首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prenatal exposure to alcohol affects the expression and function of glutamatergic neurotransmitter receptors in diverse brain regions. The present study was undertaken to fill a current gap in knowledge regarding the regional specificity of ethanol-related alterations in glutamatergic receptors in the frontal cortex. We quantified subregional expression and function of glutamatergic neurotransmitter receptors (AMPARs, NMDARs, GluN2B-containing NMDARs, mGluR1s, and mGluR5s) by radioligand binding in the agranular insular cortex (AID), lateral orbital area (LO), prelimbic cortex (PrL) and primary motor cortex (M1) of adult rats exposed to moderate levels of ethanol during prenatal development. Increased expression of GluN2B-containing NMDARs was observed in AID of ethanol-exposed rats compared to modest reductions in other regions. We subsequently performed slice electrophysiology measurements in a whole-cell patch-clamp preparation to quantify the sensitivity of evoked NMDAR-mediated excitatory postsynaptic currents (EPSCs) in layer II/III pyramidal neurons of AID to the GluN2B negative allosteric modulator ifenprodil. Consistent with increased GluN2B expression, ifenprodil caused a greater reduction in NMDAR-mediated EPSCs from prenatal alcohol-exposed rats than saccharin-exposed control animals. No alterations in AMPAR-mediated EPSCs or the ratio of AMPARs/NMDARs were observed. Together, these data indicate that moderate prenatal alcohol exposure has a significant and lasting impact on GluN2B-containing receptors in AID, which could help to explain ethanol-related alterations in learning and behaviors that depend on this region.  相似文献   

2.
Accumulating evidence has indicated the involvement of glutamatergic neurotransmission in the pathophysiology of excitotoxicity and in the mechanism of action of antidepressants. We have previously shown that tricyclic desipramine and the selective serotonin reuptake inhibitor fluoxetine inhibit NMDA receptors (NMDARs) in the clinically relevant, low micromolar concentration range. As the different subtypes of NMDARs are markedly different in their physiological and pathological functions, our aim was to investigate whether the effect of antidepressants is subtype-specific. Using whole-cell patch-clamp recordings in rat cortical cell cultures, we studied the age-dependence of inhibition of NMDA-induced currents after treatment with desipramine and fluoxetine, as the expression profile of the NMDAR subtypes changes as a function of days in vitro. We also investigated the inhibitory effect of these antidepressants on NMDA-induced currents in HEK 293 cell lines that stably expressed rat recombinant NMDARs with GluN1a/GluN2A or GluN1a/GluN2B subunit compositions. The inhibitory effect of desipramine was not age-dependent, whereas fluoxetine displayed a continuously decreasing inhibitory profile, which was similar to the GluN1/GluN2B subtype-selective antagonist ifenprodil. In HEK 293 cells, desipramine equally inhibited NMDA currents in both cell lines, whereas fluoxetine showed an inhibitory effect only in cells that expressed the GluN1/GluN2B subtype. Our data show that fluoxetine is a selective inhibitor of GluN2B-containing NMDARs, whereas desipramine inhibits both GluN1/GluN2A and GluN1/GluN2B subtypes. As the clinical efficacy of these drugs is very similar, the putative NMDAR-associated therapeutic effect of antidepressants may be mediated only via inhibition of the GluN2B-containing subtype. The manifestation of the GluN1/GluN2B-selectivity of fluoxetine suggests the neuroprotective potential for this drug in both acute and chronic neurodegenerative disorders.  相似文献   

3.
GABA (gamma-aminobutyric-acid), the main inhibitory neurotransmitter in the adult brain, exerts depolarizing (excitatory) actions during development and this GABAergic depolarization cooperates with NMDARs (N-methyl-D-aspartate receptors) to drive spontaneous synchronous activity (SSA) that is fundamentally important for developing neuronal networks. Although GABAergic depolarization is known to assist in the activation of NMDARs during development, the subcellular localization of NMDARs relative to GABAergic synapses is still unknown. Here, we investigated the subcellular distribution of NMDARs in association with GABAergic synapses at the developmental stage when SSA is most prominent in mice. Using multiple immunofluorescent labeling and confocal laser-scanning microscopy in the developing mouse hippocampus, we found that NMDARs were associated with both glutamatergic and GABAergic synapses at postnatal day 6-7 and we observed a direct colocalization of GABA(A)- and NMDA-receptor labeling in GABAergic synapses. Electron microscopy of pre-embedding immunogold-immunoperoxidase reactions confirmed that GluN1, GluN2A and GluN2B NMDAR subunits were all expressed in glutamatergic and GABAergic synapses postsynaptically. Finally, quantitative post-embedding immunogold labeling revealed that the density of NMDARs was 3 times higher in glutamatergic than in GABAergic synapses. Since GABAergic synapses were larger, there was little difference in the total number of NMDA receptors in the two types of synapses. In addition, receptor density in synapses was substantially higher than extrasynaptically. These data can provide the neuroanatomical basis of a new interpretation of previous physiological data regarding the GABA(A)R-NMDAR cooperation during early development. We suggest that during SSA, synaptic GABA(A)R-mediated depolarization assists NMDAR activation right inside GABAergic synapses and this effective spatial cooperation of receptors and local change of membrane potential will reach developing glutamatergic synapses with a higher probability and efficiency even further away on the dendrites. This additional level of cooperation that operates within the depolarizing GABAergic synapse, may also allow its own modification triggered by Ca(2+)-influx through the NMDA receptors.  相似文献   

