首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Summary Two experiments were performed to examine the effects of inoculation of field grown wheat with various Azospirillum strains. In the first experiment the soil was sterilized with methyl bromide to reduce the Azospirillum population and15N labelled fertilizer was added to all treatments. Two strains ofAzospirillum brasilense isolated from surface sterilized wheat roots and theA. brasilense type strain Sp7 all produced similar increases in grain yield and N content. From the15N and acetylene reduction data it was apparent that these increases were not due to N2 fixation. In the second experiment performed in the same (unsterilized) soil, twoA. brasilense strains (Sp245, Sp246) and oneA. amazonense strain (Am YTr), all isolated from wheat roots, produced responses of dry matter and N content while the response to the strain Sp7 was much smaller. These data confirm earlier results which indicate that if natural Azospirillum populations in the soil are high (the normal situation under Brazilian conditions), strains which are isolated from wheat roots are better able to produce inoculation responses than strains isolated from other sources. The inoculation of a nitrate reductase negative mutant of the strain Sp245 produced only a very small inoculation response in wheat. This suggests that the much greater inoculation response of the original strain was not due to N2 fixation but to an increased nitrate assimilation due to the nitrate reductase activity of the bacteria in the roots. Consultant Inter-American Institute for Cooperation in Agriculture IICA/EMBRAPA World Bank Project.  相似文献   

2.
Development and function ofAzospirillum-inoculated roots   总被引:1,自引:1,他引:0  
Summary The surface distribution ofAzospirillum on inoculated roots of maize and wheat is generally similar to that of other members of the rhizoplane microflora. During the first three days, colonization takes place mainly on the root elongation zone, on the base of root hairs and, to a lesser extent, on the surface of young root hairs.Azospirillum has been found in cortical tissues, in regions of lateral root emergence, along the inner cortex, inside xylem vessels and between pith cells. Inoculation of several cultivars of wheat, corn, sorghum and setaria with several strains ofAzospirillum caused morphological changes in root starting immediately after germination. Root length and surface area were differentially affected according to bacterial age and inoculum level. During the first three weeks after germination, the number of root hairs, root hair branches and lateral roots was increased by inoculation, but there was no change in root weight. Root biomass increased at later stages. Cross-sections of inoculated corn and wheat root showed an irregular arrangement of cells in the outer layers of the cortex. These effects on plant morphology may be due to the production of plant growth-promoting substances by the colonizing bacteria or by the plant as a reaction to colonization. Pectic enzymes may also be involved. Morphological changes had a physiological effect on inoculated roots. Specific activities of oxidative enzymes, and lipid and suberin content, were lower in extracts of inoculated roots than in uninoculated controls. This suggests that inoculated roots have a larger proportion of younger roots. The rate of NO 3, K+ and H2PO 4 uptake was greater in inoculated seedlinds. In the field, dry matter, N, P and K accumulated at faster rates, and water content was higher inAzospirillum-inoculated corn, sorghum, wheat and setaria. The above improvements in root development and function lead in many cases to higher crop yield.  相似文献   

3.
The growth of Casuarina cunninghamiana seedlings was stimulated when inoculated with Azospirillum brasilense. This resulted in a higher biomass production than in uninoculated controls in the presence or absence of a non-nodulating strain of Frankia.Increase in whole plant dry weight was due to a significant increase in both shoot and root biomass, which corresponded with a higher total N content of the plants inoculated with Azospirillum. No such effects were observed under inoculation with a non-nodulating Frankia strain. These results suggest that the growth-promoting substances provided by A. brasilense may have enhanced the growth of Casuarina seedlings.  相似文献   

