface charge density of 0.120 ± 0.005 e- nm-2 and a surface potential of -19 mV. Attenuation of spermidine and spermine inhibition of VACC at decreased pH was explained by H+ titration of surface charge. Polyamine-mediated effects also decreased at elevated pH due to the inhibitors having lower valence and being less effective at screening surface charge. Polyamines affected VANC currents indirectly by reducing TTX inhibition of VANCs at high pH. This may reflect surface charge induced decreases in the local TTX concentration or polyamine-TTX interactions. In conclusion, polyamines inhibit neuronal VACCs via complex interactions with extracellular H+ and Ca. Many of the observed effects can be explained by a model incorporating polyamine binding, H+ binding and surface charge screening.  相似文献   

2.
Bacillus alcalophilus, an obligately alkalophilic bacterium that grows at pH 11.0, has an intracellular pH of 9.5 or less. Unlike all other living organisms, polyamines (putrescine, spermidine and spermine) in B. alcalophilus, if present, will be largely unprotonated. HPLC analysis indicated that spermidine is the major polyamine in B. alcalophilus, accounting for more than 90% of total polyamines, and the level of spermidine varies during growth. Ornithine decarboxylase activity was not detectable in B. alcalophilus under all conditions examined. When [3H]arginine was added to the culture medium, the radioactivity can be recovered from polyamine pool; the distribution is 3% for putrescine, 94% for spermidine, and 3% for spermine, suggesting the presence of arginine pathway for polyamine biosynthesis. The polyamine transport system in B. alcalphilus appears to be Na+-dependent and is highly sensitive to the inhibition of gramicidin S and valinomycin.  相似文献   

3.
4.
Polyamines are polycationic molecules essential for cell growth and differentiation. Recent work has focused on cell polyamine-transport systems as a way to regulate intracellular polyamine levels. In this study, we demonstrate the presence of two different active transporters for putrescine and spermidine in a rat tumoral cell line (AR4-2J). The first has a Km of 3.1 microM and a Vmax of 3.7 pmol/15 min per micrograms of DNA for putrescine and the second a Km of 0.42 microM and a Vmax of 4.7 pmol/15 min per micrograms of DNA for spermidine. Competition studies performed between the polyamines confirm the difference between these two carriers; one has an equal affinity for the three main polyamines, and the other has a lower affinity for putrescine. Amino acids do not share this transport system, which is Na(+)-independent. Choline chloride inhibits selectively and in a dose-responsive manner the uptake of putrescine without affecting that of spermidine. These data demonstrate that AR4-2J cells possess two polyamine transporters; one is specific for aminopropyl groups (spermidine and spermine), and the other is choline-sensitive, but cannot discriminate between aminobutyl (putrescine) and aminopropyl groups.  相似文献   

5.
The actions of three endogenous polyamines (spermine, spermidine, and putrescine) were defined on Ca2+ release channels (ryanodine receptors, RyRs) isolated from rabbit cardiac sarcoplasmic reticulum. The current-voltage relationship of the RyR channel was N-shaped in the presence of polyamine (1-5 mM). Polyamine blocked conduction near 0 mV, but the blockade was relieved at large potentials. Polyamines acted (blocked) from both sides of the channel. Polyamine efficacy was dependent on current direction and was inversely related to the ion selectivity of the RyR pore. This suggests that polyamine interacts with current-carrying ions in the permeation pathway. The apparent half-block concentration of spermine at 0 mV was < 0.1 mM. The features of polyamine blockade suggest that the polyamines are permeable cationic blockers of the RyR channel. Further, the levels of polyamines found in muscle cells are sufficient to block single RyR channels and thus may alter the sarcoplasmic reticulum Ca2+ release process in situ.  相似文献   

