首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heparin-released triglyceride lipase from three sources, adipose tissue, liver, and postheparin plasma, was compared. Heparin-released triglyceride lipase from liver differed in several major respects from that in adipose tissue. These differences included response to inhibitors and to high density lipoprotein in the incubation media. Heparin-released triglyceride lipase from liver, when compared with that from adipose tissue, was relatively inactive against lipoprotein substrates. The triglyceride lipase from postheparin plasma exhibited properties more like those of liver. These studies raise the possibility that triglyceride lipase in postheparin plasma may be heterogeneous and that levels of the enzyme in postheparin plasma may not accurately reflect the capacity for clearance of triglyceride from the plasma.  相似文献   

2.
Evidence is presented that hepatic triglyceride lipase (H-TGL) and lipoprotein lipase (LPL), purified from human postheparin plasma, can each hydrolyze both glyceryl trioleate and palmitoyl-CoA. The average ratio of glyceryl trioleate/palmitoyl-CoA hydrolase activities, obtained with enzyme preparations from 15 human postheparin plasma samples was 1.30 (1.18-1.52) for H-TGL and 8.75 (7.45-10.25) for LPL. Albumin was identified as the serum cofactor required for the hydrolysis of palmitoyl-CoA by H-TGL. It protected this enzyme from inactivation by this substrate. In contrast, palmitoyl-CoA activated and protected LPL from denaturation by dilution and incubation at 25 degrees C. The effects of other detergents were investigated on glyceryl trioleate hydrolase activities of both enzymes. Sodium dodecyl sulfate (0.4 mM) and Trisoleate (0.4 mM), which also effectively activated and protected LPL against inactivation, had only moderate protective effect on H-TGL. Sodium dodecyl sulfate at a higher concentration (1 mM) produced little or no inhibition of LPL, while completely inactivating H-TGL. Conversely, sodium taurodeoxycholate (0.4 mM) protected and activated H-TGL, but had only moderate protective effect on LPL. Triton X-100 (0.1-0.8 mM) and egg lysolecithin (0.05-2 mM) also protected H-TGL, but not LPL. The very dissimilar effects of detergents on preparations on H-TGL and LPL may form the basis for the direct assay of each enzyme in the presence of the other.  相似文献   

3.
Concentrations of total cholesterol and cholesterol in the various lipoprotein fractions were measured in vegans, vegetarians, fish eaters (who did not eat meat), and meat eaters. Total and low density lipoprotein cholesterol concentrations were higher in meat eaters than vegans, with vegetarians and fish eaters having intermediate and similar values. High density lipoprotein cholesterol concentration was highest in the fish eaters but did not differ among the other groups. There were striking trends with age in total and low density lipoprotein cholesterol concentrations, which differed between men and women: women showed a steady increase in concentration with age, whereas concentrations in men did not increase appreciably after the age of 40, which may partly explain sex differences in the prevalence of coronary heart disease. The differences in total cholesterol concentration suggest that the incidence of coronary heart disease may be 24% lower in lifelong British vegetarians and 57% lower in lifelong vegans than in meat eaters.  相似文献   