4.
Foliar chlorosis of soybean (Glycine max [L.] Merr.) resulting from nodulation by rhizobitoxine-producing (RT+) strains of Bradyrhizobium japonicum is commonly less severe in the field than under greenhouse conditions. Differences in nutritional conditions between the field and greenhouse may contribute to this phenomenon. In particular, field-grown plants obtain some N from soil sources, whereas in the greenhouse soybean is often grown in low-N rooting media to emphasize symbiotic responses. Therefore, we examined the effect of NO3 - on the expression of RT-induced symptoms. Soybean plants inoculated with RT+ bradyrhizobia were grown for 42 days in horticultural vermiculite receiving nutrient solution amended with 0.0, 2.5, or 7.5 mM KNO3. Foliar chlorosis decreased with increasing NO3 - application whereas nodule mass per plant was generally increased by NO3 - application. Total amounts of nodular RT remained constant or increased with NO3 - application, but nodular concentrations of RT decreased. Chlorosis severity was negatively correlated with shoot dry weight, chlorophyll concentration, and total shoot N content. It was concluded that application of NO3 - can reduce the negative effects of RT production on the host plant. This suggests that any NO3 - present in field soils may serve to limit chlorosis development in soybeans.Abbreviations RT rhizobitoxine - RT+ rhizobitoxine-producing - Lb leghemoglobin Published as Miscellaneous Paper No. 1429 of the Delaware Agricultural Experiment Station.  相似文献   

5.
Tang  C.  Robson  A. D. 《Plant and Soil》2000,225(1-2):11-20
The application of herbicides has induced symptoms of nutrient deficiencies under some circumstances. This glasshouse study examined the effect of chlorsulfuron on the uptake and utilization of copper (Cu) in four cultivars of wheat plants (Triticum aestivum L. cvs. Kulin, Cranbrook, Gamenya and Bodallin) on a Cu-responsive soil. Application of chlorsulfuron depressed the concentration of Cu in wheat plants receiving either inadequate or adequate Cu. In plants with inadequate Cu supply, chlorsulfuron increased the severity of Cu deficiency. Shoot weight was markedly decreased by chlorsulfuron at all levels of Cu, through decreasing the number of tillers and the elongation of leaves. This decreased growth of shoots occurred prior to the effect on Cu concentration in tissues. The retranslocation of Cu in old tissues over time was unaffected by chlorsulfuron. In all wheat cultivars, the decreased growth of shoots were correlated with the concentration of Cu in the youngest fully emerged leaf blade with critical levels of 1.6−1.7 at day 25 and 0.9−1.0 μg g−1 d. wt. at day 60. The application of chlorsulfuron tended to increase the critical level at day 25 but not at day 60. In addition, Kulin seems to be most, and Cranbrook least, sensitive to chlorsulfuron. This sensitivity was associated with the sensitivity of the cultivars to Cu deficiency. It is suggested that chlorsulfuron application induces Cu deficiency in wheat plants mainly due to effects on the uptake of Cu. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
Accumulation of cadmium (Cd) in crop plants is of great concern due to the potential for food chain contamination through the soil-root interface. Although Cd uptake varies considerably with plant species, the processes which determine the accumulation of Cd in plant tissues are affected by soil factors. The influence of soil type on Cd uptake by durum wheat (Triticum turgidum var. durum L.) and flax (Linum usitatissimum L.) was studied in a pot experiment under environmentally controlled growth chamber conditions. Four cultivars/lines of durum wheat (Kyle, Sceptre, DT 627, and DT 637) and three cultivars/lines of flax (Flanders, AC Emerson, and YSED 2) were grown in two Saskatchewan soils: an Orthic Gray Luvisol (low background Cd concentration; total/ABDTPA extractable Cd: 0.12/0.03 mg kg-1, respectively) and a Dark Brown Chernozem (relatively high background Cd concentration; total/ABDTPA Cd: 0.34/0.17 mg kg-1 respectively). Plant roots, stems, newly developed heads, and grain/seeds were analyzed for Cd concentration at three stages of plant growth: two and seven weeks after germination, and at plant maturity. The results showed that Cd bioaccumulation and distribution within the plants were strongly affected by both soil type and plant cultivar/line. The Cd concentration in roots leaves and stems varied at different stages of plant growth. However, all cultivars of both plant species grown in the Chernozemic soil accumulated more Cd in grain/seeds than plants grown in the Orthic Gray Luvisol soil. The different Cd accumulation pattern also corresponded to the levels of ABDTPA extractable and metal-organic complex bound soil Cd found in both soils. Large differences were found in grain Cd among the durum wheat cultivars grown in the same soil type, suggesting the importance of rhizosphere processes in Cd bioaccumulation and/or Cd transport processes within the plant. Distribution of Cd in parts of mature plants showed that durum grain contained up to 21 and 36% of the total amount of Cd taken up by the plants for the Orthic Gray Luvisol and Chernozemic soils, respectively. These results indicate the importance of studying Cd speciation, bioaccumulation and cycling in the environment for the management of agricultural soils and crops.  相似文献   