6.
Polyamines are mainly transported in the blood by erythrocytes: Putrescine, spermidine and spermine can be taken up in vitro by red blood cells (RBC); their entry is greater in the presence of serum than in the presence of plasma, and spermine entry is lower than that observed for the two other polyamines. In the presence of serum, the affinity of RBC for spermidine is 30 fold greater than that for putrescine. The majority of RBC polyamines are present in the hemolysate and are not complexed to high molecular weight material. At + 4 degrees C the polyamine uptake is considerably reduced and for putrescine and spermine practically non existent, but it seems that it is internalization rather than binding which constitutes the dependent step. Though intracellular spermidine and spermine levels reflect differences in uptake rather than in outward flux across the cell membrane, the values of putrescine appear to be the resultant of influx and efflux. The presence of specific receptor sites for polyamines visualized by SEM on the surface of RBC using latex-putrescine spheres, confirms the results obtained with labelled polyamines. Therefore, only the understanding of the polyamine repartition inside the blood compartments would permit the clinical use of those molecules as non statistical tumor markers.  相似文献   

7.
8.
The profile of free and conjugated polyamines putrescine, spermidine, and spermine was studied at the onset of sprouting and during various stages of vegetative growth in saffron (Crocus sativus L.) corms. Polyamines were extracted from the shoot meristems and estimated by high performance liquid chromatography. Free putrescine was not detected at the onset of sprouting, whereas free spermidine and spermine levels increased rapidly on sprouting and decreased during further stages of corm development. The levels of conjugated polyamines were several times higher than the free forms indicating their possible role in the developmental processes. A comparison of polyamine levels of vegetative and floral corms showed higher titers of free polyamines in vegetative and conjugated polyamines in floral corms.  相似文献   

9.
The amounts of the polyamines putrescine, spermine and spermidine as well as the Na,K-ATPase activity have been determined in the developing chick brain. The amounts of spermine and spermidine per gram fresh weight do not change significantly, the amount of putrescine declines until the 17th day of incubation after which an increase takes place. Spermine is able to inhibit the Na,K-ATPase from chick brain competitively. Half maximal inhibition is achieved at 4 X 10(-5) mol/1 spermine. This polyamine functions as an allosteric inhibitor; the Hill coefficient is 2.2 +/- 0.3. A regulatory effect of spermine on the Na,K-ATPase from chick brain is discussed. In contrast to spermine 1 mmol/1 spermidine inhibits the Na,K-ATPase only slightly, while 1 mmol/1 putrescine does not inhibit the Na,K-ATPase at all.  相似文献   

10.
Cytoplasmic polyamines block the fast-activating vacuolar cation channel   总被引:9,自引:1,他引:8  
The fast-activating vacuolar (FV) channel dominates the electrical characteristics of the tonoplast at physiological free Ca2+ concentrations. Since polyamines are known to increase in plant cells in response to stress, the regulation of FV channels by polyamines was investigated. Patch-clamp measurements were performed on whole barley ( Hordeum vulgare ) mesophyll vacuoles and on excised tonoplast patches. The trivalent polyamine spermidine and the tetravalent polyamine spermine blocked FV channels with Kd≈ 100 μM and Kd≈ 5 μM, respectively. Increasing cytosolic and vacuolar Ca2+ had no effect on putrescine and spermidine binding to FV channels but slightly decreased the affinity for spermine. The inhibition of FV channels by all three polyamines was not voltage-dependent. This points to a different mode of binding compared to inward rectifier K+ channels and Ca2+-permeable glutamate receptor channels from animal cells, which show rectification due to a voltage-dependent block by polyamines. In plant cells, the common polyamines (putrescine, spermidine and spermine) are likely to mediate a salt stress-induced decrease of ion flux across the vacuolar membrane by blocking FV channels.  相似文献   

