首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The quality and quantity of BCR signals impact on cell fate decisions of B lymphocytes. Here, we describe novel gene-targeted mice, which in the context of normal VDJ recombination show hypomorphic expression of immunoglobulin μ heavy chain (μHC) mRNA levels and hence lower pre-BCR and BCR levels. Hypomorphic expression of μHC leads to augmented selection processes at all stages of B-cell development, noticeably at the expansion of pre-B cells, the positive selection of immature B lymphocytes in the bone marrow and the selection of the follicular (FO), marginal zone (MZ) and B1 B-lymphocyte compartment in peripheral lymphoid organs. Immature as well as mature FO and MZ B lymphocytes in the peripheral lymphoid organs express lower levels of the receptor for B-cell activating factor (BAFF). In addition, hypomorphic expression of the BCR favours receptor editing. Together, our results highlight the critical importance of pre-BCR and BCR receptor levels for the normal development of B-lymphocyte subpopulations in the context of intact VDJ recombination and a diverse antibody repertoire.  相似文献   

2.
Central tolerance to self-antigen expressed by cortical epithelial cells   总被引:3,自引:0,他引:3  
The exposure of developing thymocytes to high-affinity self-Ag results in T cell tolerance. A predominant mechanism for this is clonal deletion; though receptor editing, anergy induction, and positive selection of regulatory T cells have also been described. It is unclear what signals are involved in determining different tolerance mechanisms. In particular, OT-I mice displayed receptor editing when the high-affinity self-Ag was expressed in cortical epithelial cells (cEC) using the human keratin 14 promoter. To test the hypothesis that receptor editing is a consequence of a unique instruction given by cEC presenting self-Ag, we created mice expressing the 2C and HY ligands under control of the keratin 14 promoter. Alternatively, we studied the fate of developing T cells in OT-I mice where Ag was presented by all thymic APC. Surprisingly, we found that the tolerance mechanism was not influenced by the APC subset involved in presentation. Clonal deletion was observed in 2C and HY models even when Ag was presented only by cEC; and receptor editing was observed in OT-I mice even when Ag was presented by all thymic APC. These results suggest that different TCRs show intrinsic differences in thymic tolerance mechanism.  相似文献   

3.
4.
Different isoforms of serotonin subtype 2C receptor (5-HT(2C)R) with altered G protein-coupling efficacy are generated by RNA editing, which converts genomically encoded adenosine residues into inosines. In combination, editing of five sites all located within the second intracellular loop region of 5-HT(2C)R mRNA changes the gene-encoded Ile, Asn, and Ile at positions 156, 158, and 160, respectively. We analyzed the G protein-coupling functions of previously unreported editing isoform receptors. An approximately 13-fold reduction in the agonist potency for G protein-coupling stimulation as well as a significantly reduced basal level activity was observed with the thalamus-specific isoform carrying Ile156, Gly158, and Val160 (5-HT(2C)R-IGV). In contrast, the agonist was four- to five-fold less potent with 5-HT(2C)R-MSV and -IDV, detected in the amygdala and choroid plexus, respectively, indicating a dominant role for the amino acid residue at position 158 in receptor functions. We also identified a splicing variant receptor with a truncated C terminus that displayed no ligand binding capacity or G protein-coupling activity. Examination of the alternatively spliced RNA encoding this truncated receptor suggests that editing of this variant RNA occurs after completion of splicing, resulting in complete editing at all five sites.  相似文献   

5.
Responsiveness of c-Myc oncogene to B cell receptor ligation has been implicated in the induction of apoptosis in transformed and normal immature B cells. These studies provided compelling evidence to link the c-Myc oncogene with the process of negative selection in B-lymphocytes. However, in addition to apoptosis, B cell-negative selection has been shown to occur by secondary Ig gene rearrangements, a mechanism called receptor editing. In this study, we assessed whether differential c-Myc responsiveness to B cell receptor (BCR) ligation is associated with the mechanism of negative selection in immature B cells. Using an in vitro bone marrow culture system and an Ig-transgenic mouse model (3-83) we show here that c-Myc is expressed at low levels throughout B cell development and that c-Myc responsiveness to BCR ligation is developmentally regulated and increased with maturation. Furthermore, we found that the competence to mount c-Myc responsiveness upon BCR ligation is important for the induction of apoptosis and had no effect on the process of receptor editing. Therefore, this study suggests an important role of c-Myc in promoting and/or maintaining B cell development and that compartmentalization of B cell tolerance may also be developmentally regulated by differential c-Myc responsiveness.  相似文献   

