首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
It has been hypothesized that exposure of cells to hyperthermia results in an increased flux of reactive oxygen species (ROS), primarily superoxide anion radicals, and that increasing antioxidant enzyme levels will result in protection of cells from the toxicity of these ROS. In this study, the prostate cancer cell line, PC-3, and its manganese superoxide dismutase (MnSOD)-overexpressing clones were subjected to hyperthermia (43°C, 1?h). Increased expression of MnSOD increased the mitochondrial membrane potential (MMP). Hyperthermic exposure of PC-3 cells resulted in increased ROS production, as determined by aconitase inactivation, lipid peroxidation, and H2O2 formation with a reduction in cell survival. In contrast, PC-3 cells overexpressing MnSOD had less ROS production, less lipid peroxidation, and greater cell survival compared to PC-3 Wt cells. Since MnSOD removes superoxide, these results suggest that superoxide free radical or its reaction products are responsible for part of the cytotoxicity associated with hyperthermia and that MnSOD can reduce cellular injury and thereby enhance heat tolerance.  相似文献   

2.
Region-wise interactive effects of age, swim intensity, and duration on exercise performance in the myocardium and serum lipid profile in young (4 months) and middle-aged (12 months) rats were examined. Animals were allocated to the sedentary control (SE-C) or one of the nine trainee groups. Swim training was for 6 days/week and for 4 weeks at 3 durations (20, 40, and 60 min/day) and intensities (2%, low; 3%, medium; 5%, high). Swim velocity and external work showed an age-related decline with low-intensity of 20 min/day in the middle aged. Reduction in serum cholesterol, low-density lipoproteins (LDLs), and triglycerides were accompanied by elevated levels in high-density lipoprotein in the low-to-moderately trained ones for 20 and 40 min/day. Training at 2%, intensity for 20 min/day was sufficient to alter the blood lipid profile and improve swim performance, and endurance in terms of blood lactate. A concomitant increase in Mn-superoxide dismutase (Mn-SOD) activity and reduced malondialdehyde in the left ventricle (LV) and right ventricle (RV) were evident. Lipofuscin was higher in the LV compared to RV. Our results reflect the minimization of free radical generation through appropriate exercise protocols. Our findings on improved blood lipid profile could be related to lower free radicals, which would otherwise oxidize LDLs. Further, swim training when initiated in the young and middle age for as low as 20 min/day at 2% intensity improves the Mn-SOD in the LV and RV. However, the adaptive response of the LV was weaker when compared to the RV, more so in the middle aged.  相似文献   

3.
Native and azide reacted Cu, Zn superoxide dismutase in aqueous and mixed water-glycerol solution have been investigated by EPR spectroscopy at low temperature. An accurate computer simulation, based on a well established theoretical model which has been reformulated for rhombic symmetry, has shown that the EPR spectrum of the copper ion in the native protein shows a significant g and A strain in the parallel region. The strain arises from a distribution of the ligand field strengths onto the metal ion and this could be traced back to the existence of a multiplicity of conformational states in the protein molecule. The strain is reduced in the presence of azide which is known to bind directly to the copper atom and to give rise to a more relaxed configuration corresponding to a square pyramidal geometry in which the apical ligand occupies an elongated position. In both samples, addition of glycerol further reduces the strain, indicating that the solvent is directly coupled to the protein matrix, thereby modulating the structural heterogeneity displayed by the protein molecule. Received: 6 June 1996 / Accepted: 9 April 1997  相似文献   

4.
Wang H  Shen H  Wang Y  Li Z  Yin H  Zong H  Jiang J  Gu J 《FEBS letters》2005,579(5):1279-1284
It is known that small glutamine-rich TPR-containing protein (SGT) is the member of TPR motif family. However, the biological functions of SGT remain unclear. In this paper, we report that SGT plays a role in apoptotic signaling. Ectopic expression of SGT enhances DNA fragment and nucleus breakage after the induction of apoptosis. Increasing mRNA level of SGT is also observed in 7721 cells undergoing apoptosis, knockdown the expression of endogenous SGT contributes to the decrease of apoptosis of 7721 cells. Deletion analysis reveals that TPR domain is critical to pro-apoptotic function of SGT. Furthermore, we demonstrated that the PARP cleavage and cytochrome c release are enhanced when SGT is overexpressed in 7721 cells during apoptosis. Collectively, our results indicate that SGT is a new pro-apoptotic factor.  相似文献   

