首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
A protein-protein association of cytochrome P-450 LM2 with NADPH-cytochrome P-450 reductase, with cytochrome b5, and with both proteins was demonstrated in reconstituted phospholipid vesicles by magnetic circular dichroism difference spectra. A 23% decrease in the absolute intensity of the Soret band of the magnetic CD spectrum of cytochrome P-450 was observed when it was reconstituted with reductase. A difference spectrum corresponding to a 7% decrease in absolute intensity was obtained when cytochrome b5 was incorporated into vesicles that already contained cytochrome P-450 and cytochrome P-450 reductase compared to a decrease of 13% in absolute intensity when cytochrome b5 was incorporated into vesicles that contained only cytochrome P-450. The use of the magnetic circular dichroism confirmed that protein-protein associations that have been detected by absorption spectroscopy between purified and detergent-solubilized proteins also exist in membranes. High ionic strength was shown to interrupt direct electron flow from cytochrome P-450 reductase to cytochrome P-450 but not the electron flow from reductase through cytochrome b5 to cytochrome P-450. Upon incorporation of cytochrome b5 into cytochrome P-450- and cytochrome P-450 reductase-containing vesicles, an increase of benzphetamine N-demethylation activity was observed. The magnitude of this increase was numerically identical to the residual activity of the reconstituted vesicles measured in the presence of 0.3 M KCl. It is concluded that there is a requirement for at least one charge pairing for electron transfer from reductase to cytochrome P-450. These observations are combined in a proposed mechanism of coupled reversible association reactions in the membrane.  相似文献   

2.
Some new relations between cytochrome P-450-dependent monooxygenases were discovered. Cytochrome b5, a representative of "microsomal" monooxygenases, was shown to form a highly specific complex with cytochrome P-450scc, a member of the "ferredoxin" monooxygenase family. This interaction is characterized by a dissociation constant, Kd, of 0.28 microM. The cytochrome P-450scc-cytochrome b5 complex may be cross-linked with water-soluble carbodiimide. Using proteolytic modification of cytochrome b5, it was shown that both hydrophilic and hydrophobic fragments of cytochrome b5 are involved in the interaction with cytochrome P-450scc. Cytochrome b5 immobilized via amino groups is an effective affinity matrix for cytochrome P-450scc purification. The role of some amino acid residues in cytochrome P-450scc interaction with cytochrome b5 was studied. The role and the nature of complexes in cytochrome P-450-dependent monooxygenases as well as interrelationships between "microsomal" and "ferredoxin" monooxygenases are discussed.  相似文献   

3.
The role of cytochrome b5 in adrenal microsomal steroidogenesis was studied in guinea pig adrenal microsomes and also in the liposomal system containing purified cytochrome P-450s and NADPH-cytochrome P-450 reductase. Preincubation of the microsomes with anti-cytochrome b5 immunoglobulin decreased both 17 alpha- and 21-hydroxylase activity in the microsomes. In liposomes containing NADPH-cytochrome P-450 reductase and P-450C21 or P-450(17) alpha,lyase, addition of a small amount of cytochrome b5 stimulated the hydroxylase activity while a large amount of cytochrome b5 suppressed the hydroxylase activity. The effect of cytochrome b5 on the rates of the first electron transfer to P-450C21 in liposome membranes was determined from stopped flow measurements and that of the second electron transfer was estimated from the oxygenated difference spectra in the steady state. It was indicated that a small amount of cytochrome b5 activated the hydroxylase activity by supplying additional second electrons to oxygenated P-450C21 in the liposomes while a large amount of cytochrome b5 might suppress the activity through the interferences in the interaction between the reductase and P-450C21.  相似文献   