4.
N-methyl-D-aspartate receptors (NMDARs) are critical for the maturation and plasticity of glutamatergic synapses. In the hippocampus, NMDARs mainly contain GluN2A and/or GluN2B regulatory subunits. The amyloid precursor protein (APP) has emerged as a putative regulator of NMDARs, but the impact of this interaction to their function is largely unknown. By combining patch-clamp electrophysiology and molecular approaches, we unravel a dual mechanism by which APP controls GluN2B-NMDARs, depending on the life stage. We show that APP is highly abundant specifically at the postnatal postsynapse. It interacts with GluN2B-NMDARs, controlling its synaptic content and mediated currents, both in infant mice and primary neuronal cultures. Upon aging, the APP amyloidogenic-derived C-terminal fragments, rather than APP full-length, contribute to aberrant GluN2B-NMDAR currents. Accordingly, we found that the APP processing is increased upon aging, both in mice and human brain. Interfering with stability or production of the APP intracellular domain normalized the GluN2B-NMDARs currents. While the first mechanism might be essential for synaptic maturation during development, the latter could contribute to age-related synaptic impairments.  相似文献   

5.
The number and subunit composition of synaptic N-methyl-d-aspartate receptors (NMDARs) play critical roles in synaptic plasticity, learning, and memory and are implicated in neurological disorders. Tyrosine phosphorylation provides a powerful means of regulating NMDAR function, but the underling mechanism remains elusive. In this study we identified a tyrosine site on the GluN2B subunit, Tyr-1070, which was phosphorylated by a proto-oncogene tyrosine-protein (Fyn) kinase and critical for the surface expression of GluN2B-containing NMDARs. The phosphorylation of GluN2B at Tyr-1070 was required for binding of Fyn kinase to GluN2B, which up-regulated the phosphorylation of GluN2B at Tyr-1472. Moreover, our results revealed that the phosphorylation change of GluN2B at Tyr-1070 accompanied the Tyr-1472 phosphorylation and Fyn associated with GluN2B in synaptic plasticity induced by both chemical and contextual fear learning. Taken together, our findings provide a new mechanism for regulating the surface expression of NMDARs with implications for synaptic plasticity.  相似文献   

6.
Activation of N-methyl-D-aspartate receptors (NMDARs) has been implicated in various forms of synaptic plasticity depending on the receptor subtypes involved. However, the contribution of NR2A and NR2B subunits in the induction of long-term depression (LTD) of excitatory postsynaptic currents (EPSCs) in layer II/III pyramidal neurons of the young rat visual cortex remains unclear. The present study used whole-cell patch-clamp recordings in vitro to investigate the role of NR2A- and NR2B-containing NMDARs in the induction of LTD in visual cortical slices from 12- to 15-day old rats. We found that LTD was readily induced in layer II/III pyramidal neurons of the rat visual cortex with 10-min 1-Hz stimulation paired with postsynaptic depolarization. D-APV, a selective NMDAR antagonist, blocked the induction of LTD. Moreover, the selective NR2B-containing NMDAR antagonists (Ro 25-6981 and ifenprodil) also prevented the induction of LTD. However, Zn2+, a voltage-independent NR2A-containing NMDAR antagonist, displayed no influence on the induction of LTD. These results suggest that the induction of LTD in layer II/III pyramidal neurons of the young rat visual cortex is NMDAR-dependent and requires NR2B-containing NMDARs, not NR2A-containing NMDARs.  相似文献   

