首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Environmental conditions in the interstices beneath streams and rivers with porous beds are unlike those found either on the bed surface or in the true groundwater. For most of the year, in many streams, the bulk of the water in the hyporheic zone is provided by baseflow but, as it passes across the hyporheic/groundwater interface, the physical and chemical nature of this groundwater changes, probably in response to mixing with surface water. Factors promoting the influx of surface water are associated with features of the bed and channel morphology. The upper and lower boundaries of the hyporheic zone are thought to vary in time, but at any instant they can be defined. As a habitat, the hyporheic zone fits the definition of an ecotone, although certain adverse features may result in reduced species diversity. There are limited, correlative, data available on the relationship of the fauna (hyporheos) to interstitial conditions and further study of the general biology of both species and populations is needed. In an attempt to stimulate future research on these systems, some preliminary models of hyporheic dynamics are proposed.  相似文献   

2.
溪流潜流层大型无脊椎动物生态学研究进展   总被引:1,自引:0,他引:1  
张跃伟  袁兴中  刘红  任海庆   《生态学杂志》2014,25(11):3357-3365
溪流潜流层是溪流表层水和地下水相互作用的群落交错区,生物多样性丰富,是溪流生态系统的重要组成部分.大型无脊椎动物位于潜流层食物网的顶层,直接影响着潜流层物质和能量动态,是河流健康潜在的指示生物,调节着潜流层的环境净化和生态缓冲功能,对溪流生态系统发挥着至关重要的作用.潜流层大型无脊椎动物类群按生活史划分为偶入动物、非典型潜流层动物和典型潜流层动物.潜流层孔隙大小、孔隙水流速、溶解氧、温度、可利用的食物源、渗透系数和水力停留时间是影响大型无脊椎动物在潜流层分布的主要因素.对于潜流层这样一个特殊的生态界面,针对不同的研究目的应该选择合适的取样和调查方法.潜流层大型无脊椎动物的生活史和生活史对策,在溪流生态系统物质循环和能量流动中作用的定量化分析,基于潜流层大型无脊椎动物的河流健康评价体系,以及潜流层作为“庇护地”对于大型无脊椎动物分布和进化的生态学意义,都值得进一步关注和深入研究.  相似文献   

3.
Martin Pusch 《Hydrobiologia》1996,323(2):107-118
Community respiration in hyporheic sediments (HCR) was studied in a characteristic riffle-pool-sequence of a mountain stream. HCR activity at the riffle site strongly exceeded that at the corresponding pool site with a mean ratio of 5.3. The vertical distribution of HCR activity was homogeneous in the pool, while there was a distinct maximum in the uppermost layer in the riffle. Similarly, the spatial distribution of certain fractions of particulate organic matter (POM), and their turnover, was largely determined by stream morphology. Mean annual HCR per unit area of stream bed was estimated as 1.71 g O2 m−2 d−1. Hence, HCR contributes significantly to total heterotrophic activity in streams, thus enhancing the relative importance of heterotrophic processes in running waters containing hyporheic zones.  相似文献   

4.
Lafont  Michel  Malard  Florian 《Hydrobiologia》2001,463(1-3):75-81
We examined the composition and distribution of oligochaete communities in the hyporheic zone of the Roseg River, a glacial river in southeastern Switzerland. Ten oligochaete species were collected from 11 sites distributed along an 11-km reach of the river, downstream of the Tschierva Glacier. The most frequently encountered species were Dorydrilus michaelseni, Propappus volki, Cernosvitoviella atrata and Cernosvitoviella carpatica. Six other species were relatively scarce and exhibited a discontinuous distribution pattern only in the downstream sites. At the most downstream site, a population of eyeless Nais communis was discovered with anatomical traits apparently related to a subterranean life-adaptation of this surface-living species. The species richness and abundance of oligochaete communities were relatively constant over time, but increased at sites where groundwater entered the stream. The spatial distribution of several oligochaete species was linked to the longitudinal arrangement of groundwater upwelling areas. This observation suggested that groundwater was an important upstream migration pathway for oligochaetes during the glacial retreat.  相似文献   