4.
The interactions between purified rat hepatic microsomal cytochrome P-450 and the type I ligands benzphetamine and cytochrome b5 have been studied in the presence of phospholipid using difference spectrophotometry. Cytochrome b5 was shown to interact with cytochrome P-450 to form a tight 1:1 complex (Kd = 275 nM), in which the proportion of high spin cytochrome P-450 was increased from 7 to 30%. The presence of saturating cytochrome b5 was shown to cause a decrease in the apparent Kd for benzphetamine binding from 111 microM to 40 microM. Likewise, the presence of benzphetamine was shown to cause a decrease in the apparent dissociation constant for cytochrome b5 binding to cytochrome P-450 (Kd = 90 nM). The above interactions were resolved into the basic equilibria inter-relating the various ligation states of the hemoprotein in an energetically closed eight-state free energy coupling model and the relative magnitudes of the microequilibria were analyzed to determine the degree of coupling of the interactions between cytochrome P-450 and both benzphetamine and cytochrome b5. Consequently, the spin state changes in cytochrome P-450 induced by benzphetamine and cytochrome b5 binding were shown to arise because these ligands interact 7 and 4 times more tightly with high spin cytochrome P-450, respectively. Furthermore, the data revealed that these ligands interact at independent sites on cytochrome P-450. Thus the effects of cytochrome b5 upon benzphetamine binding and vice versa were rationalized simply in terms of an increase in the proportion of a high spin (high affinity) conformation of cytochrome P-450 brought about by pre-equilibration with the effector ligand, with the intrinsic binding affinities of the two ligands for the low or high spin states remaining relatively unaltered. The thermodynamic parameters associated with the interactions between cytochrome P-450 and cytochrome b5, determined from the temperature dependence of these interactions, revealed that these protein interactions are entropy driven and probably occur by a hydrophobic mechanism.  相似文献   

5.
Significant dissociation of FMN from NADPH:cytochrome P-450 reductase resulted in loss of the activity for reduction of cytochrome b5 as well as cytochrome c and cytochrome P-450. However, the ability to reduce these electron acceptors was greatly restored upon incubation of FMN-depleted enzyme with added FMN. The reductions of cytochrome c and detergent-solubilized cytochrome b5 by NADPH:cytochrome P-450 reductase were greatly increased in the presence of high concentrations of KCl, although the stimulatory effect of the salt on cytochrome P-450 reduction was less significant. No apparent effect of superoxide dismutase could be seen on the rate or extent of cytochrome reduction in solutions containing high-salt concentrations. Complex formation of the flavoprotein with cytochrome c, which is known to be involved in the mechanism of non-physiological electron transfer, caused a perturbation in the absorption spectrum in the Soret-band region of cytochrome c, and its magnitude was enhanced by addition of KCl. Similarly, an appreciable increase in ellipticity in the Soret band of cytochrome c was observed upon binding with the flavoprotein. However, only small changes were found in absorption and circular dichroism spectra for the complex of NADPH:cytochrome P-450 reductase with either cytochrome b5 or cytochrome P-450. It is suggested that the high-salt concentration allows closer contact between the heme and flavin prosthetic groups through hydrophobic-hydrophobic interactions rather than electrostatic-charge pairing between the flavoprotein and the cytochrome which causes a faster rate of electron transfer. Neither alterations in the chemical shift nor in the line width of the bound FMN and FAD phosphate resonances were observed upon complex formation of NADPH:cytochrome P-450 reductase with the cytochrome.  相似文献   

6.
Cytochrome P-450coh from pyrazole-treated mice was shown to form a tight and specific complex with cytochrome b5 from mouse liver microsomes. The complex formation was found to result in type I spectral changes indicating a spin shift from the low to the high spin form. When added to a reconstituted system containing cytochrome P-450coh, NADPH-cytochrome P-450 reductase and phospholipid, cytochrome b5 stimulates hydroxylation of coumarin and O-deethylation of 7-ethoxycoumarin. The maximal stimulating effect is reached at a 1:1 stoichiometry. Mouse liver cytochrome b5 stimulates hydroxylation and deethylation by 100% and 60%, respectively. The stimulating effect of cytochrome b5 was found to result from the increase of the maximal rate of oxidation, being practically without effect on Km. Cytochrome b5 purified from rat and rabbit liver microsomes interacts with cytochrome P-450coh but fails to stimulate the oxidation reaction. At large excess, cytochrome b5 inhibits the oxidations catalyzed by cytochrome P-450coh. Immobilized cytochrome b5 either from mouse or rat and rabbit microsomes proved to be an efficient affinity matrix for cytochrome P-450coh purification.  相似文献   