5.
BACKGROUND AND AIM: Molecular diagnostics and therapeutics of human mesothelioma using disease-related markers present major challenges in clinical practice. To identify biochemical alternations that would be markers of human mesothelioma, we measured the intracellular steady-state levels of biologically important trace metals such as manganese (Mn), copper (Cu), and zinc (Zn) in a human mesothelial cell line, MeT-5A, and in five human mesothelioma cell lines (MSTO-211H, NCI-H226, NCI-H2052, NCI-H2452, ACC-MESO-1) by inductively coupled plasma-mass spectrometry (ICP-MS). We also aimed to investigate whether the alterations were related to the intracellular status of metal-containing superoxide dismutase (SOD). RESULTS: There were no significant differences in the contents of the trace metals among MeT-5A, MSTO-211H, and ACC-MESO-1 cells. However, each of the other three mesothelioma cell lines had a unique characteristic in terms of the intracellular amounts of the metals; NCI-H226 contained an extremely high level of Mn, an amount 7.3-fold higher than that in MeT-5A. NCI-H2052 had significantly higher amounts of Cu (3.4-fold) and Zn (1.3-fold) compared with MeT-5A. NCI-H2452 contained about 5.8-fold the amount of Cu and 2.5-fold that of Mn compared with MeT-5A. As for the intracellular levels of copper/zinc-SOD (Cu/Zn-SOD) and manganese-SOD (Mn-SOD), those of Cu/Zn-SOD were relatively unchanged among the cells tested, and no notable correlation with Cu or Zn contents was observed. On the other hand, all mesothelioma cells highly expressed Mn-SOD compared with MeT-5A, and a very high expression of the enzyme with a robust activity was observed in the two mesothelioma cells (NCI-H226, NCI-H2452) containing a large amount of Mn. CONCLUSIONS: In comparison with MeT-5A human mesothelial cells, some human mesothelioma cells had significantly higher amounts of Mn or Cu and one mesothelioma cell had a significantly higher amount of Zn. Interestingly, all mesothelioma cells overexpressed Mn-SOD compared with MeT-5A, and the cells whose Mn-SOD activity was increased contained higher amounts of Mn. It seemed that intracellular Mn content was positively correlated with Mn-SOD, suggesting that the intracellular Mn level is associated with Mn-SOD activity. These biochemical signatures could be potential disease-related markers of mesothelioma.  相似文献   

6.
7.
Manganese superoxide dismutase (GP-MnSOD), a component of the so-called 'green protein' (green protein complex) from the facultative anaerobic halodenitrifier Bacillus halodenitrificans, has been crystallized using the hanging-drop vapor diffusion method. Crystals have unit-cell parameters a=b=93.4 A, c=65.0 A, and belong to the space group P4(3)2(1)2. Preliminary analysis indicates there is one monomer in each asymmetric unit. The structural information from this enzyme will enrich our knowledge on its high catalytic activity and its possible role in green protein complex.  相似文献   

8.
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by loss of motor function and eventual death as a result of degeneration of motor neurons in the spinal cord and brain. The discovery of mutations in SOD1, the gene encoding the antioxidant enzyme Cu/Zn-superoxide dismutase (CuZnSOD), in a subset of ALS patients has led to new insight into the pathophysiology of ALS. Utilizing a novel adenovirus gene delivery system, our laboratory has developed a human cell culture model using chemically differentiated neuroblastoma cells to investigate how mutations in SOD1 lead to neuronal death. Expression of mutant SOD1 (G37R) resulted in a time and dose-related death of differentiated neuroblastoma cells. This cell death was inhibited by overexpression of the antioxidant enzyme manganese superoxide dismutase (MnSOD). These observations support the hypothesis that mutant SOD1-associated neuronal death is associated with alterations in oxidative stress, and since MnSOD is a mitochondrial enzyme, suggest that mitochondria play a key role in disease pathogenesis. Our findings in this model of inhibition of mutant SOD1-associated death by MnSOD represent an unique approach to explore the underlying mechanisms of mutant SOD1 cytotoxicity and can be used to identify potential therapeutic agents for further testing.  相似文献   