7.
Gray JA  Shi Y  Usui H  During MJ  Sakimura K  Nicoll RA 《Neuron》2011,71(6):1085-1101
During development there is an activity-dependent switch in synaptic N-Methyl-D-aspartate (NMDA) receptor subunit composition from predominantly GluN2B to GluN2A, though the precise role of this?switch remains unknown. By deleting GluN2 subunits in single neurons during synaptogenesis, we find that both GluN2B and GluN2A suppress AMPA receptor expression, albeit by distinct means. Similar to GluN1, GluN2B deletion increases the number of functional synapses, while GluN2A deletion increases the strength of unitary connections without affecting the number of functional synapses. We propose a model of excitatory synapse maturation in which baseline activation of GluN2B-containing receptors prevents premature synapse maturation until correlated activity allows induction of functional synapses. This activity also triggers the switch to GluN2A, which dampens further potentiation. Furthermore, we analyze the subunit composition of synaptic NMDA receptors in CA1 pyramidal cells, provide electrophysiological evidence for?a large population of synaptic triheteromeric receptors, and estimate the subunit-dependent open probability.  相似文献   

8.
Metaplasticity is a higher form of synaptic plasticity that is essential for learning and memory, but its molecular mechanisms remain poorly understood. Here, we report that metaplasticity of transmission at CA1 synapses in the hippocampus is mediated by Src family kinase regulation of NMDA receptors (NMDARs). We found that stimulation of G-protein-coupled receptors (GPCRs) regulated the absolute contribution of GluN2A-versus GluN2B-containing NMDARs in CA1 neurons: pituitary adenylate cyclase activating peptide 1 receptors (PAC1Rs) selectively recruited Src kinase, phosphorylated GluN2ARs, and enhanced their functional contribution; dopamine 1 receptors (D1Rs) selectively stimulated Fyn kinase, phosphorylated GluN2BRs, and enhanced these currents. Surprisingly, PAC1R lowered the threshold for long-term potentiation while long-term depression was enhanced by D1R. We conclude that metaplasticity is gated by the activity of GPCRs, which selectively target subtypes of NMDARs via Src kinases.  相似文献   

9.
Rapid bidirectional switching of synaptic NMDA receptors   总被引:5,自引:0,他引:5  
Bellone C  Nicoll RA 《Neuron》2007,55(5):779-785
Synaptic NMDA-type glutamate receptors (NMDARs) play important roles in synaptic plasticity, brain development, and pathology. In the last few years, the view of NMDARs as relatively fixed components of the postsynaptic density has changed. A number of studies have now shown that both the number of receptors and their subunit compositions can be altered. During development, the synaptic NMDARs subunit composition changes, switching from predominance of NR2B-containing to NR2A-containing receptors, but little is known about the mechanisms involved in this developmental process. Here, we report that, depending on the pattern of NMDAR activation, the subunit composition of synaptic NMDARs is under extremely rapid, bidirectional control at neonatal synapses. This switching, which is at least as rapid as that seen with AMPARs, will have immediate and dramatic consequences on the integrative capacity of the synapse.  相似文献   

10.
NMDA receptors (NMDARs), fundamental to learning and memory and implicated in certain neurological disorders, are heterotetrameric complexes composed of two NR1 and two NR2 subunits. The function of synaptic NMDARs in postnatal principal forebrain neurons is typically attributed to diheteromeric NR1/NR2A and NR1/NR2B receptors, despite compelling evidence for triheteromeric NR1/NR2A/NR2B receptors. In synapses, the properties of triheteromeric NMDARs could thus far not be distinguished from those of mixtures of diheteromeric NMDARs. To find a signature of NR1/NR2A/NR2B receptors, we have employed two gene-targeted mouse lines, expressing either NR1/NR2A or NR1/NR2B receptors without NR1/NR2A/NR2B receptors, and compared their synaptic properties with those of wild type. In acute hippocampal slices of mutants older than 4 weeks we found a distinct voltage dependence of NMDA R-mediated excitatory postsynaptic current (NMDA EPSC) decay time for the two diheteromeric NMDARs. In wild-type mice, NMDA EPSCs unveiled the NR1/NR2A characteristic for this voltage-dependent deactivation exclusively, indicating that the contribution of NR1/NR2B receptors to evoked NMDA EPSCs is negligible in adult CA3-to-CA1 synapses. The presence of NR1/NR2A/NR2B receptors was obvious from properties that could not be explained by a mixture of diheteromeric NR1/NR2A and NR1/NR2B receptors or by the presence of NR1/NR2A receptors alone. The decay time for NMDA EPSCs in wild type was slower than that for NR1/NR2A receptors, and the sensitivity of NMDA EPSCs to NR2B-directed NMDAR antagonists was 50%. Thus, NR2B is prominent in adult hippocampal synapses as an integral part of NR1/NR2A/NR2B receptors.  相似文献   

