首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Epidermal growth factor receptor (EGF-R) overexpression is common in a large number of solid tumors and represents a negative prognostic indicator. Overexpression of EGF-R is strongly tumor associated, and this tyrosine kinase type receptor is considered an attractive target for Ab therapy. In this study, we describe the evaluation of mAb 2F8, a high avidity human mAb (IgG1kappa) directed against EGF-R, developed using human Ig transgenic mice. mAb 2F8 effectively blocked binding of EGF and TGF-alpha to the EGF-R. At saturating concentrations, 2F8 completely blocked EGF-R signaling and inhibited the in vitro proliferation of EGF-R-overexpressing A431 cells. At much lower concentrations, associated with low receptor occupancy, 2F8 induced efficient Ab-dependent cell-mediated cytotoxicity (ADCC) in vitro. In vivo studies showed potent antitumor effects in models with A431 tumor xenografts in athymic mice. Ex vivo analysis of the EGF-R status in tumor xenografts in 2F8-treated mice revealed that there are two therapeutic mechanisms. First, blocking of EGF-R signaling, which is most effective at complete receptor saturation and therefore requires a relatively high Ab dose. Second, at very low 2F8 receptor occupancy, we observed potent antitumor effects in mice, which are likely based on the engagement of immune effector mechanisms, in particular ADCC. Taken together, our findings indicate that ADCC represents an important effector mechanism of this Ab, which is effective at relatively low dose.  相似文献   

3.
Sortase-mediated protein ligation is a biological covalent conjugation system developed from the enzymatic cell wall display mechanism found in Staphylococcus aureus. This three-component system requires: (i) purified Sortase A (SrtA) enzyme; (ii) a substrate containing the LPXTG peptide recognition sequence; and (iii) an oligo-glycine acceptor molecule. We describe cloning of the single-chain antibody sc528, which binds to the extracellular domain of the epidermal growth factor receptor (EGFR), from the parental monoclonal antibody and incorporation of a LPETGG tag sequence. Utilizing recombinant SrtA, we demonstrate successful incorporation of biotin from GGG-biotin onto sc528. EGFR is an important cancer target and is over-expressed in human tumor tissues and cancer lines, such as the A431 epithelial carcinoma cells. SrtA-biotinylated sc528 specifically bound EGFR expressed on A431 cells, but not negative control lines. Similarly, when sc528 was labeled with fluorescein we observed antigen-specific labeling. The ability to introduce functionality into recombinant antibodies in a controlled, site-specific manner has applications in experimental, diagnostic, and potentially clinical settings. For example, we demonstrate addition of all three reaction components in situ within a biosensor flow cell, resulting in oriented covalent capture and presentation of sc528, and determination of precise affinities for the antibody-receptor interaction.  相似文献   

4.
In the present study, we conducted a Phase 1 study of a recombinant anti-EGFR monoclonal antibody (CMAB009) that has the same amino acid sequence as cetuximab. The purpose of this study was to evaluate the safety, pharmacokinetics and potential benefit of CMAB009 in Chinese patients with advanced chemotherapy-resistant epithelial malignancies. In this study 18 patients were treated with two successive treatment schedules comprising a single-dose escalation phase followed by a weekly, multiple-dose extension phase. No dose-limiting toxicity was reported during the evaluation period. CMAB009-associated toxicity was minimal, and the most commonly reported adverse events were fever, asthenia, transaminase elevation, nausea and skin toxicities. CMAB009 exhibited a non-linear PK profile over the dose range of 100–400 mg/m2. In the single-dose phase, CMAB009 reached peak serum concentrations at the end of the infusion and then declined slowly with a Tl/2 of 77.15 ± 13.96 h, 79.79 ± 6.91 h and 86.25 ± 9.93 h after infusion of 100, 250 and 400 mg/m2 based on a two compartmental model analysis. Mean Cmax increased roughly dose-proportional while AUC0-∞ showed a greater than dose-proportionate increase from 100 to 400 mg/m2. After multiple infusions, serum concentrations dropped slowly and the Tl/2 was 102.25 ± 33.54 h and 118.91 ± 29.12 h based on a two compartmental model analysis. No neutralizing anti-antibody antibodies were detectable. Two patients achieved partial remissions. The study results suggest that CMAB009 shows acceptable tolerance and primary efficacy and should be studied as a treatment in patients with advanced chemotherapy-resistant epithelial malignancies.Key words: epidermal growth factor receptor, monoclonal antibody, pharmacokinetics, safety, epithelial malignancies  相似文献   