7.
The effects of cytochrome b5 on the decay of the ferrous dioxygen complexes of P-450LM2 and P-450LM4 from rabbit liver microsomes were studied by stopped-flow spectrophotometry. The P-450 (FeIIO2) complexes accept an electron from reduced cytochrome b5 and, in a reaction not previously described, donate an electron to oxidized cytochrome b5 to give ferric P-450. A comparison with the electron-transferring properties of ferrous P-450 under anaerobic conditions allowed determination of the limiting steps of the two reactions involving the oxygenated complex. The rate of decay of the dioxygen complex was increased in all cases with b5 present; however, with oxidized b5 a large increase in the rate was observed with P-450 isozyme 4 but not with isozyme 2, whereas the opposite situation was found when reduced b5 was used. The reactions between b5 and ferrous dioxygen P-450 were not at thermodynamic equilibrium under the conditions employed. From the results obtained, a model is proposed in which the ferrous dioxygen complex decomposes rapidly into another species differing from ferric P-450 in its spectral properties and from the starting complex in its electron-transferring properties. A scheme is presented to indicate how competition among spontaneous decay, cytochrome b5 oxidation, and cytochrome b5 reduction by the ferrous O2 complex may influence substrate hydroxylation.  相似文献   

8.
Previous studies suggested that rabbit liver microsomes contain cytochrome P-450 monooxygenase(s) with low affinity for (omega-1)-hydroxylation and high affinity for omega-hydroxylation of prostaglandins (Theoharides, A. D., and Kupfer, D. (1981) J. Biol. Chem. 256, 2168-2175). The current investigation describes the isolation from livers of untreated rabbits of a cytochrome P-450 catalyzing, with regioselectivity, the omega-hydroxylation of prostaglandins E1 and E2. The isolation of the enzyme involved enrichment of the omega-hydroxylase activity by polyethylene glycol 8000 fractionation, followed by ion-exchange high performance liquid chromatography. Based on Mr of 59,000-60,000 from sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the isolated enzyme is referred to as P-450 form 7. This P-450 exhibits a low spin spectrum (lambda max = 417 nm) and a difference spectrum of the CO-reduced complex versus reduced (lambda max = 451 nm). For catalytic activity, the P-450 form 7 was reconstituted with NADPH-P-450 reductase, cytochrome b5, and lipid. There was no activity in the absence of the reductase, and deletion of cytochrome b5 yielded a minimal amount of product (heme could not substitute for cytochrome b5), demonstrating an absolute requirement for these components.  相似文献   

9.
Upon incubation of detergent-solubilized NADPH-cytochrome P-450 reductase and either cytochrome b5 or cytochrome c in the presence of a water-soluble carbodiimide, a 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDC), covalently cross-linked complex was formed. The cross-linked derivative was a heterodimer consisting of one molecule each of flavoprotein and cytochrome, and it was purified to 90% or more homogeneity. The binary covalent complex between the flavoprotein and cytochrome b5 was exclusively observed following incubation of all three proteins including NADPH-cytochrome P-450 reductase, cytochrome b5, and cytochrome c in L-alpha-dimyristoylphosphatidylcholine vesicles, and no heterotrimer could be identified. The isolated reductase-cytochrome b5 complex was incapable of covalent binding with cytochrome c in the presence of EDC. No clear band for covalent complex formation between PB-1 and reductase was seen with the present EDC cross-linking technique. More than 90% of the cross-linked cytochrome c in the purified derivative was rapidly reduced upon addition of an NADPH-generating system, whereas approximately 80% of the cross-linked cytochrome b5 was rapidly reduced. These results showed that in the greater part of the complexes, the flavin-mediated pathway for reduction of cytochrome c or cytochrome b5 by pyridine nucleotide was intact. When reconstituted into phospholipid vesicles, the purified amphipathic derivative could hardly reduce exogenously added cytochrome c, cytochrome b5, or PB-1, indicating that the cross-linked cytochrome shields the single-electron-transferring interface of the flavoprotein. These results suggest that the covalent cross-linked derivative is a valid model of the noncovalent functional electron-transfer complex.  相似文献   

