首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Three Clostridium botulinum type E strains were sequenced for the botulinum neurotoxin (BoNT) gene cluster, and 11 type E strains, representing a wide biodiversity, were sequenced for the bont/E gene. The total length of the BoNT/E gene cluster was 12,908 bp, and a novel gene (partial) designated orfx3, together with the complete orfx2 gene, was identified in the three type E strains for the first time. Apart from orfx3, the structure and organization of the neurotoxin gene cluster of the three strains were identical to those of previously published ones. Only minor differences (≤3%) in the nucleotide sequences of the gene cluster components were observed among the three strains and the published BoNT/E-producing clostridia. The orfx3, orfx2, orfx1, and p47 gene sequences of the three type E strains shared homologies of 81%, 67 to 76%, 78 to 79%, and 79 to 85%, respectively, with published sequences for type A1 and A2 C. botulinum. Analysis of bont/E from the 14 type E strains and 19 previously published BoNT/E-producing clostridia revealed six neurotoxin subtypes, with a new distinct subtype consisting of three Finnish isolates alone. The amino acid sequence of the subtype E6 neurotoxin differed 3 to 6% from the other subtypes, suggesting that these subtype E6 neurotoxins may possess specific antigenic or functional properties.  相似文献   

3.
A specific and sensitive combined selection and enrichment PCR procedure was developed for the detection of Clostridium botulinum types B, E, and F in fecal samples from slaughtered pigs. Two enrichment PCR assays, using the DNA polymerase rTth, were constructed. One assay was specific for the type B neurotoxin gene, and the other assay was specific for the type E and F neurotoxin genes. Based on examination of 29 strains of C. botulinum, 16 strains of other Clostridium spp., and 48 non-Clostridium strains, it was concluded that the two PCR assays detect C. botulinum types B, E, and F specifically. Sample preparation prior to the PCR was based on heat treatment of feces homogenate at 70 degrees C for 10 min, enrichment in tryptone-peptone-glucose-yeast extract broth at 30 degrees C for 18 h, and DNA extraction. The detection limits after sample preparation were established as being 10 spores per g of fecal sample for nonproteolytic type B, and 3.0 x 10(3) spores per g of fecal sample for type E and nonproteolytic type F with a detection probability of 95%. Seventy-eight pig fecal samples collected from slaughter houses were analyzed according to the combined selection and enrichment PCR procedure, and 62% were found to be PCR positive with respect to the type B neurotoxin gene. No samples were positive regarding the type E and F neurotoxin genes, indicating a prevalence of less than 1.3%. Thirty-four (71%) of the positive fecal samples had a spore load of less than 4 spores per g. Statistical analysis showed that both rearing conditions (outdoors and indoors) and seasonal variation (summer and winter) had significant effects on the prevalence of C. botulinum type B, whereas the effects of geographical location (southern and central Sweden) were less significant.  相似文献   

4.
5.
Seven strains of nonproteolytic Clostridium botulinum (types B, E, and F) were each inoculated into a range of anaerobic cooked puréed vegetables. After incubation at 10 degrees C for 15 to 60 days, all seven strains formed toxin in mushrooms, five did so in broccoli, four did so in cauliflower, three did so in asparagus, and one did so in kale. Growth kinetics of nonproteolytic C. botulinum type B in cooked mushrooms, cauliflower, and potatoes were determined at 16, 10, 8, and 5 degrees C. Growth and toxin production occurred in cooked cauliflower and mushrooms at all temperatures and in potatoes at 16 and 8 degrees C. The C. botulinum neurotoxin was detected within 3 to 5 days at 16 degrees C, 11 to 13 days at 10 degrees C, 10 to 34 days at 8 degrees C, and 17 to 20 days at 5 degrees C.  相似文献   

6.
The cluster of genes encoding the botulinum progenitor toxin and the upstream region including p21 and p47 were divided into three different gene arrangements (class I–III). To determine the gene similarity of the type E neurotoxin (BoNT/E) complex to other types, the gene organization in the upstream region of the nontoxic-nonhemagglutinin gene (ntnh) was investigated in chromosomal DNA from Clostridium botulinum type E strain Iwanai and C. butyricum strain BL6340. The gene cluster of type E progenitor toxin (Iwanai and BL6340) was similar to those of type F and type A (from infant botulism in Japan), but not to those of types A, B, and C. Though genes for the hemagglutinin component and P21 were not discovered, genes encoding P47, NTNH, and BoNT were found in type E strain Iwanai and C. butyricum strain BL6340. However, the genes of ORF-X1 (435 bp) and ORF-X2 (partially sequenced) were present just upstream of that of P47. The orientation of these genes was in inverted direction to that of p47. The gene cluster of type E progenitor toxin (Iwanai and BL6340) is, therefore, a specific arrangement (class IV) among the genes encoding components of the BoNT complex.  相似文献   