7.
Inter-root movement and dispersion of the beneficial bacterium Azospirillum brasilense were monitored in root systems of wheat seedlings growing in the field and in growth chamber soil trays. Two strains were used, a motile wild-type strain (Cd, mot+) and a motility deficient strain (mot), which was derived from the Cd strain. Root colonization by two wild-type strains (Cd and Sp-245) was studied in 64 plant species growing in pots in the greenhouse. The two wild-type strains of A. brasilense were capable of colonizing all tested plant species. In soil trays and in the field, mot+ cells moved from inoculated roots to non-inoculated roots of either wheat plants or weeds growing in the same field plot, but the mot strain did not move toward non-inoculated roots of either plant species. In the field, both mot+ and mot strains of A. brasilense survived well in the rhizosphere of wheat for 30 days, but only mot+ moved between different weeds, regardless of the species, botanical family, or whether they were annuals or perennials. In plant-free, water-saturated soils, either in columns or in the field, both strains remained at the inoculation site and did not move.It is proposed (a) that A. brasilense is not a plant-specific bacterium and that (b) colonization of the entire root system in soil is an active process determined by bacterial motility; it is not plant specific, but depends on the presence of plants. Correspondence to: Y. Bashan  相似文献   

8.
The carbon and nitrogen partitioning characteristics of wheat (Triticum aestivum L.) and maize (Zea mays L.) grown hydroponically at a constant pH on either 4 mM or 12 mM NO3 - or NH4 + nutrition were investigated using either 14C or 15N techniques. Greater allocation of 14C to amino-N fractions occurred at the expense of allocation of 14C to carbohydrate fractions in NH4 +-compared to NO3 --fed plants. The [14C]carbohydrate:[14C]amino-N ratios were 1.5-fold and 2.0-fold greater in shoots and roots respectively of 12 mM NO3 --compared to 12 mM NH4 +-fed wheat. In both 4 mM and 12 mM N-fed maize the [14C]carbohydrate:[14C]amino-N ratios were approximately 1.7-fold and 2.0-fold greater in shoots and roots respectively of NO3 --compared to NH4 +-fed plants. Similar results were observed in roots of wheat and maize grown in split-root culture with one root-half in NO3 --and the other in NH4 +-containing nutrient media. Thus the allocation of carbon to the amino-N fractions occurred at the expense of carbohydrate fractions, particularly within the root. Allocation of 14N and 15N within separate sets of plants confirmed that NH4 --fed plants accumulated more amino-N compounds than NO3 --fed plants. Wheat roots supplied with 15NH4 + for 8 h were found to accumulate 15NH4 + (8.5 g 15N g-1 h-1) whereas in maize roots very little 15NH4 + accumulated (1.5 g 15N g-1 h-1)It is proposed that the observed accumulation of 15NH4 + in wheat roots in these experiments is the result of limited availability of carbon within the roots of the wheat plants for the detoxification of NH4 +, in contrast to the situation in maize. Higher photosynthetic capacity and lower shoot: root ratios of the C4 maize plants ensure greater carbon availability to the root than in the C3 wheat plants. These differences in carbon and nitrogen partitioning between NO3 --and NH4 +-fed wheat and maize could be responsible for different responses of wheat and maize root growth to NO3 - and NH4 + nutrition.  相似文献   