11.
Accumulating evidence indicates the involvement of N-methyl-d-aspartate receptors (NMDARs) in regulating neural stem/progenitor cell (NSPC) proliferation. Functional properties of NMDARs can be markedly influenced by incorporating the regulatory subunit NR2B. Here, we aim to analyze the effect of NR2B-containing NMDARs on the proliferation of hippocampal NSPCs and to explore the mechanism responsible for this effect. NSPCs were shown to express NMDAR subunits NR1 and NR2B. The NR2B selective antagonist, Ro 25-6981, prevented the NMDA-induced increase in cell proliferation. Moreover, we demonstrated that the phosphorylation levels of calcium/calmodulin-dependent protein kinase IV (CaMKIV) and cAMP response element binding protein (CREB) were increased by NMDA treatment, whereas Ro 25-6981 decreased them. The role that NR2B-containing NMDARs plays in NSPC proliferation was abolished when CREB phosphorylation was attenuated by CaMKIV silencing. These results suggest that NR2B-containing NMDARs have a positive role in regulating NSPC proliferation, which may be mediated through CaMKIV phosphorylation and subsequent induction of CREB activation.  相似文献   

12.

Background

NMDA-type glutamate receptors (NMDARs) are major contributors to long-term potentiation (LTP), a form of synaptic plasticity implicated in the process of learning and memory. These receptors consist of calcium-permeating NR1 and multiple regulatory NR2 subunits. A majority of studies show that both NR2A and NR2B-containing NMDARs can contribute to LTP, but their unique contributions to this form of synaptic plasticity remain poorly understood.

Methodology/Principal Findings

In this study, we show that NR2A and NR2B-containing receptors promote LTP differently in the CA1 hippocampus of 1-month old mice, with the NR2A receptors functioning through Ras-GRF2 and its downstream effector, Erk Map kinase, and NR2B receptors functioning independently of these signaling molecules.

Conclusions/Significance

This study demonstrates that NR2A-, but not NR2B, containing NMDA receptors induce LTP in pyramidal neurons of the CA1 hippocamus from 1 month old mice through Ras-GRF2 and Erk. This difference add new significance to the observation that the relative levels of these NMDAR subtypes is regulated in neurons, such that NR2A-containing receptors become more prominent late in postnatal development, after sensory experience and synaptic activity.  相似文献   

13.
We describe the synthesis and pharmacological characterization of a first generation of ifenprodil conjugates 4-7 as fluorescent probes for the confocal microscopy imaging of the NR2B-containing NMDA receptor. The fluorescein conjugate 6 displayed a moderate affinity for NMDAR but a high selectivity for the NR2B subunit and its NTD. Fluorescence imaging of DS-red labeled cortical neurons showed an exact colocalization of the probe 6 with small protrusions along the dendrites related to a specific binding on NR2B-containing NMDARs.  相似文献   

14.
The N-methyl-D-aspartate receptor (NMDAR) in adult forebrain is a heterotetramer mainly composed of two GluN1 subunits and two GluN2A and/or GluN2B subunits. The synaptic expression and relative numbers of GluN2A- and GluN2B-containing NMDARs play critical roles in controlling Ca2+-dependent signaling and synaptic plasticity. Previous studies have suggested that the synaptic trafficking of NMDAR subtypes is differentially regulated, but the precise molecular mechanism is not yet clear. In this study, we demonstrated that Bip, an endoplasmic reticulum (ER) chaperone, selectively interacted with GluN2A and mediated the neuronal activity-induced assembly and synaptic incorporation of the GluN2A-containing NMDAR from dendritic ER. Furthermore, the GluN2A-specific synaptic trafficking was effectively disrupted by peptides interrupting the interaction between Bip and GluN2A. Interestingly, fear conditioning in mice was disrupted by intraperitoneal injection of the interfering peptide before training. In summary, we have uncovered a novel mechanism for the activity-dependent supply of synaptic GluN2A-containing NMDARs, and demonstrated its relevance to memory formation.  相似文献   