7.
The partial nucleotide sequence ( approximately 10 kb) of the cluster of genes encoding the botulinum neurotoxin complex in Clostridium botulinum type A strain Mascarpone was determined. The analysis revealed six ORFs (orfs), which were organized as in the type A2 and type A3 botulinum neurotoxin gene clusters of strains Kyoto-F and NCTC 2916, respectively. While the orfs at the proximal and distal ends of the sequence (orfX2 and bont/A genes) shared a high level of similarity with the corresponding sequences of strain Kyoto-F, the segment encompassing the orfX1 and botR/A genes within the sequence exhibited a higher degree of homology to the related region in strain NCTC 2916. The mosaic structure of the Mascarpone neurotoxin gene cluster suggests recombinational exchanges.  相似文献   

8.
Neurotoxin cluster gene sequences and arrangements were elucidated for strains of Clostridium botulinum encoding botulinum neurotoxin (BoNT) subtypes A3, A4, and a unique A1-producing strain (HA(-) Orfx(+) A1). These sequences were compared to the known neurotoxin cluster sequences of C. botulinum strains that produce BoNT/A1 and BoNT/A2 and possess either a hemagglutinin (HA) or an Orfx cluster, respectively. The A3 and HA(-) Orfx(+) A1 strains demonstrated a neurotoxin cluster arrangement similar to that found in A2. The A4 strain analyzed possessed two sets of neurotoxin clusters that were similar to what has been found in the A(B) strains: an HA cluster associated with the BoNT/B gene and an Orfx cluster associated with the BoNT/A4 gene. The nucleotide and amino acid sequences of the neurotoxin cluster-specific genes were determined for each neurotoxin cluster and compared among strains. Additionally, the ntnh gene of each strain was compared on both the nucleotide and amino acid levels. The degree of similarity of the sequences of the ntnh genes and corresponding amino acid sequences correlated with the neurotoxin cluster type to which the ntnh gene was assigned.  相似文献   

9.
We sequenced for the first time the complete neurotoxin gene cluster of a nonproteolytic Clostridium botulinum type F. The neurotoxin gene cluster contained a novel gene arrangement that, compared to other C. botulinum neurotoxin gene clusters, lacked the regulatory botR gene and contained an intergenic is element between its orfX2 and orfX3 genes.  相似文献   

10.
Botulism is diagnosed by detecting botulinum neurotoxin and Clostridium botulinum cells in the patient and in suspected food samples. In this study, a multiplex PCR assay for the detection of Clostridium botulinum types A, B, E, and F in food and fecal material was developed. The method employs four new primer pairs with equal melting temperatures, each being specific to botulinum neurotoxin gene type A, B, E, or F, and enables a simultaneous detection of the four serotypes. A total of 43 C. botulinum strains and 18 strains of other bacterial species were tested. DNA amplification fragments of 782 bp for C. botulinum type A alone, 205 bp for type B alone, 389 bp for type E alone, and 543 bp for type F alone were obtained. Other bacterial species, including C. sporogenes and the nontoxigenic nonproteolytic C. botulinum-like organisms, did not yield a PCR product. Sensitivity of the PCR for types A, E, and F was 10(2) cells and for type B was 10 cells per reaction mixture. With a two-step enrichment, the detection limit in food and fecal samples varied from 10(-2) spore/g for types A, B, and F to 10(-1) spore/g of sample material for type E. Of 72 natural food samples investigated, two were shown to contain C. botulinum type A, two contained type B, and one contained type E. The assay is sensitive and specific and provides a marked improvement in the PCR diagnostics of C. botulinum.  相似文献   

11.
Botulinum neurotoxin (BoNT) is the most poisonous substances known and its eight toxin types (A to H) are distinguished by the inability of polyclonal antibodies that neutralize one toxin type to neutralize any of the other seven toxin types. Infant botulism, an intestinal toxemia orphan disease, is the most common form of human botulism in the United States. It results from swallowed spores of Clostridium botulinum (or rarely, neurotoxigenic Clostridium butyricum or Clostridium baratii) that germinate and temporarily colonize the lumen of the large intestine, where, as vegetative cells, they produce botulinum toxin. Botulinum neurotoxin is encoded by the bont gene that is part of a toxin gene cluster that includes several accessory genes. We sequenced for the first time the complete botulinum neurotoxin gene cluster of nonproteolytic C. baratii type F7. Like the type E and the nonproteolytic type F6 botulinum toxin gene clusters, the C. baratii type F7 had an orfX toxin gene cluster that lacked the regulatory botR gene which is found in proteolytic C. botulinum strains and codes for an alternative σ factor. In the absence of botR, we identified a putative alternative regulatory gene located upstream of the C. baratii type F7 toxin gene cluster. This putative regulatory gene codes for a predicted σ factor that contains DNA-binding-domain homologues to the DNA-binding domains both of BotR and of other members of the TcdR-related group 5 of the σ70 family that are involved in the regulation of toxin gene expression in clostridia. We showed that this TcdR-related protein in association with RNA polymerase core enzyme specifically binds to the C. baratii type F7 botulinum toxin gene cluster promoters. This TcdR-related protein may therefore be involved in regulating the expression of the genes of the botulinum toxin gene cluster in neurotoxigenic C. baratii.  相似文献   