10.
Cytochrome b5 has been genetically engineered to afford a fluorescent derivative capable of monitoring its association with cytochrome P-450cam from Pseudomonas putida [Stayton, P. S., Fisher, M. T., & Sligar, S. G. (1988) J. Biol. Chem. 263, 13544-13548]. In the mutant cytochrome b5, threonine is replaced by a cysteine at position 65 (T65C) and has been labeled with the environmentally sensitive fluorophore acrylodan. In this paper, the physiological P-450cam reductant putidaredoxin, an Fe2S2.Cys4 iron-sulfur protein, is shown to competitively inhibit the cytochrome b5 association, suggesting that cytochrome b5 and putidaredoxin bind to a similar site on the cytochrome P-450cam surface. Since the crystal structures for both cytochrome b5 and cytochrome P-450cam have been solved to high resolution, the complex has been computer modeled, and a good fit was found on the proximal surface of nearest approach to the P-450cam heme prosthetic group. The proposed model includes electrostatic contacts between conserved cytochrome b5 carboxylates Glu-44, Glu-48, Asp-60, and the exposed heme propionate with cytochrome P-450cam basic residues Lys-344, Arg-72, Arg-112, and Arg-364, respectively. Putidaredoxin has similarly been shown to contain a carboxylate-based binding surface, and the current results suggest that if the model is correct, then it also interacts at the proposed site, probably utilizing similar P-450cam electrostatic contacts.  相似文献   

11.
The interaction of isosafrole, 3,4,5,3',4',5'-hexabromobiphenyl (HBB) and hexachlorobiphenyl (HCB) with cytochrome P-450d was evaluated by characterization of estradiol 2-hydroxylase activity. Displacement of the isosafrole metabolite from microsomal cytochrome P-450d derived from isosafrole-treated rats resulted in a 160% increase in estradiol 2-hydroxylase. The increase was fully reversed by incubation with 1 microM HBB. Although isosafrole is capable of forming a complex with many different cytochrome P-450 isozymes, it appears to bind largely to cytochrome P-450d in vivo as was demonstrated by measuring the enzymatic activity of microsomal cytochromes P-450b, P-450c, and P-450d from isosafrole-treated rats. When estradiol 2-hydroxylase was measured in rats treated with increasing doses of HCB, there was a gradual decrease in microsomal enzyme activity despite a 20-fold increase in cytochrome P-450d. The ability of cytochrome P-450d ligands to stabilize the enzyme was investigated in two ways. First, cytochromes P-450c and P-450d were quantitated immunochemically in microsomes from rats treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), at a dose which maximally induced total cytochrome P-450, followed by a single dose of a second inducer. The specific content of cytochrome P-450d was significantly increased when isosafrole or HCB was the second inducer but not when 3-methylcholanthrene was the second inducer. Second, the relative turnover of cytochrome P-450d was measured by the dual label technique. Following TCDD treatment, microsomal protein was labeled in vivo with [3H]leucine, the second inducer was given and protein was again labeled 3 days later with [14C]leucine. A higher ratio of 3H/14C in the cytochrome P-450d from isosafrole + TCDD- and HCB + TCDD-treated rats relative to TCDD (control)-treated rats suggested that isosafrole and HCB were able to retard the degradation of cytochrome P-450d, presumably by virtue of being tightly bound to the enzyme.  相似文献   

12.
Spectrophotometric, affinity chromatography and cross-linking experiments provided evidence that cytochrome P-450scc from bovine adrenocortical mitochondria forms a tight complex with cytochrome b5 from rabbit liver microsomes. In the reconstituted system cholesterol side chain activity of cytochrome P-450scc was enhanced by the addition of cytochrome b5.  相似文献   