6.
It is widely accepted that developing T cells can undergo clonal deletion in the thymus in response to a high affinity self-Ag. This is largely based on studies of TCR transgenics. However, encounter with high affinity self-Ag can also result in receptor editing in TCR transgenic models. Because all TCR transgenics display ectopic receptor expression, the tolerance mechanism that predominates in normal mice remains an open question. When self-Ag drives receptor editing during T cell development, one expects to find in-frame, self-reactive TCRalpha joins on TCR excision circles (TRECs), which are the products of secondary V/J recombination in the TCRalpha locus. Such joins are not expected if clonal deletion occurs, because the progenitor cell would be eliminated by apoptosis. To test the relative utilization of receptor editing vs clonal deletion, we determined the frequency of in-frame, male-specific joins on TRECs in male and female HYbeta transgenic mice. In comparison with female HYbeta transgenic mice, our analysis showed a lower frequency of TRECs with male-reactive V17J57 joins in male mice. Thus, it would appear that receptor editing is not a predominant tolerance mechanism for this self-Ag.  相似文献   

7.
8.
Serotonin 2C receptor (5-HT2CR) heterogeneity in the brain occurs mostly from two different sources: (i) 5-HT2CR mRNA undergoes adenosine-to-inosine editing events at five positions, which leads to amino acid substitutions that produce receptor variants with different pharmacological properties; (ii) 5-HT2CR mRNA is alternatively spliced, resulting in a truncated mRNA isoform (5-HT2CR-tr) which encodes a non-functional serotonin receptor. 5-HT2CR mRNA editing efficiencies and the expression of the full-length and the truncated 5-HT2CR mRNA splice isoforms were analyzed in the prefrontal cortex of elderly subjects with schizophrenia vs. matched controls (ns = 15). No significant differences were found, indicating that there are no alterations in editing or alternative splicing of 5-HT2CRs that are associated with schizophrenia in persons treated with antipsychotic medications. Quantitation of 5-HT2CR and 5-HT2CR-tr mRNA variants revealed that the expression of 5-HT2CR-tr was approximately 50% of that observed for the full-length isoform.  相似文献   

9.
Receptor editing in the bone marrow (BM) serves to modify the Ag receptor specificity of immature self-reactive B cells, while anergy functionally silences self-reactive clones. Here, we demonstrate that anergic B cells in hen egg lysozyme Ig (HEL-Ig)/soluble HEL double transgenic mice show evidence of having undergone receptor editing in vivo, as demonstrated by the presence of elevated levels of endogenous kappa light chain rearrangements in the BM and spleen. In an in vitro IL-7-driven BM culture system, HEL-Ig BM B cells grown in the presence of soluble HEL down-regulated surface IgM expression and also showed induction of new endogenous kappa light chain rearrangements. Using a panel of soluble protein ligands with reduced affinity for the HEL-Ig receptor, the editing response was shown to correlate in a dose-dependent fashion with the strength of signaling through the B cell receptor. The finding that the level of B cell receptor cross-linking sufficient to induce anergy in B cells is also capable of engaging the machinery required for receptor editing suggests an intimate relationship between these two mechanisms in maintaining B cell tolerance.  相似文献   

10.
The editing of B cell Ag receptor (BCR) through successive rearrangements of Ig genes has been considered to be a major mechanism for the central B cell tolerance, which precludes appearance of self-reactive B cells, through studies using anti-self-Ig transgenic/knock-in mouse systems. However, contribution of the receptor editing in the development of the normal B cell repertoire remains unclear. In addition, the signaling pathway directing this event is unknown. In this study, we demonstrate that receptor editing in anti-DNA Ig knock-in mice is impaired in the absence of an adaptor protein BASH (BLNK/SLP-65) that is involved in BCR signaling. Remarkably, the supposed hallmarks of receptor editing such as Iglambda chain expression, recombination sequence rearrangements at Igkappa loci, and presence of in-frame VkappaJkappa joins in the Igkappa loci inactivated by the recombination sequence rearrangements, were all diminished in BASH-deficient mice with unmanipulated Ig loci. BCR ligation-induced Iglambda gene recombination in vitro was also impaired in BASH-deficient B cells. Furthermore, the BASH-deficient mice showed an excessive Ab response to a DNA carrier immunization, suggesting the presence of unedited DNA-reactive B cells in the periphery. These results not only define a signaling pathway required for receptor editing but indicate that the BCR-signaled receptor editing indeed operates in the development of normal B cell repertoire and contributes to establishing the B cell tolerance.  相似文献   