11.
多胺(Polyamines)是直链多价阳离子碱性胺,包括腐胺(putrescine,PUT),精胺(spermine,SPM),精脒(spermidine,SPD)等。广泛存在于各种组织细胞内,是一种代谢调控物质,在细胞的增殖分化中起着重要作用。脑梗死是成人致残、致死的最常见疾病之一。研究表明,脑缺血后,多胺及其代谢产物增加,能引起梗死面积的扩大及缺血半暗带神经细胞的坏死。其潜在机制尚不明确,可能与缺血后多胺代谢产生腐胺,3-氨基丙醛(3-amidopropanal 3-AP),过氧化氢及丙烯醛等的活性物质有关,它们参与开放钙离子通道,破坏血脑屏障,形成血管源性脑水肿及缺血再灌注性神经性损伤等病理过程。而抑制多胺代谢可有效地缓解缺血后多胺及其代谢产物增加引起的神经损伤。本文就多胺及代谢产物对脑缺血的神经毒性作用及药物抑制多胺代谢治疗脑梗死做一综述。  相似文献   

12.
Measurements of polyamines, polyamine conjugates and their metabolites in tissues, cells and extracellular fluids are used in biochemistry, (micro)biology, oncology and parasitology. Decarboxylation of ornithine yields putrescine. Aminopropylation of putrescine yields spermidine, and aminopropylation of spermidine yields spermine. Spermidine and spermine are retroconverted to putrescine and spermidine, respectively, by initial N-acetylation and subsequent polyamine oxidation. The intermediate N-acetylputrescine, N1-acetylspermidine and N8-acetylspermidine are the major urinary N-acetylpolyamines. Polyamines and N-acetylpolyamines are terminally degraded to non-α-amino acid metabolites by oxidative deamination and aldehyde dehydrogenation. Chromatography with on-line detection is the most commonly applied profiling method for polyamines, N-acetylpolyamines and their non-α-amino acid metabolites. Cation-exchange and reversed-phase high-performance liquid chromatography require pre- or post-column derivatisation, followed by UV-Vis spectrophotometric or fluorimetric detection. Isolation and derivatisation precedes gas chromatography with flame-ionisation, nitrogen-phosphorus, electron-capture or mass spectrometric detection. High-performance liquid chromatography and gas chromatography of polyamines are not competitive techniques, but rather supplementary.  相似文献   

13.
Polyamines are important endogenous regulators of ion channels and are known to modulate inflammation and nociception. Here we investigated effects of polyamines on the capsaicin receptor TRPV1, a major ion channel expressed in nociceptive sensory afferents. Extracellular spermine, spermidine, and putrescine directly activated TRPV1 in a charge-dependent manner, both in heterologous expression systems and sensory neurons. The threshold for activation by spermine was approximately 500 microm at room temperature. At lower concentrations, spermine enhanced capsaicin-evoked currents with an EC50 of approximately 5 microm. Further, polyamines freely permeated TRPV1 (estimated relative permeabilities compared with Na+ were between 3 and 16), and spermine reduced the single channel conductance from 96 to 49 pS. Experiments with TRPV1 mutants identified extracellular acidic residues critical for polyamine regulation. Neutralization of aspartate 646 (D646N) abolished direct activation by spermine, whereas neutralization of this same aspartate (D646N) or glutamate 648 (E648A) inhibited spermine-induced sensitization. These data show that polyamines, by virtue of their cationic charge, can regulate the activity of TRPV1. Extracellular polyamines are present in considerable concentrations in the gastrointestinal tract and at synapses, and these levels increase during inflammation and cancer. Therefore, polyamine regulation of TRPV1 in these tissues may be relevant to a variety of physiological and pathophysiological states.  相似文献   

14.
Lack of detectable polyamines in an extremely halophilic bacterium   总被引:1,自引:0,他引:1  
Polyamines (putrescine, spermidine, spermine and other analogs) were not detectable by the dansylation procedure coupled with HPLC analysis in an extremely halophilic bacterium, Halobacterium halobium. Based on the detection limit of this analytical method, we estimated that the polyamine content in H. halobium, if present, was less than 0.06% of that of E. coli. Putrescine uptake and the metabolic conversion of ornithine or arginine to polyamines were negligible in this bacterium. In a H. halobium cell-free extract, a saturated amount of KC1 was needed for poly(U) directed polyphenylalanine synthesis; neither putrescine nor spermidine could replace KC1. These results suggest that polyamines may play an insignificant role in the growth of this halophilic bacterium.  相似文献   