13.
Resonance Raman spectra of cytochrome P-450cam (P-450cam) and its enzymatically inactive form (P-420) in various oxidation and spin states were measured for the first time. The Raman spectrum of reduced P-450cam was unusual in the sense that the "oxidation-state marker" appeared at an unexpectedly lower frequency (1346 cm-1) in comparison with those of other reduced hemoproteins (approximately 1355-approximately 1365 cm-1), whereas that of oxidized P-450cam was located at a normal frequency. This anomaly in the Raman spectrum of reduced P-450cam can be explained by assuming electron delocalization from the fifth ligand, presumably a thiolate anion, to the antibonding pi orbital of the porphyrin ring. The corresponding Raman line of reduced P-420 appeared at a normal frequency (1360 cm-1), suggesting a status change or replacement of the fifth ligand upon conversion from P-450cam to P-420. The Raman spectrum of reduced P-450cam-metyrapone complex was very similar to that of ferrous cytochrome b5.  相似文献   

14.
Native cytochrome b5 interacts with either RLM5 or LM2 to form tight equimolar complexes (Kd = 250 and 540 nM, respectively) in which the content of high spin cytochrome P-450 was substantially increased. Cytochrome b5 caused 3- and 7-fold increases in the binding affinities of RLM5 and LM2 for benzphetamine, respectively, and benzphetamine decreased the apparent Kd for cytochrome b5 binding. Upon formation of the ternary complex between cytochromes P-450, b5, and benzphetamine the percentage of cytochrome P-450 in the high spin state was increased from 28 to 74 (RLM5) and from 9 to 85 (LM2). Cytochrome b5 caused 13- and 7-fold increases in the rate of RLM5- and LM2-dependent p-nitroanisole demethylation, respectively. Amino-modified (ethyl acetimidate or acetic anhydride) cytochrome b5 produced results similar to those obtained above with native cytochrome b5. In contrast, modification of as few as 5 mol of carboxyl groups/mol of amidinated cytochrome b5 resulted in both a substantial loss of the spectrally observed interactions with either cytochrome P-450 LM2 or cytochrome P-450 RLM5, and in a loss of the cytochrome b5-mediated stimulation of p-nitroanisole demethylation catalyzed by either monooxygenase. In further studies, native and fully acetylated cytochromes b5 reoxidized carbonmonoxy ferrous LM2 at least 20 times faster than amidinated, carboxyl-modified cytochrome b5 derivatives. In contrast, amidination, or acetylation of amino groups, or amidination of amino groups plus methylamidination of the carboxyl groups did not appreciably slow the rate of reduction of the cytochrome b5 by NADPH-cytochrome P-450 reductase. Collectively, the results provide strong evidence for an essential role of cytochrome b5 carboxyl groups in functional interactions with RLM5 and LM2.  相似文献   

15.
Incubation of rabbit liver microsomes with alkaline phosphatase resulted in a marked decrease of NADPH-dependent monooxygenase activities. This decrease was found to be correlated with the decrease of NADPH-cytochrome c reductase activity catalyzed by NADPH-cytochrome P-450 reductase. Neither the content of cytochrome P-450, as determined from its CO difference spectrum, nor the peroxide-supported demethylase activity catalyzed by cytochrome P-450 alone was affected by the phosphatase treatment. NADH-cytochrome b5 reductase and cytochrome b5 were not affected by the phosphatase either. NADPH-cytochrome P-450 reductase purified from rabbit liver microsomes lost its NADPH-dependent cytochrome c reductase activity upon incubation with phosphatase in a way similar to that of microsome-bound reductase. Flavin analysis showed that the phosphatase treatment caused a decrease of FMN with concomitant appearance of riboflavin. Alkaline phosphatase, therefore, inactivates the reductase by attacking its FMN, and the inactivation of the reductase, in turn, leads to a decrease of the microsomal monooxygenase activities.  相似文献   