4.
The present study was undertaken to compare plasma lipoprotein lipid composition, as well as white adipose tissue lipoprotein lipase activity, in rats fed purified diets high in either sucrose or corn oil. The experimental diets (65% of calories as sucrose or corn oil, 15% as the opposite nutrient, and 20% as casein) were given ad libitum for 4 weeks. An additional group was fed a nonpurified diet as a reference diet. Both sucrose and oil diets were spontaneously consumed in isocaloric amounts by the animals. Despite energy intakes that were 35% lower than that of the reference group, the sucrose and oil groups exhibited final body weights that were only 6 and 9% lower, respectively, than that of the reference group, and accumulated more fat in the epididymal depots. Postprandial as well as fasting total cholesterol levels were similar in the sucrose and oil groups, while the high-density lipoprotein to total cholesterol ratio was highest in the animals fed corn oil. In both the fasted and fed states, plasma total triglyceride levels were 73% higher in the sucrose group than in the corn oil group. The largest triglyceride differences due to diet were observed in the chylomicron + very-low-density lipoprotein fraction. The oil-fed rats accumulated large amounts of triglycerides in their livers. Postprandial lipoprotein lipase activity in epididymal adipose tissue was almost twice as high in the sucrose group as in the oil group.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
6.
Lipoprotein lipase (LPL) and hepatic triglyceride lipase (HTGL) were purified to homogeneity from human postheparin plasma. Molecular, catalytic and immunological properties of the purified enzymes were investigated. The native molecular weights of LPL and HTGL were 67,200 and 65,500, respectively, by gel chromatography. The subunit molecular weights of LPL and HTGL were 60,600 and 64,600, respectively, suggesting that these enzymes are catalytically active in a monomeric form. In addition, the purified LPL and HTGL each gave a single protein band when they were detected as glycoproteins with a probe of concanavalin A. The purified enzyme preparations were free of detectable antithrombin III by Western blot analysis. Catalytic properties of the purified enzymes were examined using triolein-gum arabic emulsion and triolein particles stabilized with phospholipid monolayer as substrates. LPL catalyzed the complete hydrolysis of triolein to free oleate and monooleate in the presence of apolipoprotein C-II. Apparent Km values for triolein and apolipoprotein C-II were 1.0 mM and 0.6 microM, and Vmax was 40.7 mmol/h per mg. HTGL hydrolyzed triolein substrate at a rate much slower than LPL, and produced mainly free oleate with little monooleate. Apparent Km and Vmax values were 2.5 mM and 16.1 mmol/h per mg, respectively. Polyclonal antibodies were developed against the purified LPL and HTGL. The purity and specificity of these antisera were ascertained by immunotitration, Ouchterlony double diffusion and Western blot analyses. The anti-human LPL and anti-human HTGL antiserum specifically reacted with the corresponding either native or denaturated enzyme, indicating that two enzymes were immunologically distinct. We developed an assay system for LPL and HTGL in human PHP by selective immunoprecipitation of each enzyme with the corresponding antiserum.  相似文献   

7.
8.
The purpose ofthis study was to determine the threshold of exercise energyexpenditure necessary to change blood lipid and lipoproteinconcentrations and lipoprotein lipase activity (LPLA) in healthy,trained men. On different days, 11 men (age, 26.7 ± 6.1 yr; bodyfat, 11.0 ± 1.5%) completed four separate, randomly assigned,submaximal treadmill sessions at 70% maximalO2 consumption. During eachsession 800, 1,100, 1,300, or 1,500 kcal were expended. Compared withimmediately before exercise, high-density lipoprotein cholesterol(HDL-C) concentration was significantly elevated 24 h after exercise(P < 0.05) in the 1,100-, 1,300-, and 1,500-kcal sessions. HDL-C concentration was also elevated(P < 0.05) immediately after and 48 h after exercise in the 1,500-kcal session. Compared with values 24 hbefore exercise, LPLA wassignificantly greater (P < 0.05) 24 h after exercise in the 1,100-, 1,300-, and 1,500-kcal sessions andremained elevated 48 h after exercise in the 1,500-kcal session. Thesedata indicate that, in healthy, trained men, 1,100 kcal of energyexpenditure are necessary to elicit increased HDL-C concentrations.These HDL-C changes coincided with increased LPLA.