9.
Moawad  H.  Badr El-Din  S. M. S.  Khalafallah  M. A. 《Plant and Soil》1988,112(1):137-141
The nitrogen contribution from the shoot and root system of symbiotically grown leucaena was evaluated in a field experiment on an Alfisol at IITA in Southern Nigeria. Maize in plots that received prunings from inoculated leucaena contained more N and grain yield was increased by 1.9 t.ha.–1. Large quantities of nitrogen were harvested with leucaena prunings (300 kg N ha–1 in six months) but the efficiency of utilization of this nitrogen by maize was low compared to inorganic N fertilizer (ammonium sulphate) at 80 kg N ha–1. Maize yield data indicated that nitrogen in leucaena prunigs was 34 and 45% as efficient as 80 kg N ha–1 of (NH4)2SO4 for uninoculated and inoculated plants with Rhizobium IRc 1045, respectively. In plots where the prunings were removed, the leaf litter and decaying roots and nodules contributed N equivalent of 32 kg ha–1. Twenty-five kg ha–1 was the inorganic N equivalent from nitrogen fixed symbiotically by leucaena when inoculated with Rhizobium strain IRc 1045. Application of prunings from inoculated leucaena resulted in higher soil ogranic C, total N, pH and available NO3.  相似文献   

10.
Although the use of 15N fertilizers to measure nitrogen (N2) fixed in crops has increased substantially in recent years, some methodological uncertainties still remain unresolved. The results obtained from a greenhouse study of soybean [Glycine max. (L.) Merrill] inoculated by six different methods have been examined for potential errors arising from incorporating 15N labelled fertilizer into soil to estimate N2 fixed in pods or shoots or the whole plant at three growth stages (50% flowering, pod-initiation and physiological maturity) using as reference crops, an uninoculated soybean cultivar and a non-nodulating soybean isoline. At the first harvest when N2 fixed was very low, the estimates of N2 fixed by the two reference crops did not match. At this stage the uninoculated soybean estimated about four times as much N2 fixed in the symbiotic soybean as that measured using the non-nodulating soybean. For the second and third harvests, there were substantial increases in N2 fixed, and both the non-nodulating and uninoculated soybean were equally suitable as reference crops for assessing N2 fixed in the symbiotic soybean. These results indicate how critical and difficult the choice of the reference crop could be at early harvests, or when N2 fixed is low. Even though there were significant differences in 15N enrichments in different organs (generally nodules < pods < roots < shoots), the estimates of N2 fixed in soybean plants obtained by excluding roots and nodules did not differ much from those based on the whole plant. Of the above-ground organs, % N2 fixed in pods (containing seeds) was closest to that of the whole plant (similar at P<0.05 at physiological maturity). However, the total N2 fixed in pods or shoots was substantially lower than that fixed by the whole plant (P<0.05), although that for the pods and enclosed seeds once again was closer to N2 fixed in the whole plant than that in the shoots.  相似文献   

11.
The interaction between native and introduced fungi and their effect on plant growth and mineral uptake were studied. The host plants wereLygeum spartum andAnthyllis cytisoides, the introduced fungus wasGlomus fasciculatum. The four soils used were selected from disturbed and contaminated by mining activities areas. Inoculated and uninoculated plants were grown in the unsterilized and sterilized soils (with and withouth native microflora, respectively). Plants inoculated withG. fasciculatum were higher and had higher tissue P concentration than uninoculated plants, especially inA. cytisoides. However, this inoculation was not effective in unsterilized substrates, suggesting a competition between introduced and native fungi. Concentration of mineral elements other than P varied depending on the host plant and soil. Decrease in Fe, Cu, Mn, Zn and Pb was observed in mycorrhizalA. cytiosides plants and a slight increase in Zn concentration was noted in mycorrhizalL. spartum plants. The study showed that the type of soil and their populations of native endophytes have a considerable effect on plant response to mycorrhizal symbiosis, especially in disturbed soils.  相似文献   

