首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pineal concentrations of N-acetylserotonin and melatonin and serum levels of melatonin were studied in 3-wk-old (prepubertal), 8-wk-old (adult), and 17-mo-old (senile) male rats. They were adapted to a photoperiod of 12 h light/12 h darkness for a minimum of 1 wk and killed at mid-light and mid-dark. Melatonin and N-acetylserotonin were determined by radioimmunoassay. The concentrations of pineal N-acetylserotonin and melatonin were high in the dark period and low in the light period. Statistical analysis indicated that pineal N-acetylserotonin and melatonin levels per 100 gm body weight declined with age. Similarly, serum melatonin demonstrated diurnal changes in all the age groups studied. In addition, there was a significant reduction in the levels of serum melatonin with age. The parallel patterns of decrease in pineal and serum melatonin levels with age suggest a decline in pineal secretion of melatonin in the older animals.  相似文献   

2.
The levels of dopamine in the caudate nucleus, cerebellum, cortex and midbrain were determined every three hours in control rats nd in rats pretreated with sodium phenobarbital over a twenty-four hour period. All animals were adapted for a minimum period of three weeks to an environmental room equipped with a programmed 12 hour dark — 12 hour light illumination cycle. The level of dopamine was highest during the dark phase and lowest during the light phase of the photoperiod in all the brain areas studied. Sodium phenobarbital pretreatment increased dopamine level in all the brain areas studied at most times, particularly during the dark phase and enhanced the circadian rhythmicity of dopamine levels in the cortex, cerebellum and midbrain.  相似文献   

3.
To test whether the affinity (Kd) and total binding capacity (Bmax) of melatonin receptors exhibit daily and circadian changes in teleost fish whose melatonin secretion is not regulated by intra-pineal clocks, we examined the changes in melatonin binding sites in the brains of underyearling masu salmon Oncorhynchus masou under artificial light-dark (LD), constant light (LL) and constant dark (DD) conditions. In Experiment 1, fish were reared under a long (LD 16:8) or short (LD 8:16) photoperiod for 69 days. Blood and brains were sampled eight times at 3 h intervals. Plasma melatonin levels were high during the dark phase and low during the light phase in both photoperiodic groups. The Bmax exhibited no daily variations. Although the Kd slightly, but significantly, changed under LD 8:16, this may be of little physiological significance. In Experiment 2, fish reared under LD 12:12 for 27 days were exposed to LL or DD from the onset of the dark phase under LD 12:12. Blood and brains were sampled 13 times at 4 h intervals for two complete 24 h cycles. Plasma melatonin levels were constantly high in the DD group and low in the LL group. No significant differences were observed in the Kd and the Bmax between the two groups, and the Kd and the Bmax exhibited no circadian variation either in the LL or DD groups. These results indicate that light conditions have little effect on melatonin binding sites in the masu salmon brain.  相似文献   

4.
Quantitative levels of melatonin and 5-hydroxytryptamine were measured over the scotophase in the protocerebrum, subesophageal ganglion, optic lobes, thoracic ganglia, and hemolymph of adult male cabbage looper moths, Trichoplusia ni, using HPLC with electrochemical detection. Melatonin levels were very low (s < 1 pmol) or undetectable during the photophase, but increased in all tissues during the dark. Lowest mean levels in the dark were observed in the optic lobes (0.3 to 0.7 pmols). Maximal mean levels in the protocerebrum (5.2 pmols) occurred in the early part of the scotophase, but in all other tissues (2.8 in the subesophageal ganglion; 9.5 in thoracic ganglia) and hemolymph (18 pg/l) maximal mean levels were observed later in the dark. Levels of 5-hydroxytryptamine in each tissue, in contrast, were higher than melatonin levels in the photophase, and in the protocerebrum and thoracic ganglia decreased during the dark, but in the optic lobes and subesophageal ganglion remained unchanged. Further, decreases in 5-hydroxytryptamine during the dark were significantly lower than the increased levels of melatonin, suggesting that active synthesis of 5-hydroxytryptamine was occurring. In a second experiment, when measured from individuals in three different photoperiods (618, 1212, 186 lightdark) maximum mean melatonin levels in the brain (protocerebral and subesophageal ganglia) peaked within the first 1.5 h of the dark and remained at measurable levels for the duration of the dark. In a third experiment, levels of melatonin in the brain and thoracic ganglia displayed rhythmicity in continuous dark conditions but not in continuous light, when compared with profiles obtained in a normal light dark regime.Abbreviations CNS Central nervous system - HPLC-ECD high performance liquid chromatography with electrochemical detection - MEL melatonin - 5HT 5-hydroxytryptamine - N-ac-SHT N-acetyl-5-hydroxytryptamine  相似文献   