15.
Using an original microcalorimetric method, we previously showed that in erythrocytes from cancer patients, the sodium pump activity was decreased and returned to normal in patient in remission. In addition we suggested that a plasma-borne factor probably secreted by cancer cells accounted for this impairment of the sodium transporter. In the present study we sought to identify this factor as well as its mechanism of action. First we determined the effect of culture media from undifferentiated and differentiated colon cancer cell lines (Caco-2 and HT29-D4) on the sodium pump activity of normal human erythrocytes. The inhibitory powers of culture media from undifferentiated cells were higher than those of differentiated cells (38.6 +/- 3.5% vs 6.9 +/- 4.6%, p<0.05 for Caco-2 and 45.8 +/- 6.2% vs 9.0 +/- 5.0%, <0.05 for HT29-D4). The use of alpha difluoro-methylomithine (2 mM) to inhibit ornithine decarboxylase, the rate-limiting enzyme for polyamine biosynthesis, dramatically reduced the sodium pump inhibition induced by the two undifferentiated cell lines (75% for Caco-2 and 89% for HT29-D4). Polyamines secreted by undifferentiated cells and then taken up by human erythrocytes thus appeared as inhibitors of sodium pump of these red blood cells. Putrescine, spermidine, and spermine (the main polyamines) exerted a similar inhibitory effect (33 +/- 2%). Tested in vitro on Na,KATPase, these polyamines (3 mM) were inhibitors (putrescine = 23 +/- 2%; spermidine= 48 +/- 3%; spermine= 55 +/- 2%) when assay condition for the ATPase reaction was suboptimal (Na+ = 10 mM; K+ = 1 mM). The inhibitory effect appeared to be related to their charge and their aliphatic chain length. The effect of spermidine and spermine on the ionic substrates and ATP-Mg showed that molecules decreased the affinity (Km) of the Na,K-ATPase for Na+ (11.24 +/- 0.49 mM for control vs 23.51 +/- 1.53 mM for spermine and 18.86 +/- 0.98 mM for spermidine), indicating that polyamines exerted their inhibitory effect in a competitive manner.  相似文献   

16.
Polyamines: mysterious modulators of cellular functions   总被引:33,自引:0,他引:33  
In recent years the functions of polyamines (putrescine, spermidine, and spermine) have been studied at the molecular level. Polyamines can modulate the functions of RNA, DNA, nucleotide triphosphates, proteins, and other acidic substances. A major part of the cellular functions of polyamines can be explained through a structural change of RNA which occurs at physiological concentrations of Mg(2+) and K(+) because most polyamines exist in a polyamine-RNA complex within cells. Polyamines were found to modulate protein synthesis at several different levels including stimulation of special kinds of protein synthesis, stimulation of the assembly of 30 S ribosomal subunits and stimulation of Ile-tRNA formation. Effects of polyamines on ion channels have also been reported and are gradually being clarified at the molecular level.  相似文献   

17.
The uptake characteristics of polyamines, such as spermine, spermidine and putrescine, have been investigated using brush-border membrane vesicles isolated from the small intestine of rats. The uptake of these polyamines into the membrane vesicles was high and the order of uptake was spermine greater than spermidine greater than putrescine at medium pH 7.5, respectively. The medium pH considerably affected the uptake of these polyamines and the amount of uptake increased remarkably with an increase of the medium pH (pH 7.5 or 8.0 greater than pH 5.5). An inward Na+ gradient did not stimulate the uptake rate of any of these polyamines. We have also examined the binding behaviour to the membrane lipid, phospholipids and total lipid, and there was a good correlation in the binding properties, pH-dependency and uptake activity, between the liposomes and brush-border membrane vesicles. These results suggest that the uptake of the polyamine into the vesicles consisted of rapid binding to the outside intestinal surface and slower binding to the inside membrane after permeation. Furthermore, findings from experiments concerning the mutual inhibition among these polyamines and concerning the effect of other polycations, having 2-5 amines in number, on the uptake of spermine, suggest that the number of amino groups in the polyamine molecules plays an important role in the uptake process into the brush-border membrane vesicles.  相似文献   