15.
Glutamate acting on NMDA receptors (NMDARs) is known to influence cerebellar granule cell migration. Subunit composition of NMDARs in granule cells changes characteristically during development: NR2B subunit containing receptors are abundant during migration towards the internal granule cell layer but are gradually replaced by NR2A and/or NR2C subunits once the final position is reached. Cerebellar granule cell migration was investigated using mutant mouse lines either with a deletion of the NR2C gene (NR2C−/− mice) or expressing NR2B instead of the NR2C subunit (NR2C-2B mice). BrdU-labeling revealed that over-expression of NR2B increased granule cell translocation in vivo , while the lack of NR2C subunit did not have any detectable effects on cell migration. Cellular composition of wild-type and mutant dissociated cerebellar granule cell cultures isolated from 10-day-old cerebella were similar, but NR2C-2B cultures had elevated level of NR2B subunits and intracellular Ca2+ imaging revealed higher sensitivity towards the addition of NR2B-selective antagonist in vitro . Time-lapse videomicroscopic observations revealed that average migratory velocity and the proportion of translocating cell bodies were significantly higher in NR2C-2B than in wild-type cultures. Our results provide evidence that NR2B-containing NMDARs can have specialized roles during granule cell migration and can increase migratory speed.  相似文献   

16.
One major theory in learning and memory posits that the NR2B gene is a universal genetic factor that acts as rate-limiting molecule in controlling the optimal NMDA receptor''s coincidence-detection property and subsequent learning and memory function across multiple animal species. If so, can memory function be enhanced via transgenic overexpression of NR2B in another species other than the previously reported mouse species? To examine these crucial issues, we generated transgenic rats in which NR2B is overexpressed in the cortex and hippocampus and investigated the role of NR2B gene in NMDA receptor-mediated synaptic plasticity and memory functions by combining electrophysiological technique with behavioral measurements. We found that overexpression of the NR2B subunit had no effect on CA1-LTD, but rather resulted in enhanced CA1-LTP and improved memory performances in novel object recognition test, spatial water maze, and delayed-to-nonmatch working memory test. Our slices recordings using NR2A- and NR2B-selective antagonists further demonstrate that the larger LTP in transgenic hippocampal slices was due to contribution from the increased NR2B-containing NMDARs. Therefore, our genetic experiments suggest that NR2B at CA1 synapses is not designated as a rate-limiting factor for the induction of long-term synaptic depression, but rather plays a crucial role in initiating the synaptic potentiation. Moreover, our studies provide strong evidence that the NR2B subunit represents a universal rate-limiting molecule for gating NMDA receptor''s optimal coincidence-detection property and for enhancing memory function in adulthood across multiple mammalian species.  相似文献   

17.
The NMDA receptor (NMDAR) is a component of excitatory synapses and a key participant in synaptic plasticity. We investigated the role of two domains in the C terminus of the NR2B subunit--the PDZ binding domain and the clathrin adaptor protein (AP-2) binding motif--in the synaptic localization of NMDA receptors. NR2B subunits lacking functional PDZ binding are excluded from the synapse. Mutations in the AP-2 binding motif, YEKL, significantly increase the number of synaptic receptors and allow the synaptic localization of NR2B subunits lacking PDZ binding. Peptides corresponding to YEKL increase the synaptic response within minutes. In contrast, the NR2A subunit localizes to the synapse in the absence of PDZ binding and is not altered by mutations in its motif corresponding to YEKL of NR2B. This study identifies a dynamic regulation of synaptic NR2B-containing NMDARs through PDZ protein-mediated stabilization and AP-2-mediated internalization that is modulated by phosphorylation by Fyn kinase.  相似文献   