9.
The discovery of superoxide dismutase twenty years ago gave new meaning to work on erythrocuprein. This tribute to the achievement of Joe McCord and Irwin Fridovich is an account of experience of superoxide dismutase from old obscure copper protein of red blood cells to new exciting enzyme of oxygen free-radical metabolism, and an affirmation of the superoxide theory of oxygen toxicity.  相似文献   

10.
1. 1. Lipid peroxidation, superoxide dismutase (SOD) activity, ascorbic acid (AsA) and individual phospholipid contents in liver of fresh water cat fish Heteropneustes fossilis were measured after exposure to different temperatures (25, 27, 32, 37°C) at various times (1–4 h).
2. 2. Lipid peroxidation and superoxide dismutase activity were significantly increased with increases in temperature at various times.
3. 3. Ascorbic acid content was depleted when temperature was increased.
4. 4. After temperature exposure, phosphatidyl inositol was increased while phosphatidyl choline, phosphatidyl serine and phosphatidyl ethanolamine were depleted. Phosphatidic acid level did not change.
5. 5. The findings indicated an increased oxidative stress in liver following increases in temperature at various times. Concurrent with the increase in lipid peroxidation, superoxide dismutase activity and ascorbic acid from the liver of fish varied. It is suggested that depletion of major individual phospholipids following temperature exposure could be due to superoxide created oxidative stress in the liver.
  相似文献   

11.
12.
Superoxide dismutase (SOD) occurs in two intracellular forms in mammals, copper–zinc SOD (CuZnSOD), found in the cytoplasm, mitochondria and nucleus, and manganese superoxide dismutase (MnSOD), in mitochondria. Changes in MnSOD expression (as compared to normal cells) have been reported in several forms of cancer, and these changes have been associated with regulation of cell proliferation, cell death, and metastasis. We have found that progestins stimulate MnSOD in T47D human breast cancer cells in a time and physiological concentration-dependent manner, exhibiting specificity for progestins and inhibition by the antiprogestin RU486. Progestin stimulation occurs at the level of mRNA, protein, and enzyme activity. Cycloheximide inhibits stimulation at the mRNA level, suggesting that progestin induction of MnSOD mRNA depends on synthesis of protein. Experiments with the MEK inhibitor UO126 suggest involvement of the MAP kinase signal transduction pathway. Finally, MnSOD-directed siRNA lowers progestin-stimulated MnSOD and inhibits progestin stimulation of migration and invasion, suggesting that up-regulation of MnSOD may be involved in the mechanism of progestin stimulation of invasive properties. To our knowledge, this is the first characterization of progestin stimulation of MnSOD in human breast cancer cells.  相似文献   

13.
Superoxide dismutases (SODs; EC 1.15.1.1) are part of the antioxidant system of aerobic organisms and are used as a defense against oxidative injury caused by reactive oxygen species (ROS). The cloning and sequencing of the 788-bp genomic DNA from Trichoderma reesei strain QM9414 (anamorph of Hypocrea jecorina) revealed an open reading frame encoding a protein of 212 amino acid residues, with 65-90% similarity to manganese superoxide dismutase from other filamentous fungi. The TrMnSOD was purified and shown to be stable from 20 to 90 °C for 1 h at pH from 8 to 11.5, while maintaining its biological activity.  相似文献   