5.
The objective of this study was to examine chemical changes in porewaters that occur over small scales (cm) as groundwater flows through the hyporheic zone and discharges to a stream in a temperate forest of northern Wisconsin. Hyporheic-zone porewaters were sampled at discrete depths of 2, 10, 15, 61, and 183 cm at three study sites in the study basin. Chemical profiles of dissolved organic carbon (DOC), CO2, CH4, and pH show dramatic changes between 61 cm sediment depth and the water-sediment interface. Unless discrete samples at small depth intervals are taken, these chemical profiles are not accounted for. Similar trends were observed at the three study locations, despite each site having very different hydraulic-flow regimes. Increases in DOC concentration by an order of magnitude from 61 to 15 cm depth with a corresponding decrease in pH and rapid decreases in the molecular weight of the DOC suggest that aliphatic compounds (likely organic acids) are being generated in the hyporheic zone. Estimated efflux rates of DOC, CO2, and CH4 to the stream are 6.2, 0.79, 0.13 moles m2 d-1, respectively, with the vast majority of these materials produced in the hyporheic zone. Very little of these materials are accounted for by sampling stream water, suggesting rapid uptake and/or volatilization.  相似文献   

6.
Perspectives and predictions on the microbial ecology of the hyporheic zone   总被引:4,自引:0,他引:4  
1. Studies of hyporheic microbial ecology have suggested an important role for hyporheic microbial processes in stream ecosystem functioning. Using evidence from microbial communities in other aquatic habitats, some predictions are made concerning the diversity of microbial types and microbial processes likely to occur in the hyporheic zone, and the relative importance of these various types to the hyporheic ecosystem. 2. It is predicted that the biofilm growth form of interstitial micro-organisms will create a variety of microniches, allowing coexistence of a great diversity of microbial types, and promoting the activity of some otherwise poor competitors. It is further predicted that the confluence of reduced groundwaters and aerobic surface waters will favour chemolithotrophic processes in the hyporheic zone, but that these will contribute significantly to hyporheic production only if surface water is very low in dissolved organic carbon, or the groundwater is extremely reduced, such as by the influence of riparian wetlands. A variety of anaerobic respiratory pathways, such as nitrate, ferric ion, sulphate and even methanogenic respiration will be employed in the hyporheic zone, with biofilm dynamics permitting these to occur even in aerobic sediments. Anaerobic pathways may account for a significant proportion of total hyporheic organic matter mineralization. 3. The role of fungi in hyporheic dynamics is, as yet, almost completely unstudied. However, it is expected that they will be important in breaking down buried particulate organic matter (POM), which may account for a large proportion of total stream POM. 4. Physicochemical conditions in hyporheic sediments appear to be highly heterogeneous, and this heterogeneity may be very important in the cycling of certain nutrients, especially nitrogen, which involves a series of steps requiring different conditions. 5. Various new techniques are now available by which biofilm dynamics and in situ microbial processes may be measured. Studies are recommended of intact microbial communities both at the microscale of the biofilm and at the scale of the heterogeneities occurring in hyporheic sediments. Studies are needed that measure actual rates of microbial processes under in situ conditions.  相似文献   

7.
The dynamics of in situ bacterial communities in the hyporheic zone of an intermittent stream were described in high spatiotemporal detail. We assessed community dynamics in stream sediments and interstitial pore water over a two-year period using terminal-restriction fragment length polymorphism. Here, we show that sediments remained saturated despite months of drought and limited hydrologic connectivity. The intermittency of stream surface water affected interstitial pore water communities more than hyporheic sediment communities. Seasonal changes in bacterial community composition was significantly associated with water intermittency, phosphate concentrations, temperature, nitrate and dissolved organic carbon (DOC) concentrations. During periods of low- to no-surface water, communities changed from being rich in operational taxonomic units (OTUs) in isolated surface pools, to a few OTUs overall, including an overall decline in both common and rare taxa. Individual OTUs were compared between porewater and sediments. A total of 19% of identified OTUs existed in both porewater and sediment samples, suggesting that bacteria use hyporheic sediments as a type of refuge from dessication, transported through hydrologically connected pore spaces. Stream intermittency impacted bacterial diversity on rapid timescales (that is, within days), below-ground and in the hyporheic zone. Owing to the coupling of intermittent streams to the surrounding watershed, we stress the importance of understanding connectivity at the pore scale, consequences for below-ground and above-ground biodiversity and nutrient processing, and across both short- and long-time periods (that is, days to months to years).  相似文献   