12.
Inoculation with the rhizosphere bacterium Azospirillum brasilense NH, originally isolated from salt-affected soil in northern Algeria, greatly enhanced growth of durum wheat (Triticum durum var. waha) under saline soil conditions. Important plant parameters like the rate of germination, stem height, spike length, dry weight of roots and shoots, chlorophyll a and b content, proline and total sugar contents, 1000-seed weight, seed number per spike, and weight of seeds per spike were measured. At salt stress conditions (160 and 200 mM NaCl) A. brasilense NH restored almost completely vegetative growth and seed production. The combination with extracts of the marine alga Ulva lactuca resulted in even more improved salt tolerance of durum wheat. Proline and total sugar accumulation, a sign of physiological plant stress under inhibitory salt conditions, was reduced in plants inoculated with A. brasilense NH with and without addition of algal extracts. Inoculation with the salt-sensitive A. brasilense strain Sp7 could not restore salt-affected plant growth at 200 mM NaCl. Furthermore, it could be demonstrated by fluorescence in situ hybridization and confocal laser scanning microscopy that A. brasilense NH is able to colonize roots of durum wheat endophytically under salt-stressed conditions. Thus, the salt-tolerant rhizobacterium A. brasilense NH could effectively provide alone or in combination with extracts of U. lactuca a promising solution to overcome salt inhibition which is a major threat hindering productive wheat cultivation in arid saline soils.  相似文献   

13.
The effect of the fungicide, chlorothalonil, on vesicular-arbuscular mycorrhizal (VAM) symbiosis was studied in a greenhouse using Leucaena leucocephala as test plant. Chlorothalonil was applied to soil at 0, 50, 100 and 200 μg g−1. The initial soil solution P levels were 0.003 μg mL−1 (sub-optimal) and 0.026 μg mL−1 (optimal). After 4 weeks, the sub-optimal P level was raised to 0.6 μg mL−1 (high). The soil was either uninoculated or inoculated with the VAM fungus, Glomus aggregatum. The fungicide reduced mycorrhizal colonization of roots, development of mycorrhizal effectiveness, shoot P concentration and uptake and dry matter yields at all concentrations tested, although the highest inhibitory effect was noted as the concentration of the fungicide was increased from 50 to 100 μg g−1. Phosphorus applied after four weeks tended to partially offset the deleterious effects of chlorothalonil in plants grown in the inoculated and uninoculated soil which suggests that the fungicide was interfering with plant P uptake. The results suggest that the use of chlorothalonil should be restricted to levels below 50 μg g−1 if the benefits of mycorrhizal symbiosis are to be expected. Contribution from Hawaii Institute of Tropical Agriculture and Human Resources Journal Series No. 3464. Contribution from Hawaii Institute of Tropical Agriculture and Human Resources Journal Series No. 3464.  相似文献   

14.
The bacterial strain E1R-j, isolated as an endophyte from wheat roots, exhibited high antifungal activity to Gaeumannomyces graminis var. tritici (Ggt). Strain E1R-j was identified as Bacillus subtilis based on morphological, physiological and biochemical methods as well as on 16S rDNA analysis. This strain inhibited mycelium growth in vitro of numerous plant pathogenic fungi, especially of Ggt, Coniothyrium diplodiella, Phomopsis sp. and Sclerotinia sclerotiorum. In greenhouse experiments, soil drenches with cell densities of 106, 109 and 1012 CFU ml−1 E1R-j reduced significantly take-all disease, caused by Ggt, in wheat seedling by 62.6%, 68.6% and 70.7%, respectively, compared to the inoculated control, 4 weeks after sowing. Growth parameters such as lengths and fresh weights of roots and shoots of Ggt-inoculated control plants were significantly lower compared to Ggt-inoculated and E1R-j treated plants. Field experiments in the season 2006/2007, heights of wheat plants in the Ggt inoculated plots were significantly reduced compared to the non inoculated treatments. Yield parameters such as kernels per head and thousand kernel weight (TKW) in inoculated control plants were lower compared to the other treatments. In the experimental year 2007/2008, independent treatments with the bacterial strain E1R-j and the fungicide Triadimefon reduced take-all disease in wheat roots by 55.3% and 61.9%, compared to the inoculated control plants. In this season plant height in inoculated control was significantly lower and also the yield parameters seeds per head and especially TKW were drastically reduced compared to the other treatments. E1R-j treatment alleviated the detrimental effects of take-all on grain yield parameters to a similar extent as Triadimefon application. SEM studies revealed that in the presence of E1R-j, hyphae of Ggt showed leakage, appeared ruptured, swollen and shriveled. Following root drench, strain E1R-j was able to colonize endophytically roots and leaves of wheat seedlings. While the population of the bacterial strain in wheat roots steadily increased from the second to the fourth leaf stage, in the leaf tissue the population of the strain rapidly declined. TEM studies also showed that cells of E1R-j were present in roots of wheat seedlings and effectively retarded infection and colonization of Ggt in root tissue; suppression of Ggt by E1R-j was accompanied by disintegration of hyphal cytoplasm. In addition, in the presence of E1R-j cells in Ggt-infected root tissue morphological defense reactions were triggered such as formation of wall appositions and papillae. The results presented indicate that the endophytic strain E1R-j of B. subtilis meets demands required for biocontrol of take-all.  相似文献   