  相似文献   

9.
We have developed a sandwich-enzyme immunoassay (EIA) for the quantification of lipoprotein lipase (LPL) and hepatic triglyceride lipase (HTGL) in human postheparin plasma (PHP) using monoclonal antibodies (MAbs) directed against the corresponding enzymes purified from human PHP. The sandwich-EIA for LPL was performed by using the combination of two distinct types of anti-LPL MAbs that recognize different epitopes on the LPL molecule. The immunoreactive mass of LPL was specifically measured using a beta-galactosidase-labeled anti-LPL MAb as an enzyme-linked MAb, an anti-LPL MAb linked with the bacterial cell wall as an insolubilized MAb, and purified human PHP-LPL as a standard. The sandwich-EIA for HTGL was carried out by using two distinct anti-HTGL MAbs that recognize different epitopes on HTGL. The limit of detection was 20 ng/ml for LPL and 60 ng/ml for HTGL. Each method yielded a coefficient of variation of less than 6% in intra- and inter-assays, and a high concentration of triglyceride did not interfere with the assays. The average recovery of purified human PHP-LPL and -HTGL added to human PHP samples was 98.8% and 97.5%, respectively. The immunoreactive masses of LPL and HTGL in PHP samples, obtained at a heparin dose of 30 IU/kg, from 34 normolipidemic and 20 hypertriglyceridemic subjects were quantified by the sandwich-EIA. To assess the reliability of the measured mass values, they were compared with the corresponding enzyme activities measured by selective immunoinactivation assay using rabbit anti-human PHP-LPL and -HTGL polyclonal antisera. Both assay methods yielded a highly significant correlation in either normolipidemic (r = 0.945 for LPL; r = 0.932 for HTGL) or hypertriglyceridemic subjects (r = 0.989 for LPL; r = 0.954 for HTGL). The normal mean (+/- SD) level of lipoprotein lipase mass and activity in postheparin plasma was 223 +/- 66 ng/ml and 10.1 +/- 2.9 mumol/h per ml, and that of hepatic triglyceride lipase mass and activity was 1456 +/- 469 ng/ml and 26.4 +/- 8.7 mumol/h per ml, respectively. The present sandwich-enzyme immunoassay methods make it possible to study the molecular nature of LPL and HTGL in PHP from patients with either primary or secondary hyperlipoproteinemia.  相似文献   

10.
11.
In this study, a correlation was sought between the circulating lipoprotein lipase activity and nutritional state in the rat. In fed rats, the plasma lipoprotein lipase activity was between 30 and 120 munits/ml, whereas after an overnight fast in restraining cages, the lipoprotein lipase plasma levels were between 280 and 500 munits/ml. The plasma lipoprotein lipase activity was inhibited by a specific high titre goat antiserum to rat lipoprotein lipase. No effect of fasting was seen on the plasma hepatic triacylglycerol lipase. 6 h after fasting, adipose tissue lipoprotein lipase decreased maximally, but plasma lipoprotein lipase was not changed and rose only after 16 h. Thus, it seems that most of the lipoprotein lipase activity in the fasting plasma was related to the 3-fold rise in lipoprotein lipase activity in the heart, which may represent total muscle lipoprotein lipase. The increase in heart lipoprotein lipase was due in part to an increase in the t1/2 of the enzyme from 1.2 to 2.9 h. To determine whether the high plasma levels in the fasting rats might result from impaired clearance of the enzyme by the liver, functional hepatectomy was carried out. 15 min after hepatectomy, plasma lipoprotein lipase rose up to 20-fold in fed and about 6-fold in fasting rats. Lipoprotein lipase activity extracted by the liver was calculated to be 30-60 munits/ml in the fed and 171-247 munits/ml plasma per min in fasting rats. An increase in lipoprotein lipase activity in extrahepatic tissues (heart, lung, kidney, diaphragm and adrenal) occurred 30 min after hepatectomy in fed rats. The increase in heart lipoprotein lipase was due to an increase in heparin-releasable fraction. Since no impairment of hepatic clearance of circulating plasma lipoprotein lipase was found, the high fasting plasma lipoprotein lipase activity may be related to an increase in enzyme synthesis, decreased enzyme turnover and an expansion of the functional pool in tissues such as the heart and probably muscle. The present findings indicate that measurement of endogenous plasma lipoprotein lipase can provide information with respect to the size of the functional pool under normal and pathological conditions.  相似文献   

12.
Lipoprotein lipase (LPL) and hepatic triglyceride lipase (H-TGL) are lipolytic activities found in postheparin plasma. A simple and precise method for the direct determination of LPL in postheparin plasma is described. Pre-incubations of this plasma (45--60 min at 26 degrees C) with sodium dodecyl sulfate (35--50 mM) in 0.2 M Tris-HCl buffer, pH 8.2, results in the inactivation of H-TGL, while leaving LPL fully active. Direct determination of H-TGL is done in a separate aliquot of the same postheparin plasma sample using previously reported assay conditons that do not measure LPL. The sodium dodecyl sulfate-resistant lipolytic activity has the characteristics of LPL as judged by a) its activation by serum and by apolipoprotein C-II; b) its inactivation (over 90%) by 0.75 M NaCl; and c) its inactivation by a specific antiserum. No sodium dodecyl sulfate-resistant activity was found in postheparin plasma from a patient with LPL deficiency (primary type I hyperlipoproteinemia). An excellent correlation of values was obtained (r = 0.99) for 30 samples assayed after sodium dodecyl sulfate treatment and after immuno-inactivation of H-TGL. The intra-assay coefficient of variation was +/- 11% and 4% before and after normalization of values, respectively.  相似文献   