8.
张跃伟  袁兴中  刘红  任海庆  邓伟  岳俊生 《生态学报》2016,36(15):4873-4880
通过包埋人工基质法研究大型无脊椎动物在山地河流潜流层中的拓殖过程。结果表明:群落个体密度在7—29 d呈"J"型增长,在29 d后骤然降低,55 d后呈波动趋势;物种丰富度在1—29 d呈增加趋势,29 d后呈波动状态;群落的生物量总体呈增加趋势。群落的物种丰富度、密度和生物量在第29、71和83天时没有显著性差异(P0.05),Shannon-Wiener多样性指数和Pielou均匀度指数在第55、71、83天没有显著性差异(P0.05),综合不同拓殖时间段物种的主成分分析,表明潜流层大型无脊椎动物群落在55 d后趋于稳定。群落优势种为摇蚊(Camptochironomus sp.)、河蚬(Corbicula fluminea)、四节蜉(Baetis sp.)、动蜉(Cinygmina sp.)、纹石蛾(Hydropsyche sp.)和扁泥甲科的一种(Psephenidae)。滤食者和收集者在整个拓殖过程中均是优势功能摄食群。群落拓殖过程是一个群落自身恢复能力和外部环境影响相互作用的过程,拓殖初期潜流层的结构是影响着无脊椎动物迁入的主要因素,中期动物的生活史特征起主要作用,稳定期之后群落可能受到各因素的综合影响。  相似文献   

9.
Rates of bacteria ingestion by interstitial ciliates were estimated and compared to bacterial biomass and production. Investigation was carried out in the hyporheic zone of a lowland stream. FISH was applied to quantitatively determine bacteria within the ciliate's food vacuoles. To estimate bacteria ingestion rates using FISH, we had to strike a new path. When numbers of bacteria in the food vacuoles remains constant with time (bacterial digestion and ingestion are at equilibrium), ingestion rate can be estimated based on the digestion time and the average number of bacteria per cell. Ciliate community was predominantly composed of bacterivorous ciliates. FISH-signals deriving from ingested bacteria were detected in Cinetochilum margaritaceum, 'other small scuticociliates', Pleuronema spp., and Vorticella spp. Ingestion rates for these taxa were 78, 150, 86, and 38 bacteria ind(-1) h(-1), respectively. The grazing impacts on bacterial biomass and carbon production were calculated based on these ingestion rates. Ciliate grazing caused a decrease in bacterial biomass of 0.024% day(-1) and in bacterial carbon production of 1.60%. These findings suggest that interstitial ciliate grazing impact on bacteria biomass and production was too low to represent an important link in the carbon flow of the hyporheic zone under study.  相似文献   

10.
潜流层大型无脊椎动物是河流生态系统重要的组成部分.2013年8月(夏季)、12月(冬季)和2014年4月(春季),在黑水滩河上游河段,采用人工基质法调查潜流层大型无脊椎动物.结果表明: 3个季节共采集大型无脊椎动物27种,其中夏季22种、冬季和春季各16种,各季节水生昆虫种类所占比例均较高,分别为81.8%、75.0%和62.5%;夏季群落密度显著低于冬季和春季,春季最高;冬季群落生物量显著高于夏季和春季,夏季最低;3个季节群落的物种丰富度指数、Shannon多样性指数和Pielou均匀度指数均没有显著性差异.空间分布上,大型无脊椎动物的密度和丰富度均随潜流层深度增加而呈现降低的趋势,大多数个体均分布在0~20 cm深度.群落以滤食者和收集者组成的集食者为绝对优势功能群.动物的相互作用、生活史策略和潜流层的理化条件影响着潜流层大型无脊椎动物的群落结构和时空分布.  相似文献   

11.
溪流生态系统潜流带生态学研究概述   总被引:17,自引:1,他引:17  
袁兴中  罗固源 《生态学报》2003,23(5):956-964
最近一、二十年,对潜流带研究的逐渐开展已使人们充分认识到潜流带在溪流生态系统结构、功能和生态过程中的重要意义。潜流带是溪流地表水和地下水相互作用的界面,占据着在地表水、河道之下的可渗透的沉积缓冲带、侧向的河岸带和地下水之间的中心位置。有关潜流带重要性的近期研究进展增进了我们对溪流生态学的理解,大大扩展了水生生物生境的物理空间以及生物相互作用和生产力存在的区域。潜流带生境包含多样化的、丰度很高的动物区系,其常常控制着溪流生物生产力和生态过程。潜流带对溪流生态系统的潜在重要性来自于生物学和生物地化活动。潜流带在溪流有机物的分解和水质净化等生态过程中发挥着重要的作用。潜流带是溪流集水区内各种环境特征的综合表征体,它能够反映周围景观的环境条件及其变化,集水区内的自然或人为干扰,都会影响到潜流带的水文循环、理化特征、生境分布、营养结构和基本生态过程。因此,对溪流生态系统的综合管理必须包括潜流带。最后对潜流带生态学研究现存的主要问题及未来研究展望提出了几点看法。  相似文献   