15.
The author studied the effect of different nickel concentrations (0, 0.4, 40 and 80 μM Ni) on the nitrate reductase (NR) activity of New Zealand spinach (Tetragonia expansa Murr.) and lettuce (Lactuca sativa L. cv. Justyna) plants supplied with different nitrogen forms (NO3 –N, NH4 +–N, NH4NO3). A low concentration of Ni (0.4 μM) did not cause statistically significant changes of the nitrate reductase activity in lettuce plants supplied with nitrate nitrogen (NO3 –N) or mixed (NH4NO3) nitrogen form, but in New Zealand spinach leaves the enzyme activity decreased and increased, respectively. The introduction of 0.4 μM Ni in the medium containing ammonium ions as a sole source of nitrogen resulted in significantly increased NR activity in lettuce roots, and did not cause statistically significant changes of the enzyme activity in New Zealand spinach plants. At a high nickel level (Ni 40 or 80 μM), a significant decrease in the NR activity was observed in New Zealand spinach plants treated with nitrate or mixed nitrogen form, but it was much more marked in leaves than in roots. An exception was lack of significant changes of the enzyme activity in spinach leaves when plants were treated with 40 μM Ni and supplied with mixed nitrogen form, which resulted in the stronger reduction of the enzyme activity in roots than in leaves. The statistically significant drop in the NR activity was recorded in the aboveground parts of nickel-stressed lettuce plants supplied with NO3 –N or NH4NO3. At the same time, there were no statistically significant changes recorded in lettuce roots, except for the drop of the enzyme activity in the roots of NO3 -fed plants grown in the nutrient solution containing 80 μM Ni. An addition of high nickel doses to the nutrient solution contained ammonium nitrogen (NH4 +–N) did not affect the NR activity in New Zealand spinach plants and caused a high increase of this enzyme in lettuce organs, especially in roots. It should be stressed that, independently of nickel dose in New Zealand spinach plants supplied with ammonium form, NR activity in roots was dramatically higher than that in leaves. Moreover, in New Zealand spinach plants treated with NH4 +–N the enzyme activity in roots was even higher than in those supplied with NO3 –N.  相似文献   

16.
Summary The absorption and transport of Cu were studied in perennial ryegrass grwon on 21 soils under controlled environment conditions. Neither the concentration, nor the total amount, of Cu in the shoots was related to available Cu in the soils as assessed by extraction with 0.05M EDTA, 0.005M DTPA, or 1.95 per cent HNO3. The concentration in the roots and, more especially, absorption per unit weight of root (i.e. μg Cu g dry wt−1) were, however, highly correlated with available soil Cu. This suggests that, unless the extent of exploitation of the soil by roots is taken into account, measurements of available Cu will not be effective in predicting uptake by plants. On average, 63 per cent of the Cu absorbed by the roots was retained in the roots, and variation in the proportion retained was related to the transport of nitrogen from roots to shoots. On some soils the concentrations of N and Cu in the shoots were significantly correlated, and variation in N concentration accounted for a considerable proportion of the variance in the Cu concentration at later harvests. The relative importance of the measured soil (pH, organic matter) and plant (dry weight, N content) factors changed markedly over 6 successive harvests.  相似文献   