5.
Long-term storage of recombinant human epidermal growth factor (EGF), an important promoter of cell division, results in its conversion to a new species that elutes later than native EGF on a reverse-phase column. This new species, called EGF-X, has only 20% of the biological activity of native EGF. Peptide mapping indicated that the primary structure of EGF-X differs from that of native EGF solely within the first 13 residues. N-Terminal sequencing of EGF-X revealed that about 30% of the polypeptides have been cleaved at the Asp-3/Ser-4 bond. In addition, the yields after the His residue at position 10 were extremely low, indicating that a chemical modification occurs at residue 11 that is incompatible with Edman degradation. We hypothesized that aspartic acid 11 had been converted to an isoaspartyl residue, and this was confirmed with L-isoaspartyl/D-aspartyl methyltransferase, an enzyme that methylates the side-chain carboxyl group of L-isoaspartyl residues but does not recognize normal L-aspartyl residues. EGF-X, but not EGF, was found to be a substrate of this enzyme, and proteolytic digestion of EGF-X with thermolysin localized the site of methylation to a nine-residue peptide containing position 11. We did not observe formation of the isoaspartyl derivative in EGF that had been denatured by reduction of its disulfide bonds. In addition, replacement of the aspartyl residue at position 11 with glutamic acid resulted in a fully active EGF derivative that does not form detectable amounts of EGF-X. We propose that conversion of this aspartyl residue to isoaspartate is a significant nonenzymatic degradation reaction affecting this growth factor.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Mouse monoclonal antibodies to the human epidermal growth factor (EGF) receptor were raised by immunizing with plasma membrane vesicles prepared from A431 cells. This paper describes the characterization of one of the IgG anti-receptor monoclonal antibodies generated and its use to probe the role of transforming growth factor (TGF) in the autonomous growth of a melanoma cell line in culture. This antibody blocks: 1) the binding of 125I-EGF to the A431 EGF receptor; 2) the EGF stimulation of the EGF-dependent protein kinase in vitro; and 3) human fibroblast DNA synthesis and proliferation in culture. It can precipitate the EGF receptor from metabolically labeled A431 cells and human fibroblasts and these receptors have indistinguishable peptide maps. No EGF receptor could be detected by immunoprecipitation after fibroblasts were treated with EGF or conditioned medium from the melanoma cells which secrete EGF-like TGF (alpha TGF). The antibody itself did not down-regulate the receptor but could block down-regulation caused by EGF and alpha TGF. Despite its ability to block EGF-stimulated growth and down-regulation in fibroblasts, the antibody was unable to block the growth and soft agar colony formation of alpha TGF-secreting melanoma cells, nor could the antibody detect EGF receptor in these cells under the conditions developed to prevent down-regulation and lysosomal degradation of the EGF receptor. These studies suggest that these melanoma cells do not have the intact EGF receptor and that the secretion of alpha TGF by these cells plays no role in their growth in culture. The absence of receptor cannot be explained by down-regulation by secreted alpha TGF.  相似文献   

7.
8.
Asparagine 54 of alpha-sarcin is a conserved residue within the proteins of the ribotoxin family of microbial ribonucleases. It is located in loop 2 of the protein, which lacks repetitive secondary structure elements but exhibits a well-defined conformation. Five mutant variants at this residue have been produced and characterized. The spectroscopic characterization of these proteins indicates that the overall conformation is not changed upon mutation. Activity and denaturation assays show that Asn-54 largely contributes to protein stability, and its presence is a requirement for the highly specific inhibitory activity of these ribotoxins on ribosomes.  相似文献   

9.
Infection with human papillomaviruses (HPVs) characterizes a distinct subset of head and neck squamous cell cancers (HNSCCs). HPV-positive HNSCC preferentially affect the oropharynx and tonsils. Localized HPV-positive HNSCCs have a favorable prognosis and treatment outcome. However, the impact of HPV in advanced or metastatic HNSCC remains to be defined. In particular, it is unclear whether HPV modulates the response to cetuximab, an antibody targeting the epidermal growth factor receptor (EGFR), which is a mainstay of treatment of advanced HNSCC. To this end, we have examined the sensitivity of HPV-positive and -negative HNSCC models to cetuximab and cytotoxic drugs in vitro and in vivo. In addition, we have stably expressed the HPV oncogenes E6 and E7 in cetuximab-sensitive cancer cell lines to specifically investigate their role in the antibody response. The endogenous HPV status or the expression of HPV oncogenes had no significant impact on cetuximab-mediated suppression of EGFR signaling and proliferation in vitro. Cetuximab effectively inhibited the growth of E6- and E7-expressing tumors grafted in NOD/SCID mice. In support, formalin-fixed, paraffin-embedded tumor samples from cetuximab-treated patients with recurrent or metastatic HNSCC were probed for p16INK4a expression, an established biomarker of HPV infection. Response rates (45.5% versus 45.5%) and median progression-free survival (97 versus 92 days) following cetuximab-based therapy were similar in patients with p16INK4A-positive and p16INK4A-negative tumors. In conclusion, HPV oncogenes do not modulate the anti-EGFR antibody response in HSNCC. Cetuximab treatment should be administered independently of HPV status.  相似文献   