12.
The subsurface riparian zone was examined as an ecotone with two interfaces. Inland is a terrestrial boundary, where transport of water and dissolved solutes is toward the channel and controlled by watershed hydrology. Streamside is an aquatic boundary, where exchange of surface water and dissolved solutes is bi-directional and flux is strongly influenced by channel hydraulics. Streamside, bi-directional exchange of water was qualitatively defined using biologically conservative tracers in a third order stream. In several experiments, penetration of surface water extended 18 m inland. Travel time of water from the channel to bankside sediments was highly variable. Subsurface chemical gradients were indirectly related to the travel time. Sites with long travel times tended to be low in nitrate and DO (dissolved oxygen) but high in ammonium and DOC (dissolved organic carbon). Sites with short travel times tended to be high in nitrate and DO but low in ammonium and DOC. Ammonium concentration of interstitial water also was influenced by sorption-desorption processes that involved clay minerals in hyporheic sediments. Denitrification potential in subsurface sediments increased with distance from the channel, and was limited by nitrate at inland sites and by DO in the channel sediments. Conversely, nitrification potential decreased with distance from the channel, and was limited by DO at inland sites and by ammonium at channel locations. Advection of water and dissolved oxygen away from the channel resulted in an oxidized subsurface habitat equivalent to that previously defined as the hyporheic zone. The hyporheic zone is viewed as stream habitat because of its high proportion of surface water and the occurrence of channel organisms. Beyond the channel's hydrologic exchange zone, interstitial water is often chemically reduced. Interstitial water that has not previously entered the channel, groundwater, is viewed as a terrestrial component of the riparian ecotone. Thus, surface water habitats may extend under riparian vegetation, and terrestrial groundwater habitats may be found beneath the stream channel.  相似文献   

13.
1. We monitored streamwater and streambed sediment porewaters from White Clay Creek (WCC), SE Pennsylvania, for dissolved organic carbon (DOC), dissolved oxygen (DO) and conductivity to investigate organic matter processing within the hyporheic zone. Dissolved organic carbon and DO concentrations were higher in the streamwater than in the porewaters and, in many cases, concentrations continued to diminish with increasing depth into the streambed. 2. Hydrological exchange data demonstrated that the permeability of the stream bed declines with depth and constrains downwelling, effectively isolating porewaters >30 cm from streamwater. 3. End‐member mixing analysis (EMMA) based on conductivity documented a DOC source and DO sink in the hyporheic zone. We calculated hyporheic streambed DOC fluxes and respiration from the EMMA results and estimates of water flux. Based upon our calculations of biodegradable DOC entering the hyporheic zone, we estimate that DOC supports 39% of the hyporheic zone respiration, with the remaining 61% presumably being supported by entrained particulate organic carbon. Hyporheic respiration averaged 0.38 g C m?2 d?1, accounted for 41% of whole ecosystem respiration, and increased baseflow ecosystem efficiency from 46 to 59%. 4. Advective transport of labile organic molecules into the streambed concentrates microbial activity in near‐surface regions of the hyporheic zone. Steep gradients in biogeochemical activity could explain how a shallow and hydrologically constrained hyporheic zone can dramatically influence organic matter processing at the ecosystem scale.  相似文献   

14.
Nitrogen processing in the hyporheic zone of a pastoral stream   总被引:4,自引:1,他引:4  
The distribution of nitrogen-transforming processes, and factors controlling their rates, were determined within the hyporheic zone of a lowland stream draining agricultural land. In the field, physicochemical parameters were measured along a 10m-long hyporheic flow line between downwelling and upwelling zones. Sediment cores were retrieved from the stream bed surface, and from 20, 40 and 60cm deep in each zone, and in the laboratory, water from the corresponding depth was percolated through each core at the natural flow rate. Concentrations of nitrogen species and oxygen were measured before and after flow through each core. Denitrification was measured using a 15N-nitrate tracer. Shallow and downwelling zone samples were clearly distinct from deeper and upwelling zone samples in terms of physicochemical conditions, microbial processes and factors controlling nitrogen processing. Denitrification was highest in surface and downwelling zone cores, despite high oxygen levels, probably due to high pore-water nitrate concentrations in these cores and isolation of the denitrifying bacteria from oxygen in the bulk water by the hyporheic biofilms. Denitrification was limited by oxygen inhibition in the downwelling group, and by nitrate availability in the upwelling group. Strong evidence indicated that dissimilatory nitrate reduction to ammonium, occurred in almost all cores, and outcompeted denitrification for nitrate. In contrast, nitrification was undetectable in all but two cores, probably because of intense competition for oxygen. Field patterns and lab experiments indicated that the hyporheic zone at this moderately N-rich site is a strong sink for nitrate, fitting current theories that predict where hyporheic zones are nitrate sinks or nitrate sources.  相似文献   