17.
Summary Responses of lentil in unsterile soils at low, medium and high levels of plant available soil P toGlomus fasciculatum inoculation were evaluated. It was observed that growth, dry matter accumulation, nodulation, and nitrogen fixation were considerably improved in VAM inoculated plants over uninoculated control at low and medium levels of plant available soil P.  相似文献   

18.
Positive effects of legumes and actinorhizal plants on N-poor soils have been observed in many studies but few have been done at high latitudes, which was the location of our study. We measured N2 fixation and several indices of soil N at a site near the Arctic Circle in northern Sweden. More than 20 years ago lupine (Lupinus nootkatensis Donn) and gray alder (Alnus incana L. Moench) were planted on this degraded forest site. We measured total soil N, net N mineralization and nitrification with a buried bag technique, and fluxes of NH+ 4 and NO 3 as collected on ion exchange membranes. We also estimated N2 fixation activity of the N2-fixing plants by the natural abundance of 15N of leaves with Betula pendula Roth. as reference species. Foliar nitrogen in the N2-fixing plants was almost totally derived from N2 fixation. Plots containing N2-fixing species generally had significantly higher soil N and N availability than a control plot without N2-fixing plants. Taken together, all measurements indicated that N2-fixing plants can be used to effectively improve soil fertility at high latitudes in northern Sweden.  相似文献   

19.
This work assessed in situ, copper (Cu) uptake and phytotoxicity for durum wheat (Triticum turgidum durum L.) cropped in a range of Cu-contaminated, former vineyard soils (pH 4.2–7.8 and total Cu concentration 32–1,030 mg Cu kg−1) and identified the underlying soil chemical properties and related root-induced chemical changes in the rhizosphere. Copper concentrations in plants were significantly and positively correlated to soil Cu concentration (total and EDTA). In addition, Cu concentration in roots which was positively correlated to soil pH tended to be larger in calcareous soils than in non-calcareous soils. Symptoms of Cu phytotoxicity (interveinal chlorosis) were observed in some calcareous soils. Iron (Fe)–Cu antagonism was found in calcareous soils. Rhizosphere alkalisation in the most acidic soils was related to decreased CaCl2-extractable Cu. Conversely, water-extractable Cu increased in the rhizosphere of both non-calcareous and calcareous soils. This work suggests that plant Cu uptake and risks of Cu phytotoxicity in situ might be greater in calcareous soils due to interaction with Fe nutrition. Larger water extractability of Cu in the rhizosphere might relate to greater Cu uptake in plants exhibiting Cu phytotoxic symptoms.  相似文献   

20.
Azospirillum species are free-living nitrogen-fixing bacteria commonly found in soil and in association with roots of different plant species. For their capacity to stimulate growth they are known as plant growth-promoting bacteria (PGPB). In this work, we demonstrate the natural occurrence and colonization of different parts of strawberry plants by Azospirillum brasilense in the cropping area of Tucumán, Argentina. Although bacteria isolations were carried out from two strawberry cultivars, e.g., Camarosa and Pájaro, attempts were successful only with the cultivar Camarosa. Whereas different strains of Azospirillum were isolated from the root surface and inner tissues of roots and stolons of the cultivar Camarosa, we have not obtained Azospirillum isolates from the cultivar Pájaro. After microbiological and molecular characterization (ARDRA) we determined that the isolates belonged to the species A. brasilense. All isolates showed to have the capacity to fix nitrogen, to produce siderophores and indoles. Local isolates exhibited different yields of indoles production when growing in N-free NFb semisolid media supplemented or not with tryptophan (0.1 mg ml−1). This is the first report on the natural occurrence of A. brasilense in strawberry plants, especially colonizing inner tissues of stolons, as well as roots. The local isolates showed three important characteristics within the PGPB group: N2-fixation, siderophores, and indoles production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号