18.
The ability of polyamines (putrescine, spermidine, and spermine) to modify tyrosine hydroxylase (TH) activity was examined in crude or purified enzyme preparation and in adrenal tissue slices. Polyamines showed biphasic effects on TH activity in vitro at physiological pH 7.0, with an inhibitory effect at low concentrations (<1 mM) and a stimulatory effect at high concentrations. The degree of both inhibition and stimulation produced by polyamines at low and high concentrations, respectively, were proportional to the number of the amino group in the polyamines (putrescine < spermidine < spermine). The degree of inhibition by polyamines was much greater with purified enzyme than with crude enzyme preparations. Tyrosine hydroxylation in situ in adrenal tissue slices was stimulated by polyamines without inhibition at any concentrations tested. This evidence suggests that TH molecules in vivo could interact with polyamines or polyamine-like substances which inhibit the TH activity at physiological concentrations less than 1 mM.  相似文献   

19.
Polyamines(mainly putrescine(Put),spermidine(Spd),and spermine(Spm))have been widely found in a range of physiological processes and in almost all diverse environmental stresses.In various plant species,abiotic stresses modulated the accumulation of polyamines and related gene expression.Studies using loss-of-function mutants and transgenic overexpression plants modulating polyamine metabolic pathways confirmed protective roles of polyamines during plant abiotic stress responses,and indicated the possibility to improve plant tolerance through genetic manipulation of the polyamine pathway.Additionally,putative mechanisms of polyamines involved in plant abiotic stress tolerance were thoroughly discussed and crosstalks among polyamine,abscisic acid,and nitric oxide in plant responses to abiotic stress were emphasized.Special attention was paid to the interaction between polyamine and reactive oxygen species,ion channels,amino acid and carbon metabolism,and other adaptive responses.Further studies are needed to elucidate the polyamine signaling pathway,especially polyamine-regulated downstream targets and the connections between polyamines and other stress responsive molecules.  相似文献   

20.
Polyamines are small cationic molecules necessary for growth and differentiation in all cells. Although mammalian cells have been studied extensively, particularly as targets of polyamine antagonists, i.e. antitumor agents, polyamine metabolism has also been studied as a potential drug target in microorganisms. Since little is known concerning polyamine metabolism in the microsporidia, we investigated it in Encephalitozoon cuniculi, a microspordian associated with disseminated infections in humans. Organisms were grown in RK-13 cells and harvested using Percoll gradients. Electron microscopy indicated that the fractions banding at 1.051-1.059/g/ml in a microgradient procedure, and 1.102-1.119/g/ml in a scaled-up procedure were nearly homogenous, consisting of pre-emergent (immature) spores which showed large arrays of ribosomes near polar filament coils. Intact purified pre-emergent spores incubated with [1H] ornithine and methionine synthesized putrescine, spermidine, and spermine, while [14C]spermine was converted to spermidine and putrescine. Polyamine production from ornithine was inhibitable by DL-alpha-difluoromethylornithine (DFMO) but not by DL-alpha-difluoromethylarginine (DFMA). Cell-free extracts from mature spores released into the growth media had ornithine decarboxylase (ODC), S-adenosylmethionine decarboxylase (AdoMetdc), and spermidine/spermine N1-acetyltransferase (SSAT) activities. ODC activity was inhibited by DFMO, but not by DFMA. AdoMetdc was putrescine-stimulated and inhibited by methylglyoxal-bis(guanylhydrazone); arginine decarboxylase activity could not be detected. It is apparent from these studies that Encephalitozoon cuniculi pre-emergent spores have a eukaryotic-type polyamine biosynthetic pathway and can interconvert exogenous polyamines. Pre-emergent spores were metabolically active with respect to polyamine synthesis and interconversion, while intact mature spores harvested from culture supernatants had little metabolic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号