15.
1. The hyporheic zone plays a key role in hydrological exchange and biogeochemical processes in streambed sediments. The clogging of sediments caused by the deposition of particles in the bed of streams and rivers can decrease sediment permeability and hence greatly affect hyporheic microbial processes. 2. The main objective of this study was to determine the influence of sediment clogging on hyporheic microbial processes in three French rivers (the Usses, Drôme and Isère). In each river, microbial abundance and activity were studied at three depths (10, 30 and 50 cm) in the sediment at one unclogged (high porosity) and one clogged site (low porosity). 3. The results showed that the sediment clogging had inconsistent effects on microbial processes in the three rivers. Increases (Usses) or decreases (Drôme and Isère) in both aerobic and anaerobic processes were detected at the clogged sites compared to unclogged sites. These results suggest that microbial changes because of the sediment clogging are mainly mediated by the residence time of water within the hyporheic sediments. 4. A single model predicting the effect of clogging on hyporheic microbial processes cannot be applied generally to all rivers because the degree of clogging creates heterogeneous effects on flow rates between surface and interstitial waters. As a consequence, the influence of heterogeneous clogging on surface water–hyporheic exchanges needs to be evaluated by water tracing and hydraulic modelling to determine the links between microbial processes and hydraulic heterogeneity induced by clogging in hyporheic sediments.  相似文献   

16.
1. The ability of hyporheic sediments to exchange water and retain ammonium and phosphate in the Riera Major stream ,North-East Spain, under different discharge conditions was measured by conducting short-term nutrient and chloride additions. 2. The mean exchange coefficients from free-flowing water to the storage zone (k1) and vice versa (k2) were 0.82 × 10–4 s??1 and 7 × 10??3 s??1, respectively. The ratio of storage zone cross-sectional area to stream cross-sectional area (AS/A) averaged 2.8 × 10–2 and was negatively correlated with discharge (r = –0.85, d.f. = 13, P < 0.001). 3. The percentage of hyporheic zone water which came from surface water varied as a function of discharge and hyporheic depth, ranging between 33% and 95% at 25 cm depth, and between 78% and 100% at 10 cm depth. 4. The nutrient retention efficiency in the hyporheic zone at 10 cm depth measured as uptake length (Swh) was less than 3.3 cm for ammonium and 37 cm for phosphate. Higher nutrient retentions were measured in the sediments at 10 cm depth than at 25 cm, indicating that near-surface sediments were involved more actively in phosphate retention than the deeper hyporheic sediments. The lack of ammonium at any depth of the hyporheic zone showed that ammonium was very rapidly taken up in the surfacial sediments.  相似文献   

17.
1. The impact of flash flooding on microbial distribution and biogeochemistry was investigated in the parafluvial zone (the part of the active channel lateral to the surface stream) of Sycamore Creek, a Sonoran Desert stream in central Arizona. 2. It was hypothesized that subsurface bacteria were dependent on the import of algal-derived organic matter from the surface stream, and it was therefore predicted that microbial numbers and rates of microbially mediated processes would be highest at locations of surface to subsurface hydrologic exchange and at times when algal biomass was high. 3. Prior to a flash flood on 19 July 1994, chlorophyll a was high (≈ 400 mg m–2) in the surface stream and microbial numbers were highest at the stream–parafluvial interface and declined along parafluvial flowpaths, supporting the hypothesized algal–bacterial linkage. Immediately following the flash flood, chlorophyll a was low (≈ 7 mg m–2), and microbial numbers were reduced at the stream–parafluvial interface. 4. Counter to expectations, parafluvial functioning (in terms of nitrate production and dissolved oxygen decline along flowpaths) re-established immediately after the flood receded. Therefore, material other than algal exudates supported parafluvial metabolism immediately postflood, and terrestrially derived dissolved organic matter is the likely source. 5. Algae in the surface stream recovered quickly following flooding, but recovery of parafluvial bacteria lagged somewhat behind. These results highlight the importance of surface–subsurface interaction to stream ecosystem functioning and show that the nature of these interactions changes substantially in successional time.  相似文献   

