首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.

Key message

We isolated differentially expressed and dark-responsive genes during flower development and opening in petals of morning glory.

Abstract

Flower opening usually depends on petal expansion and is regulated by both genetic and environmental factors. Flower opening in morning glory (Ipomoea nil) is controlled by the dark/light regime just prior to opening. Opening was normal after 8- or 12-h dark periods but progressed very slowly after a 4-h dark period or in continuous light. Four genes (InXTH1InXTH4) encoding xyloglucan endotransglucosylase/hydrolases (XTHs) and three genes (InEXPA1InEXPA3) encoding alpha-expansins (EXPAs) were isolated. The expression patterns of InXTH2, InXTH3, and InXTH4 in petals were closely correlated with the rate of flower opening controlled by the length of the dark period prior to opening, but those of the EXPA genes were not. The expression pattern of InXTH1 gene was closely correlated with petal elongation. Suppression subtractive hybridization was used to isolate dark-responsive genes accompanying flower opening. The expressions of ten isolated genes were associated with the length of the dark period prior to flower opening. One gene was highly homologous to Arabidopsis PSEUDO-RESPONSE REGULATOR7, which is associated with the circadian clock and phytochrome signaling; another to Arabidopsis REVEILLE1, which affects the output of the circadian clock. Other genes were related to light responses, plant hormone effects and signal transduction. The possible roles of these genes in regulation of flower opening are discussed.  相似文献   

7.

Background

Lignin is embedded in the plant cell wall matrix, and impedes the enzymatic saccharification of lignocellulosic feedstocks. To investigate whether enzymatic digestibility of cell wall materials can be improved by altering the relative abundance of the two major lignin monomers, guaiacyl (G) and syringyl (S) subunits, we compared the degradability of cell wall material from wild-type Arabidopsis thaliana with a mutant line and a genetically modified line, the lignins of which are enriched in G and S subunits, respectively.

Results

Arabidopsis tissue containing G- and S-rich lignins had the same saccharification performance as the wild type when subjected to enzyme hydrolysis without pretreatment. After a 24-hour incubation period, less than 30% of the total glucan was hydrolyzed. By contrast, when liquid hot water (LHW) pretreatment was included before enzyme hydrolysis, the S-lignin-rich tissue gave a much higher glucose yield than either the wild-type or G-lignin-rich tissue. Applying a hot-water washing step after the pretreatment did not lead to a further increase in final glucose yield, but the initial hydrolytic rate was doubled.

Conclusions

Our analyses using the model plant A. thaliana revealed that lignin composition affects the enzymatic digestibility of LHW pretreated plant material. Pretreatment is more effective in enhancing the saccharification of A. thaliana cell walls that contain S-rich lignin. Increasing lignin S monomer content through genetic engineering may be a promising approach to increase the efficiency and reduce the cost of biomass to biofuel conversion.  相似文献   

8.
9.

Background

Anopheles gambiae mosquitoes exhibit an endophilic, nocturnal blood feeding behavior. Despite the importance of light as a regulator of malaria transmission, our knowledge on the molecular interactions between environmental cues, the circadian oscillators and the host seeking and feeding systems of the Anopheles mosquitoes is limited.

Results

In the present study, we show that the blood feeding behavior of mosquitoes is under circadian control and can be modulated by light pulses, both in a clock dependent and in an independent manner. Short light pulses (~2–5 min) in the dark phase can inhibit the blood-feeding propensity of mosquitoes momentarily in a clock independent manner, while longer durations of light stimulation (~1–2 h) can induce a phase advance in blood-feeding propensity in a clock dependent manner. The temporary feeding inhibition after short light pulses may reflect a masking effect of light, an unknown mechanism which is known to superimpose on the true circadian regulation. Nonetheless, the shorter light pulses resulted in the differential regulation of a variety of genes including those implicated in the circadian control, suggesting that light induced masking effects also involve clock components. Light pulses (both short and long) also regulated genes implicated in feeding as well as different physiological processes like metabolism, transport, immunity and protease digestions. RNAi-mediated gene silencing assays of the light pulse regulated circadian factors timeless, cryptochrome and three takeout homologues significantly up-regulated the mosquito's blood-feeding propensity. In contrast, gene silencing of light pulse regulated olfactory factors down-regulated the mosquito's propensity to feed on blood.

Conclusion

Our study show that the mosquito's feeding behavior is under circadian control. Long and short light pulses can induce inhibition of blood-feeding through circadian and unknown mechanisms, respectively, that involve the chemosensory system.  相似文献   

10.
Qian H  Hu B  Yu S  Pan X  Wu T  Fu Z 《PloS one》2012,7(3):e33347
  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

Background

Canine osteosarcoma is clinically nearly identical to the human disease, but is common and highly heritable, making genetic dissection feasible.

Results

Through genome-wide association analyses in three breeds (greyhounds, Rottweilers, and Irish wolfhounds), we identify 33 inherited risk loci explaining 55% to 85% of phenotype variance in each breed. The greyhound locus exhibiting the strongest association, located 150 kilobases upstream of the genes CDKN2A/B, is also the most rearranged locus in canine osteosarcoma tumors. The top germline candidate variant is found at a >90% frequency in Rottweilers and Irish wolfhounds, and alters an evolutionarily constrained element that we show has strong enhancer activity in human osteosarcoma cells. In all three breeds, osteosarcoma-associated loci and regions of reduced heterozygosity are enriched for genes in pathways connected to bone differentiation and growth. Several pathways, including one of genes regulated by miR124, are also enriched for somatic copy-number changes in tumors.

Conclusions

Mapping a complex cancer in multiple dog breeds reveals a polygenic spectrum of germline risk factors pointing to specific pathways as drivers of disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号