14.
《Free radical research》2013,47(10):1154-1161
Abstract

Manganese superoxide dismutase (MnSOD) is over-expressed in most brain tumours, and high MnSOD expression is associated with poor prognosis. The mechanisms still remain largely unknown. In the present study, the elevation of hydrogen peroxide (H2O2) level and the enhancement of glioma migration/invasion by over-expression of MnSOD were demonstrated. Subsequent studies showed that over-expression of MnSOD significantly increased the activation of mitogen-activated protein kinases (MAPKs) and phosphatidylinositol-3-kinases (PI3Ks), including AKTs, s6-ribosomal protein, ERKs and JNKs. Over-expression of MnSOD was also associated with elevations of matrix metalloproteinases-1(MMP-1) and MMP-9 protein. The promotion of migration/invasion, activation of PI3Ks and MAPKs and up-regulation of MMPs were inhibited by the general reactive oxygen species scavenger N-acetyl-l-cysteine (NAC), over-expression of the H2O2-detoxifying enzyme mitochondrial catalase (mCat) and specific inhibitors of AKTs or ERKs. Collectively, our study indicated that H2O2 would contribute to the MnSOD-promoted migration/invasion in glioma cells through activation of AKTs and ERKs. This study provided new molecular insights into the understanding of glioma migration and invasion.  相似文献   

15.
The erythrocytes of 12-month old Sod1 −/− mice showed an increased level of reactive oxygen species (ROS), as estimated by the degree of dihydroethidine and dihydrorhodamine oxidation, and the increased level of Heinz bodies. No indices of severe oxidative stress were found in the red blood cells and blood plasma of Sod1 −/− mice as judged from the lack of significant changes in the levels of erythrocyte and plasma glutathione, plasma protein thiol and carbonyl groups and thiobarbituric-acid reactive substances in the blood plasma. However, a decreased erythrocyte lifespan, increased reticulocyte count and splenomegaly were noted, indicating the importance of superoxide dismutase for maintaining erythrocyte viability. The levels of erythrocyte ROS and Heinz bodies and the reticulocyte count were indistinguishable in Sod1 +/+ and Sod1 +/− mice, suggesting that a superoxide dismutase activity decrease to half of its normal value may be sufficient to secure the protective effects of the enzyme.  相似文献   

16.
The aim of this study was the evaluation of the hepatic damages following a subchronic exposure to malathion, an organophosphorus (OP) insecticide. Malathion was administered intragastrically in 1 ml corn oil containing 100 mg/kg Body Weight daily for 32 days. Malondialdehyde (MDA) concentration superoxide dismutase (SOD) and catalase (CAT) activities were analysed using a non-denaturing electrophoresis. The serum activities of Pseudocholinesterase (PchE), aspartate aminotransferase (ASAT) and alanine aminotransferase (ALAT) were determined. Malathion exposure leads to a significant decrease in AchE activity, an increase in hepatic MDA, and in serum ASAT and ALAT activities. A positive correlation between serum transaminases levels and hepatic MDA was demonstrated. These results indicate that malathion exposure induced lipid peroxidation LPO, a process of degradation of membrane lipids, involving the deterioration of the cellular integrity. We have recorded a slight increase in antioxidant enzymes activities. This leads us to suggest an insufficient elimination of free radicals, causing cytotoxic effects. To cite this article: R. Rezg et al., C. R. Biologies 331 (2008).  相似文献   