10.
Experimental evidences supporting the epidermal growth factor receptor (EGFR) as an important molecule for tumor metastasis had been accumulated. Currently, anti-EGFR monoclonal antibodies (mAbs) constitute a promising approach for the treatment of patients with metastatic tumors. However, the mechanisms associated with the potent anti-metastatic effect of these mAbs have not been completely elucidated due to the lack of appropriate syngeneic preclinical models. In this paper, we have investigated the effects of 7A7, an antibody specific to murine EGFR, on the metastatic properties of D122 murine lung carcinoma. 7A7 mAb significantly impaired metastatic spread of D122 cells in C57BL/6 mice by direct anti-proliferative and pro-apoptotic effects on tumor metastasis. 7A7 mAb capacity to inhibit EGFR activation on D122 cells could contribute to its anti-metastatic effect. In addition, 7A7 mAb was able to induce in vitro antibody-dependent cell-mediated cytotoxicity on D122 cells. Interestingly, 7A7 mAb treatment increased the number of natural killer cells, T lymphocytes and dendritic cells infiltrating the metastatic sites. More strikingly, depletion of CD8+ and CD4+ T cells in vivo completely abrogated the 7A7 mAb anti-metastatic activity whereas function of natural killer cells was irrelevant. This study supports an in vivo role for T cell response in the mechanism of action of anti-EGFR mAbs, suggesting the induction of an adjuvant effect. This work was supported by the Cuban Government.  相似文献   

11.
Infection by the parapoxvirus orf virus causes proliferative skin lesions in which extensive capillary proliferation and dilation are prominent histological features. This infective phenotype may be linked to a unique virus-encoded factor, a distinctive new member of the vascular endothelial growth factor (VEGF) family of molecules. We constructed a recombinant orf virus in which the VEGF-like gene was disrupted and show that inactivation of this gene resulted in the loss of three VEGF activities expressed by the parent virus: mitogenesis of vascular endothelial cells, induction of vascular permeability, and activation of VEGF receptor 2. We used the recombinant orf virus to assess the contribution of the viral VEGF to the vascular response seen during orf virus infection of skin. Our results demonstrate that the viral VEGF, while recognizing a unique profile of the known VEGF receptors (receptor 2 and neuropilin 1), is able to stimulate a striking proliferation of blood vessels in the dermis underlying the site of infection. Furthermore, the data demonstrate that the viral VEGF participates in promoting a distinctive pattern of epidermal proliferation. Loss of a functional viral VEGF resulted in lesions with markedly reduced clinical indications of infection. However, viral replication in the early stages of infection was not impaired, and only at later times did it appear that replication of the recombinant virus might be reduced.  相似文献   

12.
Beta-2-glycoprotein I (beta(2)GPI) is mainly produced by the liver and is found in plasma partially associated to lipoproteins. Although various properties have been attributed to this protein, its physiological role remains still unclear. We investigated its expression in cultured liver cells and in regenerating liver. Expression studies in HepG2 cells demonstrate that beta(2)GPI mRNA is regulated in a cell cycle-dependent manner, with very low expression in low cycling conditions and increasing levels in proliferating cells. p21 WAF-dependent growth arrest, induced by butyrate treatment, down-regulate beta(2)GPI mRNA levels. Immunolocalization in normal rat liver shows a non-homogeneous pattern, being mainly present in the centrolobular area; post-hepatectomy regenerating rat liver is uniformly immunostained and mitotic elements show the highest protein expression. Albumin gene expression, studies as control liver specific product, was not affected by sodium butyrate induced growth arrest. As previously reported for endothelial cells, beta(2)GPI behaves as survival factor for HepG2 cells: when increasing amounts of the protein (10-50 microg) have been added to serum deficient cultured liver cells a progressive reduced cell loss was observed. In conclusion, the present data demonstrate that beta(2)GPI gene expression is strictly related to the proliferative status of hepatic cells and that this protein could play a role in maintaining liver cells vitality when exposed to different stress factors such as regeneration after partial hepatectomy or growth factors depletion.  相似文献   