16.
Using homogeneous cytochrome P-450, we have shown that the well-known metyrapone-dithionite reduced cytochrome P-450 complex is specific for the cytochrome P-450b induced by phenobarbital. A linear relationship was observed between the absorbance of metyrapone-reduced cytochrome P-450 complex and the one of CO-reduced cytochrome P-450 complex, the usual method for the determination of cytochrome P-450. A method has been proposed for the specific determination of the cytochrome P-450b.  相似文献   

17.
A procedure was developed for the purification of an acetone-inducible form of cytochrome P-450 (P-450ac) to electrophoretical homogeneity from liver microsomes of acetone-treated rats. The P-450ac preparation containing 16.0 to 16.5 nmol P-450/mg protein moved as a single protein band with an estimated molecular weight of 52,000 upon gel electrophoresis in the presence of sodium dodecyl sulfate. The ferric P-450ac showed an absorption maximum at 394 nm at 25 degrees C, suggesting that it exists mainly in the high-spin form. It also existed in the low-spin form, especially at lower temperatures, as indicated by the absorption maximum in the 412-nm region. Upon reconstitution with NADPH: cytochrome P-450 reductase and phospholipid, P-450ac efficiently catalyzed both the demethylation and denitrosation of N-nitrosodimethylamine (NDMA) showing Vmax values of 23.8 and 2.3 nmol min-1 nmol P-450-1, respectively. The catalytic activity of P-450ac was greatly affected by cytochrome b5 which decreased the Km values of these reactions by a factor of 10 and increased the Vmax values. Cytochrome b5 appeared to interact with P-450 at a molar ratio of 1:1 and an intact cytochrome b5 structure was required for such interaction. Among the substrates studied, the demethylation of NDMA was affected the most by cytochrome b5 and showed the highest rate. P-450ac also catalyzed the oxygenation of N-nitrosomethylethylamine and aniline and the activity was enhanced slightly by cytochrome b5. Cytochrome b5 did not enhance the P-450ac-catalyzed metabolism of other drug substrates such as benzphetamine, aminopyrine, and ethylmorphine. P-450ac appeared to be similar in property to the previously studied rat P-450et (ethanol-inducible), rat P-450j (isoniazid-inducible), and rabbit P-450LM3a (ethanol-inducible). These P-450 species represent a new class of P-450 isozymes that are important in the metabolism of many endobiotics and xenobiotics.  相似文献   

18.
Cytochrome P-450 LM2 purified from rabbit liver microsomes has been shown to be a substrate for cAMP-dependent protein kinase. Cytochrome b5, in contrast, was a very poor substrate for cAMP-dependent protein kinase, although it stimulated the activity of the kinase toward histone. When purified rabbit cytochrome b5 was mixed with purified LM2, phosphorylation of LM2 by cAMP-dependent protein kinase was inhibited approximately 80-90%. Recently, a functional covalent complex of cytochrome b5 and LM2 was prepared and purified to homogeneity (P.P. Tamburini and J.B. Schenkman (1987) Proc. Natl. Acad. Sci. USA 84, 11-15). When present as a covalent complex with cytochrome b5, the phosphorylation of LM2 in the complex by cAMP-dependent protein kinase was also inhibited about 80-90% relative to an equivalent amount of LM2 alone. On the other hand, when the LM2 was phosphorylated prior to interaction with cytochrome b5, the ability of the latter to perturb the spin equilibrium of LM2 and oxidation of p-nitroanisole by the LM2 was diminished to an extent comparable to the degree of phosphorylation. The results suggest either that the phosphorylation site on LM2 may be within the cytochrome b5 binding site or that phosphorylation and cytochrome b5 cause mutually exclusive conformational changes in LM2. In addition, eight different forms of cytochrome P-450 from the rat (RLM2, RLM3, fRLM4, RLM5, RLM5a, RLM5b, RLM6, and PBRLM5) were examined as potential substrates for cAMP-dependent protein kinase under the same conditions. Maximal phosphorylation of about 20 mol% was obtained with LM2, and about half as much with PBRLM5. The low extent of phosphorylation of LM2 was not due to the prior presence of phosphate on the enzyme since LM2, as isolated, contains less than 0.1 mol phosphate/mol of enzyme. The other forms of cytochrome P-450 tested showed little or no phosphorylation in vitro despite the presence of a cAMP-dependent protein kinase phosphorylation sequence on at least two of them.  相似文献   