18.
Gong B  Wang YT 《The EMBO journal》2012,31(4):783-785
EMBO J 31 4, 805–816 (2012); published online December202011Synaptic plasticity, the activity-dependent modification of synaptic strength, plays a fundamental role in learning and memory as well as in developmental maturation of neuronal circuitry. However, how synaptic plasticity is induced and regulated remains poorly understood. In this issue of The EMBO Journal, Yang and colleagues present sets of exciting data, suggesting that G-protein-coupled receptors (GPCRs) selectively execute distinct signalling pathways to differentially regulate induction thresholds of hippocampal long-term potentiation (LTP) and long-term depression (LTD), thereby governing the direction of synaptic plasticity. These results shed significant light on our current understanding of how bidirectional synaptic plasticity is regulated.Synaptic plasticity has been demonstrated at synapses in various brain regions; the most well-characterized forms are LTP and LTD at hippocampal CA1 glutamatergic synapses (Collingridge et al, 2004). In experimental models, LTP and LTD can be, respectively, induced by high-frequency stimulation (HFS) and low-frequency stimulation (LFS) via activation of the N-methyl-D-aspartic acid (NMDA) subtype ionotropic glutamate receptor (NMDAR). However, how HFS and LFS activate NMDARs and thereby lead to synaptic plasticity remains poorly understood and highly controversial. It is even more unclear how the bidirectional synaptic plasticity is produced and regulated in response to physiological or pathological changes.Functional NMDARs consist primarily of two GluN1 subunits and two GluN2 subunits, with GluN2A and GluN2B subunits being the most common NMDAR subunits found in the cortical and hippocampal regions of the adult brain (Cull-Candy et al, 2001). GluN2A and GluN2B subunits may confer distinct gating and pharmacological properties to NMDARs and couple them to distinct intracellular signalling machineries (Cull-Candy et al, 2001). Moreover, the ratio of these two subpopulations of NMDARs at the glutamatergic synapse is dynamically regulated in an activity-dependent manner (Bellone and Nicoll, 2007; Cho et al, 2009; Xu et al, 2009). Although controversial, GluN2A- and GluN2B-containing NMDARs have been suggested to have differential roles in regulating the direction of synaptic plasticity (Collingridge et al, 2004; Morishita et al, 2007). Among the factors shown to regulate NMDAR function, Src family tyrosine kinases may be the best characterized, with both Src and Fyn able to upregulate NMDAR function, and thus LTP induction (Salter and Kalia, 2004). However, if these kinases modulate NMDAR function in a NMDAR subunit-specific manner remains unknown. To explore this concept, Yang et al (2012) investigated the potential subunit-specific regulation of NMDARs by Src and Fyn using whole-cell patch clamp recording of NMDAR-mediated currents from acutely dissociated CA1 hippocampal neurons or from rat hippocampal slices. They found that intracellular perfusion of recombinant Src or Fyn increased the NMDAR-mediated currents. By applying subunit-preferential antagonists of GluN2A- or GluN2B-containing NMDARs, or by using neurons obtained from GluN2A knockout mice, they discovered that Src and Fyn differentially enhanced currents gated through GluN2A- and GluN2B-containing NMDARs, respectively.Can physiological or pathological factors differentially activate Src or Fyn, thereby exerting subunit-specific regulation of NMDAR function? To answer this question, Yang et al focused their investigation on the role of GPCRs, specifically pituitary adenylate cyclase activating peptide receptor (PAC1R) and dopamine D1 receptor (D1R), both of which have recently been shown to potentiate NMDARs through Src family kinases (Macdonald et al, 2005; Hu et al, 2010). Indeed, they found that activation of PAC1R specifically increased GluN2A-NMDAR-mediated currents without affecting currents gated through GluN2B-NMDARs, and this potentiation was prevented by the Src-specific inhibitory peptide Src(40–58) (Salter and Kalia, 2004). To rule out the contribution of Fyn, the authors developed a novel-specific Fyn inhibitory peptide Fyn(39–57), and demonstrated that it had little effect on PAC1R potentiation. In contrast, activation of D1R potentiated GluN2B- (but not GluN2A-) NMDAR-mediated currents, and this potentiation was specifically eliminated by Fyn(39–57), but not by Src(40–58). The authors further demonstrated that stimulation of PAC1Rs resulted in a selective activation of Src kinase and consequent tyrosine phosphorylation of the GluN2A subunit, whereas activation of D1Rs led to a specific increase in Fyn-mediated tyrosine phosphorylation of the GluN2B subunit. To provide convincing evidence that these subunit-differential modulations are indeed the result of tyrosine phosphorylation of the respective NMDAR subunits, the authors then performed electrophysiological experiments using neurons from two knockin mouse lines GluN2A(Y1325F) and GluN2B(Y1472F), in which the tyrosine phosphorylation residues in native GluN2A and GluN2B subunits were, respectively, replaced with non-phosphorylatable phenylalanine residues. As expected, the authors found that PAC1R-mediated potentiation of NMDA currents was lost in neurons from GluN2A(Y1325F) mice (but maintained in neurons from GluN2B(Y1472F) mice), while D1R-mediated enhancement of NMDA currents was only observed in neurons from GluN2A(Y1325F) mice. Together, as illustrated in Figure 1, the authors have made a very convincing case that PAC1R and D1R, respectively, enhance function of GluN2A- and GluN2B-containing NMDARs by differentially activating Src- and Fyn-mediated phosphorylation of respective NMDAR subunits.Open in a separate windowFigure 1GPCRs regulate the direction of synaptic plasticity via activating distinct signalling pathways. Synaptic NMDA receptors, both GluN2A- and GluN2B-containing, play key roles in the induction of various forms of synaptic plasticity at the hippocampal CA1 glutamatergic synapse. Under the basal level of GluN2A and GluN2B ratio, stimulation with a train of pulses at frequencies from 1 to 100 Hz produces a frequency and plasticity (LTD–LTP) curve, with maximum LTD and LTP being, respectively, induced at 1 and 100 Hz. Activation of PAC1R with its agonist PACAP38 activates Src and thereby results in tyrosine phosphorylation and consequent functional upregulation of GluN2A-containing NMDARs, resulting in an increase in the ratio of functional GluN2A and GluN2B. The increased ratio in turn causes a left shift of frequency and plasticity curve, favouring LTP induction. In contrast, activation of D1R by the receptor agonist SKF81297 triggers Fyn-specific tyrosine phosphorylation and functional upregulation of GluN2B, causing a reduction of GluN2A and GluN2B ratio. This decreased ratio results in a right shift of the curve, favouring LTD induction. The ability of GPCRs to differentially activate distinct downstream signalling pathways involved in synaptic plasticity suggests the potential roles of GPCRs in governing the direction of synaptic plasticity.Given the coupling of NMDARs to the induction of synaptic plasticity, it is then reasonable to ask if activation of the two GPCRs can selectively affect the induction of LTP or LTD at CA1 synapses. Yang and colleagues investigated the effects of pharmacological activation of PAC1R and D1R on the induction of LTP and LTD by recording the field excitatory postsynaptic potentials from hippocampal slices. Consistent with differential roles of NMDAR subunits in governing directions of synaptic plasticity, the authors observed that activation of PAC1Rs reduces the induction threshold of LTP, while stimulation of D1Rs favours LTD induction (Figure 1). Facilitation of LTP by PAC1R and LTD by D1R were, respectively, prevented in the brain slices obtained from GluN2A(Y1325F) and GluN2B(Y1472F) knockin mice, supporting the differential involvements of Src-mediated GluN2A phosphorylation and Fyn-mediated GluN2B phosphorylation.Taken together, the authors'' results have demonstrated that activation of PAC1R and D1R can control the direction of synaptic plasticity at the hippocampal CA1 synapse by differentially regulating NMDAREPSCs in a subunit-specific fashion (Figure 1). Specifically, PAC1R enhances the function of GluN2A-containing NMDARs by increasing Src phosphorylation of GluN2A subunit at Y1325, whereas D1R upregulates GluN2B-containing NMDARs through increased Fyn phosphorylation of GluN2B at Y1472. Moreover, by regulating the ratio of functional GluN2A- and GluN2B-containing NMDARs, PAC1R and D1R in turn modulate the direction of synaptic plasticity, favouring the production of LTP and LTD, respectively.While consistent with the recently proposed hypothesis that GluN2A and GluN2B may have preferential roles in the induction of hippocampal CA1 LTP and LTD (Collingridge et al, 2004; but see also Morishita et al, 2007), the current study further emphasizes the importance of GluN2A/GluN2B ratios in regulating LTP and LTD thresholds: increased ratio favours LTP, while reduced ratio promotes LTD. However, this seems to contradict some recent studies where the reduction and increase in the GluN2A/GluN2B ratio appeared to, respectively, favour LTP (Cho et al, 2009; Xu et al, 2009) and LTD (Xu et al, 2009). Therefore, the direction of plasticity change is likely modulated not only by the GluN2A/GluN2B ratio, but also by additional factors such as experimental conditions, developmental stages, and brain regions.Under many experimental conditions, LTP and LTD are usually induced by HFS and LFS stimulating protocols, respectively, but it remains essentially unknown how LTP and LTD are physiologically or pathologically generated in animals. To this end, the identification of different GPCRs as the endogenous upstream regulators of NMDA receptor subpopulations, and hence regulators of synaptic plasticity, is the major novelty of Yang and colleagues'' work. Future studies are needed to investigate if and how PAC1R and/or D1R are critically involved in the production of LTP or LTD in animals under physiological or pathological conditions. Given the fact that Src family kinases may be required for LTP induced by HFS in hippocampal slices (Salter and Kalia, 2004), an equally intriguing question would be whether these GPCRs are actually required for LTP/LTD induced by HFS/LFS experimental paradigms. In line with this conjecture, it would be interesting to determine if ligands for various GPCRs co-exist in the glutamatergic presynaptic terminals and, if so, can be differentially co-released with glutamate in a frequency-dependent manner, thereby contributing to either HFS-induced LTP or LFS-induced LTD.The findings by Yang and colleagues establish an exciting mechanistic model by which GPCRs can govern the direction of synaptic plasticity by determining the contributions of GluN2A- and GluN2B-NMDARs through differential tyrosine phosphorylation of respective NMDA receptor subtypes. Additional studies further validating this model under physiological and pathological conditions will greatly improve our understanding of the molecular mechanisms underlying synaptic plasticity and cognitive brain functions. In addition, NMDARs, depending on their subunit composition and/or subcellular localization, may also have complex roles in mediating neuronal survival and death (Lai et al, 2011). Considering that neurotoxicity produced by over-activation of NMDARs is widely accepted to be a common mechanism for neuronal loss in a number of acute brain injuries and chronic neurodegenerative diseases, Yang and colleagues'' finding of the differential regulation of NMDAR subunits by different GPCRs could have wider implications beyond synaptic plasticity.  相似文献   