13.
A cloned human hepatoma cell line (Li-7A), possessing epidermal growth factor (EGF) receptors numbering in the range of 10-20 pmol/10(6) cells, was inhibited in its growth by EGF as well as an antagonist monoclonal antibody (MoAb) to the EGF receptor. The mode of action of the two ligands of EGF receptors appeared to be different as indicated by the following results: 1) EGF induced marked alteration in cell morphology, whereas the antibody did not; 2) cellular protein accumulated in the EGF-treated cells but not in the antibody treated cells; and 3) ectoATPase activities were greatly enhanced in Li-7A cells treated with EGF and cholera toxin but were unaffected in cells treated with antibody and cholera toxin. The last result also suggests that expression of ectoATPase activities is under the regulation of both EGF and cholera toxin. Li-7A cells provide an additional valuable experimental system for the study of EGF action, as well as the interactive effects of EGF and cholera toxin. The enrichment of the ATPase activities in the EGF-cholera toxin-treated cells can be exploited for the detailed study and isolation of these enzymes and elucidation of their physiological functions.  相似文献   

14.
《MABS-AUSTIN》2013,5(3):273-288
The epidermal growth factor receptor (EGFR) and the type I insulin-like growth factor receptor (IGF-1R) are two cell surface receptor tyrosine kinases known to cooperate to promote tumor progression and drug resistance. Combined blockade of EGFR and IGF-1R has shown improved anti-tumor activity in preclinical models. Here, we report the characterization of a stable IgG-like bispecific antibody (BsAb) dual-targeting EGFR and IGF-1R that was developed for cancer therapy. The BsAb molecule (EI-04), constructed with a stability-engineered single chain variable fragment (scFv) against IGF-1R attached to the carboxyl-terminus of an IgG against EGFR, displays favorable biophysical properties for biopharmaceutical development. Biochemically, EI-04 bound to human EGFR and IGF-1R with sub nanomolar affinity, co-engaged the two receptors simultaneously, and blocked the binding of their respective ligands with similar potency compared to the parental monoclonal antibodies (mAbs). In tumor cells, EI-04 effectively inhibited EGFR and IGF-1R phosphorylation, and concurrently blocked downstream AKT and ERK activation, resulting in greater inhibition of tumor cell growth and cell cycle progression than the single mAbs. EI-04, likely due to its tetravalent bispecific format, exhibited high avidity binding to BxPC3 tumor cells co-expressing EGFR and IGF-1R, and consequently improved potency at inhibiting IGF-driven cell growth over the mAb combination. Importantly, EI-04 demonstrated enhanced in vivo anti-tumor efficacy over the parental mAbs in two xenograft models, and even over the mAb combination in the BxPC3 model. Our data support the clinical investigation of EI-04 as a superior cancer therapeutic in treating EGFR and IGF-1R pathway responsive tumors.  相似文献   

15.
Insulin-like growth factor II is a fetal promoter of cell proliferation that is involved in some forms of cancer and overgrowth syndromes in humans. Here, we provide two sources of genetic evidence for a novel, pivotal role of locally produced insulin-like growth factor II in the development of atherosclerosis. First, we show that homozygosity for a disrupted insulin-like growth factor II allele in mice lacking apolipoprotein E, a widely used animal model of atherosclerosis, results in aortic lesions that are approximately 80% smaller and contain approximately 50% less proliferating cells compared with mice lacking only apolipoprotein E. Second, targeted expression of an insulin-like growth factor II transgene in smooth muscle cells, but not the mere elevation of circulating levels of the peptide, causes per se aortic focal intimal thickenings. The insulin-like growth factor II transgenics presented here are the first viable mutant mice spontaneously developing intimal masses. These observations provide the first direct evidence for an atherogenic activity of insulin-like growth factor II in vivo.  相似文献   

16.
为避免一种来自五特征转基因小鼠的全人VEGF单克隆IgM抗体分子量大的不足,本研究探讨了该抗体单一重链可变区的功能特性。首先,PCR获得该抗体的重链可变区,将该序列克隆至pET28a表达载体内,在大肠杆菌中进行了诱导表达。通过变性纯化和复性等方法获得了具有生物学活性的16kDa重组抗体片段——rhVVH。体外结合实验表明,rhVVH保留有完整免疫球蛋白的人VEGF结合活性。人脐静脉内皮细胞(HUVEC)增殖抑制实验表明:rhVVH可以剂量依赖性的抑制HUVEC的增殖。上述结果揭示了该抗体单一重链可变区保留有完整抗体的部分功能,为进一步开展全人源VEGF单克隆IgM抗体小型化研究奠定了基础。  相似文献   