18.
The influence of riffle-pool units on hyporheic zone hydrology and nitrogen dynamics was investigated in Brougham Creek, a N-rich agricultural stream in Ontario, Canada. Subsurface hydraulic gradients, differences in background stream and groundwater concentrations of conservative ions, and the movement of a bromide tracer indicated the downwelling of stream water at the head of riffles and upwelling in riffle-pool transitions under base flow conditions. Channel water also flowed laterally into the floodplain at the upstream end of riffles and followed a subsurface concentric flow path for distances of up to 20 m before returning to the stream at the transition from riffles to pools. Differences in observed vs predicted concentrations based on background chloride patterns indicated that the hyporheic zone was a sink for nitrate and a source for ammonium. The removal of nitrate in the streambed was confirmed by the loss of nitrate in relation to co-injected bromide in areas of downwelling stream water in two riffles. Average stream water nitrate-N concentrations of 1.0 mg/L were often depleted to <0.005 mg/L near the sediment-water interface. Consequently, an extensive volume of the hyporheic zone in the streambed and floodplain had a large unused potential for nitrate removal. Conceptual models based mainly on studies of streams with low nutrient concentrations have emphasized the extent of surface-subsurface exchanges and water residence times in the hyporheic zone as important controls on stream nutrient retention. In contrast, we suggest that nitrate retention in N-rich streams is influenced more by the size of surface water storage zones which increase the residence time of channel water in contact with the major sites of rapid nitrate depletion adjacent to the sediment-water interface.  相似文献   

19.
Water and dissolved nitrogen flows through the hyporheic zone of a 3rd-order mountain stream in Hokkaido, northern Japan were measured during a small storm in August 1997. A network of wells was established to measure water table elevations and to collect water samples to analyze dissolved nitrogen concentrations. Hydraulic conductivity and the depth to bedrock were surveyed. We parameterized the groundwater flow model, MODFLOW, to quantify subsurface flows of both stream water and soil water through the hyporheic zone. MODFLOW simulations suggest that soil water inflow from the adjacent hill slope increased by 1.7-fold during a small storm. Dissolved organic nitrogen (DON) and ammonium (NH 4 + ) in soil water from the hill slope were the dominant nitrogen inputs to the riparian zone. DON was consumed via mineralization to NH 4 + in the hyporheic zone. NH 4 + was the dominant nitrogen species in the subsurface, and showed a net release during both base and storm flow. Nitrate appeared to be lost to denitrification or immobilized by microorganisms and/or vegetation in the riparian zone. Our results indicated that the riparian and hyporheic system was a net source of NH 4 + to the stream.  相似文献   

20.
  1. Microbial heterotrophic activity is a major driver of nutrient and organic matter processing in the hyporheic zone of headwater streams. Additionally, the hyporheic zone might provide refuge for microbes when surface flow ceases during drought events.
  2. We investigated chemical (organic and inorganic nutrients) and microbiological parameters (bacterial cell concentration, live–dead ratios, and extracellular enzyme activities) of surface and interstitial pore water in a period of progressive surface‐hyporheic disconnection due to summer drying. The special situation of the chosen study reach, where groundwater mixing is impeded by the bedrock forming a natural channel filled with sediment, allowed as to study the transformation of these parameters along hyporheic flow paths.
  3. The chemical composition of the hyporheic pore water reflected the connectivity with the surface water, as expressed in the availability of nitrate and oxygen. Conversely, microbiological parameters in all hyporheic locations were different from the surface waters, suggesting that the microbial activity in the water changes rapidly once the water enters the hyporheic zone. This feature was principally manifested in higher live–dead ratios and lower leucine aminopeptidase (an activity related to nitrogen acquisition) in the hyporheic pore waters.
  4. Overall, bacterial cell concentration and extracellular enzyme activities increased along hyporheic flow paths, with a congruent decrease in inorganic nutrients and dissolved organic matter quantity and apparent molecular size.
  5. Our findings show two important functions of the hyporheic zone during drought: (1) deeper (?50 cm) water‐saturated layers can act as a refuge for microbial activity; and (2) the hyporheic zone shows high rates of carbon and nitrogen turnover when water residence times are longer during drought. These rates might be even enhanced by an increase in living microbes in the remaining moist locations of the hyporheic zone.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号