19.
Case DT  Zhao X  Gillespie DC 《PloS one》2011,6(6):e20756
Principal neurons of the lateral superior olive (LSO) compute the interaural intensity differences necessary for localizing high-frequency sounds. To perform this computation, the LSO requires precisely tuned, converging excitatory and inhibitory inputs that are driven by the two ears and that are matched for stimulus frequency. In rodents, the inhibitory inputs, which arise from the medial nucleus of the trapezoid body (MNTB), undergo extensive functional refinement during the first postnatal week. Similar functional refinement of the ascending excitatory pathway, which arises in the anteroventral cochlear nucleus (AVCN), has been assumed but has not been well studied. Using whole-cell voltage clamp in acute brainstem slices of neonatal rats, we examined developmental changes in input strength and pre- and post-synaptic properties of the VCN-LSO pathway. A key question was whether functional refinement in one of the two major input pathways might precede and then guide refinement in the opposite pathway. We find that elimination and strengthening of VCN inputs to the LSO occurs over a similar period to that seen for the ascending inhibitory (MNTB-LSO) pathway. During this period, the fractional contribution provided by NMDA receptors (NMDARs) declines while the contribution from AMPA receptors (AMPARs) increases. In the NMDAR-mediated response, GluN2B-containing NMDARs predominate in the first postnatal week and decline sharply thereafter. Finally, the progressive decrease in paired-pulse depression between birth and hearing onset allows these synapses to follow progressively higher frequencies. Our data are consistent with a model in which the excitatory and inhibitory projections to LSO are functionally refined in parallel during the first postnatal week, and they further suggest that GluN2B-containing NMDARs may mediate early refinement in the VCN-LSO pathway.  相似文献   