11.
In B lymphopoiesis, Ag receptor expression and signaling are critical to determine developmental progression, survival, and activation. Several positive and negative selection checkpoints to test this receptor have been described in B lymphopoiesis, aiming to ensure the generation of functionally competent, nonautoimmune repertoire. Secondary Ag receptor gene recombination allows B lymphocytes to replace an inappropriate receptor with a new receptor, a mechanism called receptor editing. This salvage mechanism uncouples the Ag receptor fate from that of the cell itself, suggesting that B cell repertoire is regulated by a process of receptor selection. Secondary rearrangements are stimulated in different stages of B cell development, where editing of the receptor is necessary to fulfill stage-specific requirements. In this study, we discuss the contribution of receptor editing in B lymphopoiesis and its regulation by positive and negative selection signals.  相似文献   

12.
Kouskoff V  Nemazee D 《Life sciences》2001,69(10):1105-1113
B and T lymphocytes that carry antigen receptors are able to change specificity through subsequent receptor gene rearrangements. Receptor editing and receptor revision are terms used to distinguish those rearrangements occurring, respectively, in central lymphoid organs and the periphery. Secondary rearrangement appears to be a major player at two levels in the life of B lymphocytes. First, editing preserves a diverse repertoire without compromising self-tolerance, and revision further increases this repertoire once B cells have been engaged in an immune response, most likely for a better interaction with microbes. Recent studies have likewise suggested a role for receptor editing and revision in shaping the T cell repertoire during development and tolerance.  相似文献   

13.
Maturation of B lymphocytes strictly depends on the signaling competence of the B cell antigen receptor (BCR). Autoreactive receptors undergo negative selection and can be replaced by receptor editing. In addition, the process of maturation of non-self B cells and migration to the spleen, referred to as positive selection, is limited by the signaling competence of the BCR. Using 3-83Tg mice deficient of CD19 we have shown that signaling incompetence not only blocks positive selection but also activates receptor editing. Here we study the role of ligand-independent BCR tonic tyrosine phosphorylation signals in activation of receptor editing. We find that editing, immature 3-83Tg B cells deficient of CD19 have elevated BCR tonic signals and that lowering these tonic signals effectively suppresses receptor editing. Furthermore, we show that elevation of BCR tonic signals in non-editing, immature 3-83Tg B cells stimulates significant receptor editing. We also show that positive selection and developmental progression from the bone marrow to the spleen are limited to cells capable of establishing appropriate tonic signals, as in contrast to immature cells, splenic 3-83Tg B cells deficient of CD19 have BCR tonic signals similar to those of the control 3-83Tg cells. This developmental progression is accompanied by activation of molecules signaling for growth and survival. Hence, we suggest that ligand-independent BCR tonic signals are required for promoting positive selection and suppressing the receptor-editing mechanism in immature B cells.  相似文献   

14.
Receptor editing is a major B cell tolerance mechanism that operates by secondary Ig gene rearrangements to change the specificity of autoreactive developing B cells. In the 3-83Igi mouse model, receptor editing operates in every autoreactive anti-H-2K(b) B cell, providing a novel receptor without additional cell loss. Despite the efficiency of receptor editing in generating nonautoreactive Ag receptors, we show in this study that this process does not inactivate the autoantibody-encoding gene(s) in every autoreactive B cell. In fact, receptor editing can generate allelically and isotypically included B cells that simultaneously express the original autoreactive and a novel nonautoreactive Ag receptors. Such dual Ab-expressing B cells differentiate into transitional and mature B cells retaining the expression of the autoantibody despite the high avidity interaction between the autoantibody and the self-Ag in this system. Moreover, we find that these high avidity autoreactive B cells retain the autoreactive Ag receptor within the cell as a consequence of autoantigen engagement and through a Src family kinase-dependent process. Finally, anti-H-2K(b) IgM autoantibodies are found in the sera of older 3-83Igi mice, indicating that dual Ab-expressing autoreactive B cells are potentially functional and capable of differentiating into IgM autoantibody-secreting plasma cells under certain circumstances. These results demonstrate that autoreactive B cells reacting with ubiquitous membrane bound autoantigens can bypass mechanisms of central tolerance by coexpressing nonautoreactive Abs. These dual Ab-expressing autoreactive B cells conceal their autoantibodies within the cell manifesting a superficially tolerant phenotype that can be partially overcome to secrete IgM autoantibodies.  相似文献   