13.
Male Syrian hamsters were fed 0.02, 0.03, or 0.05% cholesterol to test the hypothesis that moderate cholesterol intake increases the cholesteryl ester content of the plasma low-density lipoproteins (LDL). Dietary cholesterol levels of 0.02%-0.05% were chosen to reflect typical human intakes of cholesterol. Hamsters were fed ad libitum a cereal-based diet (modified NIH-07 open formula) for 15 weeks. Increasing dietary cholesterol from 0.02% to 0.05% resulted in significantly increased plasma LDL and high-density lipoprotein cholesterol concentration, increased liver cholesterol concentration, and increased total aorta cholesterol content. The cholesteryl ester content of plasma LDL was determined as the molar ratio of cholesteryl ester to apolipoprotein B and to surface lipid (i.e., phospholipid + free cholesterol). Increasing dietary cholesterol from 0.02% to 0.05% resulted in significantly increased cholesteryl ester content of LDL particles. Furthermore, cholesteryl ester content of LDL was directly associated with increased total aorta cholesterol, whereas a linear relationship between plasma LDL cholesterol concentration and aorta cholesterol was not observed. Thus, the data suggest that LDL cholesteryl ester content may be an important atherogenic feature of plasma LDL.  相似文献   

14.
The objective of this study was to establish a new lipoprotein lipase (LPL) and hepatic lipase (HL) activity assay method. Seventy normal volunteers were recruited. Lipase activities were assayed by measuring the increase in absorbance at 546 nm due to the quinoneine dye. Reaction mixture-1 (R-1) contained dioleoylglycerol solubilized with lauryldimethylaminobetaine, monoacylglycerol-specific lipase, glycerolkinase, glycerol-3-phosphate oxidase, peroxidase, ascorbic acid oxidase, and apolipoprotein C-II (apoC-II). R-2 contained Tris-HCl (pH 8.7) and 4-aminoantipyrine. Automated assay of lipase activities was performed with an automatic clinical analyzer. In the assay for HL + LPL activity, 160 microl R-1 was incubated at 37 degrees C with 2 microl of sample for 5 min, and 80 microl R-2 was added. HL activities were measured under the same conditions without apoC-II. HL and LPL activities were also measured by the conventional isotope method and for HL mass by ELISA. Lipase activity detected in a 1.6 M NaCl-eluted fraction from a heparin-Sepharose column was enhanced by adding purified apoC-II in a dose-dependent manner, whereas that eluted by 0.8 M NaCl was not. Postheparin plasma-LPL and HL activities measured in the present automated method had high correlations with those measured by conventional activity and mass methods. This automated assay method for LPL and HL activities is simple and reliable and can be applied to an automatic clinical analyzer.  相似文献   

15.
No significant change in plasma levels of total cholesterol (TC), triglycerides, phospholipids, very-low-density lipoprotein cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol (HDL-C), lipase activity and TC/HDL-C ratio could be observed in both normotensive and hypertensive individuals after cod liver oil supplementation. Measure of platelet aggregation rates did not also show any significant change after cod liver oil ingestion in both normotensive and hypertensive individuals. The results suggest that supplementation of normal diets with 600 mg cod liver oil per day for 50 days neither affects plasma lipids, lipoproteins and lipase activity nor affects platelet aggregation in both normotensive and hypertensive individuals.  相似文献   

16.
Acute (after 4 hr) and short-term (after 7 days) effects of ingesting heated and unheated groundnut, coconut and safflower oils on plasma lipids, lipoproteins and postheparin lipopolytic activity (PHLA) were studied in rats. All heated oils were characterized by increases in carbonyl value, peroxide value and free fatty acid (FFA) content, except heated coconut oil which showed a decrease in FFA content. Heating procedure also did not alter to an appreciable extent their fatty acid compositions. Acute and short-term effects of feeding heated and unheated oils showed no significant differences in rat plasma levels of total cholesterol (TC), total triglycerides, total phospholipids, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol + very-low-density lipoprotein cholesterol, TC/HDL-C ratio and PHLA. Inspite of certain changes in some of the indices of thermal alteration of these heated oils, consumption of such heated oils by rats did not have any significant effect on various plasma parameters in these animals.  相似文献   