19.
P S Stayton  S G Sligar 《Biochemistry》1990,29(32):7381-7386
Cytochrome P-450cam cationic surface charges at Lys 344, Arg 72, and Lys 392 have been altered by site-directed mutagenesis techniques. The residues at Lys 344 and Arg 72 were previously suggested as salt bridge contacts in the cytochrome b5-cytochrome P-450cam association complex and implicated in the physiological putidaredoxin-cytochrome P-450cam complex [Stayton, P. S., Poulos, T. L., & Sligar, S. G. (1989) Biochemistry 28, 8201-8205]. Mutations to neutralize the basic charge at Arg 72 (R72Q) and to both neutralize and reverse the charge at Lys 344 (K344Q, K344E) resulted in alteration of NADH oxidation rates in the reconstituted physiological electron-transfer system, which is rate limited by putidaredoxin-cytochrome P-450cam electron transfer. The steady-state Vmax values were apparently unperturbed, suggesting that the observed rate differences were largely attributable to Km effects. The Km values observed for the K344Q (24 microM) and K344E (32 microM) mutants are in the direction expected for neutralization and reversal of a salt bridge charge interaction. A control mutation at a basic surface charge located away from the proposed site of interaction, Lys 392 (K392Q), resulted in overall activities quantitated by NADH oxidation rates that are similar to that of wild-type cytochrome P-450cam. Calculation of the cytochrome P-450cam electrostatic field revealed a patch of positive potential at the modeled cytochrome b5 interaction site lying directly above the nearest proximal approach to the buried heme prosthetic group. These results provide experimental and theoretical evidence for the modeled cytochrome P-450cam binding site implicated in both cytochrome b5 and putidaredoxin association.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Two new cytochrome P-450 forms were purified from liver microsomes of the marine fish Stenotomus chrysops (scup). Cytochrome P-450A (Mr = 52.5K) had a CO-ligated, reduced difference spectrum lambda max at 447.5 nm, and reconstituted modest benzo[a]pyrene hydroxylase activity (0.16 nmol/min/nmol P-450) and ethoxycoumarin O-deethylase activity (0.42 nmol/min/nmol P-450). Cytochrome P-450A reconstituted under optimal conditions catalyzed hydroxylation of testosterone almost exclusively at the 6 beta position (0.8 nmol/min/nmol P-450) and also catalyzed 2-hydroxylation of estradiol. Cytochrome P-450A is active toward steroid substrates and we propose that it is a major contributor to microsomal testosterone 6 beta-hydroxylase activity. Cytochrome P-450A had a requirement for conspecific (scup) NADPH-cytochrome P-450 reductase and all reconstituted activities examined were stimulated by the addition of purified scup cytochrome b5. Cytochrome P-450B (Mr = 45.9K) had a CO-ligated, reduced difference spectrum lambda max at 449.5 nm and displayed low rates of reconstituted catalytic activities. However, cytochrome P-450B oxidized testosterone at several different sites including the 15 alpha position (0.07 nmol/min/nmol P-450). Both cytochromes P-450A and P-450B were distinct from the major benzo[a]pyrene hydroxylating form, cytochrome P-450E, by the criteria of spectroscopic properties, substrate profiles, minimum molecular weights on NaDodSO4-polyacrylamide gels, peptide mapping and lack of cross-reaction with antibody raised against cytochrome P-450E. Cytochrome P-450E shares epitopes with rat cytochrome P-450c indicating it is the equivalent enzyme, but possible homology between scup cytochromes P-450A or P-450B and known P-450 isozymes in other vertebrate groups is uncertain, although functional analogs exist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号