15.
BCR editing in the bone marrow contributes to B cell tolerance by orchestrating secondary Ig rearrangements in self-reactive B cells. We have recently shown that loss of the BCR or a pharmacologic blockade of BCR proximal signaling pathways results in a global "back-differentiation" response in which immature B cells down-regulate genes important for the mature B cell program and up-regulate genes characteristic of earlier stages of B cell development. These observations led us to test the hypothesis that self-Ag-induced down-regulation of the BCR, and not self-Ag-induced positive signals, lead to Rag induction and hence receptor editing. Supporting this hypothesis, we found that immature B cells from xid (x-linked immunodeficiency) mice induce re-expression of a Rag2-GFP bacterial artificial chromosome reporter as well as wild-type immature B cells following Ag incubation. Incubation of immature B cells with self-Ag leads to a striking reversal in differentiation to the pro-/pre-B stage of development, consistent with the idea that back-differentiation results in the reinduction of genes required for L chain rearrangement and receptor editing. Importantly, Rag induction, the back-differentiation response to Ag, and editing in immature and pre-B cells are inhibited by a combination of phorbol ester and calcium ionophore, agents that bypass proximal signaling pathways and mimic BCR signaling. Thus, mimicking positive BCR signals actually inhibits receptor editing. These findings support a model whereby Ag-induced receptor editing is inhibited by BCR basal signaling on developing B cells; BCR down-regulation removes this basal signal, thereby initiating receptor editing.  相似文献   

16.
RNA editing and alternative splicing are two processes that increase protein diversity. The relationship between the two processes is not well understood. There are a few examples of correlations between editing and alternative splicing, but these are all nearby effects. A search for alternative splicing among 16 edited genes in Drosophila reveals two novel instances of alternative splicing. In one example where alternative splicing occurs downstream of editing, a strong correlation between editing efficiency and splice site selection is observed. In contrast, when editing occurs downstream of alternative splicing, no correlation is seen. These results suggest some models for the coupling of editing and splicing processes.  相似文献   

17.
18.
19.
The avian immune system provides an excellent model to track B-cell development from prebursal stem cells throughout B-cell differentiation and maturation. Bursal B cells are uniquely positioned at the crossroads of B-cell development, having properties of both stem cells and of mature B cells, as demonstrated by their ability to reconstruct the bursal B-cell compartment and to express and diversify the B-cell receptor at their cell surface. To understand avian B-cell development better, we determined the gene expression profile of different B-cell stages using a bursal expressed sequence tag array. The expression profile of bursal B cells reveals the presence of factors associated with B-cell signaling and defines novel B-cell-specific genes. Genes associated with proliferation, apoptosis, DNA repair and recombination are abundantly expressed. The expression profile of the DT40 cell line is most similar to bursal B cells rather than to other stages of B-cell development, confirming the suitability of DT40 for studies of B-cell physiology. Interestingly, prebursal stem cells express genes involved in B-cell receptor signaling, although they express only low levels of immunoglobulin genes. This suggests that B-cell receptor-mediated selection is present before bursal colonization. The gene expression signatures of germinal centers and cells of the Harderian gland indicate that evolutionarily conserved genetic programs regulate B-cell activation and terminal differentiation.Electronic Supplementary Material Supplementary material is available in the online version of this article atK. Koskela, P. Kohonen and P. Nieminen contributed equally to this work  相似文献   

20.
This study examines the loss of peripherally induced B cell immune tolerance in Rheumatoid arthritis (RA) and establishes a novel signaling-based measure of activation in a subset of autoreactive B cells - the Induced tolerance status index (ITSI). Naturally occurring naïve autoreactive B cells can escape the “classical” tolerogenic mechanisms of clonal deletion and receptor editing, but remain peripherally tolerized through B cell receptor (BCR) signaling inhibition (postdevelopmental “receptor tuning” or anergy). ITSI is a statistical index that numerically determines the level of homology between activation patterns of BCR signaling intermediaries in B cells that are either tolerized or activated by auto antigen exposure, and thus quantifies the level of peripheral immune tolerance. The index is based on the logistic regression analysis of phosphorylation levels in a panel of BCR signaling proteins. Our results demonstrate a new approach to identifying autoreactive B cells based on their BCR signaling features.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号