12.
13.
Botulinum neurotoxin (BoNT) producing clostridia contain genes encoding a specific neurotoxin serotype (A-G) and nontoxic associated proteins that form the toxin complex. The nontoxic nonhemagglutinin (NTNH) is a conserved component of the toxin complex in all seven toxin types. A real-time PCR assay that utilizes a locked nucleic acid hydrolysis probe to target the NTNH gene was developed to detect bacterial strains harboring the botulinum neurotoxin gene cluster. The specificity of the assay for Clostridium botulinum types A-G, Clostridium butyricum type E and Clostridium baratii type F was demonstrated using a panel of 73 BoNT producing clostridia representing all seven toxin serotypes. In addition, exclusivity of the assay was demonstrated using non-botulinum toxin producing clostridia (7 strains) and various enteric bacterial strains (n=27). Using purified DNA, the assay had a sensitivity of 4-95 genome equivalents. C. botulinum type A was detected directly in spiked stool samples at 10(2)-10(3) CFU/ml. Stool spiked with 1 CFU/ml was detected when the sample was inoculated into enrichment broth and incubated for 24 h. These results indicate that the NTNH real-time PCR assay can be used to screen enrichment cultures of primary specimens at earlier time points (24 h) than by toxin detection of unknown culture supernatants (up to 5 days).  相似文献   

14.
15.
Neurotoxins produced by strains of Clostridium sp. are belonging to the most toxic biological substances. In the study phenotypes and genotypes of C. botulinum strains in animal studies in vivo and on the DNA level were evaluated, respectively. Additionally, the presence of genes encoding BoNT toxins of A, B, and E types among strains of Clostridium sp. were identified. In case of C. botulinum DNA was isolated from vegetative bacterial cells and from spores. Two different genes encoding two different neurotoxins harboured by three strains of Ae biotype/ae genotype, and by two strains of B biotype/be genotype were detected. Additionally, above E type C. botulinum strains, the presence of gene encoding E type neurotoxin, was found in genome of two C. baratii, two C. butyricum, and C. bifidobacterium, and C. oedematicum strains. C. bifidobacterium and C. oedematicum strains positive for presence of gene encoding E type neurotoxin, were found negative for E neurotoxin production in vivo in TN test. The study indicates that genes encoding BoNT/E neurotoxins are very common among Clostridium species. Phenotype and genotype analysis indicated co-presence of B phenotype together with be genotype and A phenotype together with ae genotype among C. botulinum strains.  相似文献   

16.
17.
18.
19.
The polymerase chain reaction (PCR) was used as the basis for the development of highly sensitive and specific diagnostic tests for organisms harboring botulinum neurotoxin type A through E genes. Synthetic DNA primers were selected from nucleic acid sequence data for Clostridium botulinum neurotoxins. Individual components of the PCR for each serotype (serotypes A through E) were adjusted for optimal amplification of the target fragment. Each PCR assay was tested with organisms expressing each of the botulinum neurotoxin types (types A through G), Clostridium tetani, genetically related nontoxigenic organisms, and unrelated strains. Each assay was specific for the intended target. The PCR reliably identified multiple strains having the same neurotoxin type. The sensitivity of the test was determined with different concentrations of genomic DNA from strains producing each toxin type. As little as 10 fg of DNA (approximately three clostridial cells) was detected. C. botulinum neurotoxin types A, B, and E, which are most commonly associated with human botulism, could be amplified from crude DNA extracts, from vegetative cells, and from spore preparations. This suggests that there is great potential for the PCR in the identification and detection of botulinum neurotoxin-producing strains.  相似文献   

20.
Recently, it has been shown that two Clostridium butyricum strains (ATCC 43181 and ATCC 43755), isolated from cases of infant botulism, produce a botulinal neurotoxin type E (BoNT/E). Here we have determined the nucleotide sequences of the BoNT/E genes of these two C. butyricum strains and from C. botulinum E strain Beluga. We show that the sequences of the BoNT/E genes from the two C. butyricum strains are identical and differ in only 64 positions resulting in 39 amino acid changes (97% identity at the amino acid level) from that derived from C. botulinum. Our data suggest a transfer of the BoNT/E gene from C. botulinum to the originally nontoxigenic C. butyricum strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号