17.
We are addressing the puzzling metal ion specificity of Fe- and Mn-containing superoxide dismutases (SODs) [see C.K.Vance, A.-F. Miller, J. Am. Chem. Soc. 120(3) (1998) 461–467]. Here, we test the significance to activity and active site integrity of the Gln side chain at the center of the active site hydrogen bond network. We have generated a mutant of MnSOD with the active site Gln in the location characteristic of Fe-specific SODs. The active site is similar to that of MnSOD when Mn2+, Fe3+ or Fe2+ are bound, based on EPR and NMR spectroscopy. However, the mutant’s Fe-supported activity is at least 7% that of FeSOD, in contrast to Fe(Mn)SOD, which has 0% of FeSOD’s activity. Thus, moving the active site Gln converts Mn-specific SOD into a cambialistic SOD and the Gln proves to be important but not the sole determinant of metal-ion specificity. Indeed, subtle differences in the spectra of Mn2+, Fe3+ and 1H in the presence of Fe2+ distinguish the G77Q, Q146A mut-(Mn)SOD from WT (Mn)SOD, and may prove to be correlated with metal ion activity. We have directly observed the side chain of the active site Gln in Fe2+SOD and Fe2+(Mn)SOD by 15N NMR. The very different chemical shifts indicate that the active site Gln interacts differently with Fe2+ in the two proteins. Since a shorter distance from Gln to Fe and stronger interaction with Fe correlate with a lower Em in Fe(Mn)SOD, Gln has the effect of destabilizing additional electron density on the metal ion. It may do this by stabilizing OH coordinated to the metal ion.  相似文献   

18.
Summary An Escherichia coli K-12 strain deleted for sodA and sodB (manganese and iron superoxide dismulases) was constructed and characterized by Southern blotting, enzyme assays, and physiological analyses. The sod deletion strain was used to clone the iron superoxide dismutase gene of Legionella pneumophila by complementation to paraquat resistance.  相似文献   

19.
Summary IndnaK7(Ts) mutant cells, scission of DNA strands occurred after temperature shift up. When cells at 30°C were labeled with [3H]-thymidine and then shifted to 46° or 49°C for 20 min, the profiles of sedimentation of thier cellular DNA in an alkaline sucrose gradient revealed a decrease in the size of DNA to a quarter of that at 30°C in the mutant, but not in wild-type cells. The level of manganese-containing superoxide dismutase (MnSOD) in the mutant was about twice that in wild-type cells, even at the permissive temperature, implying increased production of superoxide radical anion, which may cleave DNA strands directly or indirectly in the mutant. Moderate increase in the MnSOD level on temperature shift up was observed in both strains. These results indicated that some components of the DnaK protein participate in protection of cellular membrane functions from thermal damage resulting from elevated production of the superoxide anion radical.  相似文献   

20.
The effect of a chilling stress, at a moderate photon flux density for a few hours, on the peroxidation of membrane lipids and on superoxide dismutase (SOD) activity was compared in leaf slices of chilling-sensitive and chilling-insensitive plants. The aim was to determine if susceptibility to chill-temperature photoinhibition could be related to either damage to membrane lipids by superoxide and-or a decrease in activity of chloroplast SOD. Plants used were Nerium oleander L., grown at 45° C, and Cucumis sativus L., both susceptible to chill-temperature photoinhibition, and N. oleander, grown at 20° C and Spinacia oleracea L., both insensitive to chill-temperature photoinhibition. Lipid peroxidation was assessed by measuring the concentration of malondialdehyde (MDA). Leaf slices from all plants showed a basal level of MDA which decreased by about 15% when the leaf slices were chilled in the light. The level of MDA was not increased by the addition of either KHCO3 or methyl viologen during chilling but it was increased, up to threefold, by the addition of Rose Bengal, which produces singlet oxygen. Chloroplast SOD activity was assessed in leaf extracts as the cyanide-sensitive production of H2O2 in a system which produced superoxide. Activity of SOD was similar in all the plants and was altered little by chilling. The results show that for the plants tested, chilling at a moderate photon flux density for 5 h does not increase the susceptibility of cell membranes to peroxidative damage nor does it decrease the activity of SOD. It was concluded that the susceptibility of chilling-sensitive plants to chill-temperature photoinhibition cannot be explained on the basis of differences in the vulnerability of membrane lipids to damage by superoxide or differences in SOD activity.Abbreviations Chl chlorophyll - MDA malondialdehyde - MV methyl viologen - O 2 - superoxide - 20°-oleander Nerium oleander grown at 20° C - 45°-oleander N. oleander grown at 45° C - PFD photon flux density - SOD superoxide dismutase Deceased  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号