17.
We have studied the effects of triiodothyronine administration (20-40 micrograms three times daily over one week) in six healthy young men, on the activities of lipoprotein lipase and hepatic lipase and on plasma lipoprotein concentrations. Hepatic lipase activity in post-heparin plasma rose by 46 +/- 25% (p less than 0.025), whereas the activity of lipoprotein lipase did not change significantly. Plasma cholesterol concentrations decreased by about 20% (p less than 0.025), whereas there was no change in plasma triglyceride levels. The fall in plasma cholesterol could be accounted for by a reduction of HDL cholesterol (-11%, p less than 0.025) as well as LDL cholesterol (-27%, p less than 0.025). The data emphasize the role of hepatic lipase in the lipoprotein alterations associated with thyroid dysfunction.  相似文献   

18.
We compared the effects of Intralipid and dextrose infusion on plasma lecithin:cholesterol acyltransferase (LCAT), plasma lipid profiles and lipolytic activity. We used 5-week-old male Sprague-Dawley rats which were given total parenteral nutrition (TPN) with either Intralipid (3 g/kg body weight) or an equicaloric amount of 25% dextrose in the presence or absence of heparin (1 or 10 IU/ml of TPN). 40 min after the end of 4 h of infusion, plasma LCAT activity was significantly decreased (P less than 0.001), while total cholesterol and free fatty acid levels were significantly (P less than 0.05) increased in rats given Intralipid as compared to those given dextrose. We found associations (P less than 0.005) between LCAT activity and total cholesterol and between LCAT and free fatty acid levels; the coefficients of negative correlation were 0.543 and 0.607, respectively. Concomitantly to the increment in plasma total cholesterol levels, there was a decrease in the high-density lipoprotein (HDL) cholesterol fraction; the latter, which was 40% of the total plasma cholesterol in control and dextrose-infused rats, declined to 9% in rats given Intralipid. Administration of heparin during Intralipid infusion, even up to 10 IU/ml of TPN, did not affect any of these changes. After dextrose infusion, the values of all three parameters were similar to those of the control group. Plasma lipolytic activity was not significantly different between rats given infusion (Intralipid or dextrose) and controls. However, in the presence of heparin, plasma lipolytic activity increased similarly in both infused groups. These data indicate that in young rats, Intralipid infusion leads to an increase in plasma total cholesterol and free fatty acid levels, which correlates with a decrease in LCAT activity; the concurrent decrease in HDL cholesterol levels might account, in part, for the loss of LCAT activity. The administration of heparin results in an elevation of plasma lipolytic activity; however, it does not prevent the hypercholesterolemia, nor the decline in LCAT activity associated with Intralipid infusion.  相似文献   

19.
20.
The incidence of the dietary source of energy on lipid transport and accumulation was investigated over a full nycthemeral cycle in adapted rats fed ad libitum. Starch, sucrose and lard were compared. Lipoprotein composition of the plasma, liver and plasma lipids and insulinemia were analyzed every 3 hours over 24 hours. The pattern of VLDL concentration was dependent on the nature of the energetic substrate. Feeding starch resulted in a remarkable stability of lipoproteins, liver and plasma lipids, despite clearcut diurnal variations in plasma non esterified fatty acids, insulinemia and liver glycogen. In sucrose-fed rats VLDL rose to a sharp maximum in the post prandial period (9-12:00) and were totally cleared by 18:00. In fat-fed rats, HDL were elevated during the night, suggesting a possible stimulation of their synthesis by dietary fat in the intestine. LDL were constantly elevated with peak values at 21:00 while VLDL were very low, even at night, despite elevated levels of non-esterified fatty acids. It is concluded that, in animals adapted to a high fat-diet, a high level of circulating non esterified fatty acids is not sufficient to promote the synthesis of VLDL. The main regulating factor appears to be the intensity of hepatic lipogenesis which is stimulated by sucrose and inhibited by lard. No correlation was found between variations in plasma VLDL and insulinemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号