17.
The Src homology 2-containing phosphotyrosine phosphatase (SHP2) is primarily a positive effector of receptor tyrosine kinase signaling. However, the molecular mechanism by which SHP2 effects its biological function is unknown. In this report, we provide evidence that defines the molecular mechanism and site of action of SHP2 in the epidermal growth factor-induced mitogenic pathway. We demonstrate that SHP2 acts upstream of Ras and functions by increasing the half-life of activated Ras (GTP-Ras) in the cell by interfering with the process of Ras inactivation catalyzed by Ras GTPase-activating protein (RasGAP). It does so by inhibition of tyrosine phosphorylation-dependent translocation of RasGAP to the plasma membrane, to its substrate (GTP-Ras) microdomain. Inhibition is achieved through the dephosphorylation of RasGAP binding sites at the level of the plasma membrane. We have identified Tyr992 of the epidermal growth factor receptor (EGFR) to be one such site, since its mutation to Phe renders the EGFR refractory to the effect of dominant-negative SHP2. To our knowledge, this is the first report to outline the site and molecular mechanism of action of SHP2 in EGFR signaling, which may also serve as a model to describe its role in other receptor tyrosine kinase signaling pathways.  相似文献   

18.
Both the epidermal growth factor receptor (EGFR) and the insulin-like growth factor receptor (IGFR) have been implicated in the tumorigenesis of a variety of cancers. Here we propose that simultaneous targeting of both receptors with a bispecific antibody would lead to enhanced antitumor activity. To this end, we produced a recombinant human IgG-like bispecific antibody, a Di-diabody, using the variable regions from two antagonistic antibodies: IMC-11F8 to EGFR and IMC-A12 to IGFR. The Di-diabody binds to both EGFR and IGFR and effectively blocked both EGF- and IGF-stimulated receptor activation and tumor cell proliferation. The Di-diabody also inherited the biological properties from both of its parent antibodies; it triggers rapid and significant IGFR internalization and degradation and mediates effective antibody-dependent cellular cytotoxicity in a variety of tumor cells. Finally, the Di-diabody strongly inhibited the growth of two different human tumor xenografts in vivo. Our results underscore the benefits of simultaneous targeting of two tumor targets with bispecific antibodies.  相似文献   

19.
Monoclonal antibodies (MoAbs) were developed against epidermal growth factor (EGF) receptor on the human epidermoid carcinoma cell line A431. The A431 antigen recognized by the MoAbs has an apparent molecular weight of approximately 170,000, with the same molecular weight as the CNE-2 cell line (poorly differentiated nasopharyngeal carcinoma). Administration of anti-EGF receptor MoAbs inhibited tumor formation, caused by the CNE-2 and A431 cell lines, in athymic mice. When the same MoAbs were used in therapy against Tca8113 (a human tongue carcinoma) and HeLa cells (a human cervical carcinoma), tumor growth was not affected. The number of EGF receptors and the apparent dissociation constants for 125I-EGF on CNE-2 and A431 were 1.3 x 10(5)/cell (Kd 7.7 x 10(-8) M) and 1.4 x 10(6)/cell (Kd 2.4 x 10(-9) M), respectively. Three anti-EGF receptor MoAbs were used in these studies. MoAbs 3 and 176, capable of competing with EGF for receptor binding, showed significant tumor growth inhibition. MoAb 101 was incapable of blocking the binding of EGF to its receptor and was not as effective as MoAbs 3 and 176 in tumor growth inhibition. Our observation is that in vitro, MoAb anti-EGF receptor is cytostatic, rather than cytocidal, against CNE-2 and A431.  相似文献   

20.
Although the EGFR (epidermal growth factor receptor) was discovered over 30?years ago, its mechanism of activation is still the subject of intense study. There are many published studies on the mechanism of EGFR activation and regulation, including biochemical and biophysical analyses and crystallographic structures of EGFR in different activation states and conformations, mutated at various amino acids or bound to different pharmacological inhibitors. The cumulative biochemical, biophysical and structural data have led to a nearly complete account of the mechanism of activation of EGFR. The role of the JXM (juxtamembrane) domain in EGFR structure and activity has only recently begun to be elucidated through biochemical, biophysical and structural studies. In the present article, I review the studies that have highlighted the role of the JXM domain in EGFR activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号