20.
NMDA receptors (NMDARs) are the major mediator of the postsynaptic response during synaptic neurotransmission. The diversity of roles for NMDARs in influencing synaptic plasticity and neuronal survival is often linked to selective activation of multiple NMDAR subtypes (NR1/NR2A-NMDARs, NR1/NR2B-NMDARs, and triheteromeric NR1/NR2A/NR2B-NMDARs). However, the lack of available pharmacological tools to block specific NMDAR populations leads to debates on the potential role for each NMDAR subtype in physiological signaling, including different models of synaptic plasticity. Here, we developed a computational model of glutamatergic signaling at a prototypical dendritic spine to examine the patterns of NMDAR subtype activation at temporal and spatial resolutions that are difficult to obtain experimentally. We demonstrate that NMDAR subtypes have different dynamic ranges of activation, with NR1/NR2A-NMDAR activation sensitive at univesicular glutamate release conditions, and NR2B containing NMDARs contributing at conditions of multivesicular release. We further show that NR1/NR2A-NMDAR signaling dominates in conditions simulating long-term depression (LTD), while the contribution of NR2B containing NMDAR significantly increases for stimulation frequencies that approximate long-term potentiation (LTP). Finally, we show that NR1/NR2A-NMDAR content significantly enhances response magnitude and fidelity at single synapses during chemical LTP and spike timed dependent plasticity induction, pointing out an important developmental switch in synaptic maturation. Together, our model suggests that NMDAR subtypes are differentially activated during different types of physiological glutamatergic signaling, enhancing the ability for individual spines to produce unique responses to these different inputs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号