5.
Sprague-Dawley male rats, maintained in a 14:10 h light:dark cycl were exposed for 30 days (starting at 56 days of age) to a 65 kV/m, 60 Hz electric field or to a sham field for 20 h/day beginning at dark onset. Pineal N-acetyltransferase (NAT), hydroxy-indole-o-methyl transferase (HIOMT), and melatonin as well as serum melatonin were assayed. Preliminary data on unexposed animals indicated that samples obtained 4 h into the dark period would reveal either a phase delay or depression in circadian melatonin synthesis and secretion. Exposure to electric fields for 30 days did not alter the expected nighttime increase in pineal NAT, HIOMT, or melatonin. Serum melatonin levels were also increased at night, but the electric field-exposed animals had lower levels than the sham-exposed animals. Concurrent exposure to red light and the electric field or exposure to the electric field at a different time of the day-night period did not reduce melatonin synthesis. These data do not support the hypothesis that chronic electric field exposure reduces pineal melatonin synthesis in young adult male rats. However, serum melatonin levels were reduced by electric field exposure, suggesting the possibility that degradation or tissue uptake of melatonin is stimulated by exposure to electric fields. © 1994 Wiley-Liss, Inc.  相似文献   

6.
We studied the effects of adjuvant arthritis (AA) on the endocrine circadian rhythms of plasma prolactin (PRL), growth hormone (GH), insulin-like growth factor-1 (IGF-1), luteinizing hormone (LH), testosterone, and melatonin and of pituitary PRL and GH mRNA in male Long Evans rats. Groups of control and AA rats (studied 23 days after AA induction) that were housed under a 12/12 h light/dark cycle (light on at 06:00 h) were killed at 4 h intervals starting at 14:00 h. Cosinor analysis revealed a significant 12 h rhythm in PRL and PRL mRNA (p < 0.001) in controls with peaks at 14:00 h and 02:00 h, respectively. The peak at 02:00 h was abolished in the AA group resulting in a significant 24 h rhythm in parallel with that of PRL (p < 0.05) and PRL mRNA (p < 0.0001). Growth hormone showed no rhythm, but a significant rhythm of GH mRNA was present in both groups (p < 0.0001). Insulin-like growth factor-1 showed a 24 h rhythm in control but not in AA rats. The mean values of GH, GH mRNA, and IGF-1 were significantly reduced in AA. Luteinizing hormone displayed a significant 24 h rhythm (p < 0.01) peaking in the dark period in the control but not AA group. Testosterone showed in phase temporal changes of LH levels with AA abolishing the 02:00 h peak. Melatonin exhibited a significant 24 h rhythm in control (p < 0.001) and AA (p < 0.01) rats with maximum levels during the dark phase; the mesor value was higher in the AA males. These results demonstrate that AA interferes with the rhythms of all the studied hormones except the non-24 h (arrhythmic) GH secretion pattern and the rhythm in melatonin. The persistence of a distinct melatonin rhythm in AA suggests the observed disturbances of hormonal rhythms in this condition do not occur at the level of the pineal gland.  相似文献   

7.
The present study investigated whether the circadian oscillators controlling rhythms in activity behavior and melatonin secretion shared similar functional relationship with the external environment. We simultaneously measured the effects of varying illuminations on rhythms of movement and melatonin levels in Indian weaver birds under synchronized (experiment 1) and freerunning (experiment 2) light conditions. In experiment 1, weaverbirds were exposed to 12h light: 12h darkness (12L:12D; L = 20 lx, D = 0.1 lx) for 2.5 weeks. Then, the illumination of the dark period was sequentially enhanced to 1-, 5-, 10-, 20- and 100 lx at the intervals of about 2 to 4 weeks. In experiment 2, weaver birds similarly exposed for 2.5 weeks to 12L:12D (L = 100 lx; D = 0.1 lx) were released in constant dim light (LL(dim), 0.1 lx) for 6 weeks. Thereafter, LL(dim) illumination was sequentially enhanced to 1-, 3- and 5 lx at the intervals of about 2 weeks. Whereas the activity of singly housed individuals was continuously recorded, the plasma melatonin levels were measured at two time of the day, once in each light condition. The circadian outputs in activity and melatonin were phase coupled with an inverse phase relationship: melatonin levels were low during the active phase (light period) and high during the inactive phase (dark period). This phase relationship continued in both the synchronized and freerunning states as long as circadian activity and melatonin oscillators subjectively interpreted synchronously the daily light environment, based on illumination intensity and/or photophase contrast, as the times of day and night. There were dissociations between the response of the activity rhythms and melatonin rhythms in light conditions when the contrast between day and night was much reduced (20:10 lx) or became equal. We suggest that circadian oscillators governing activity behavior and melatonin secretion in weaverbirds are phase coupled, but they seem to independently respond to environmental cues. This would probably explain the varying degree to which the involvement of pineal/melatonin in regulation of circadian behaviors has been found among different birds.  相似文献   

8.
Daily and circadian variations of melatonin contents in the diencephalic region containing the pineal organ, the lateral eyes, and plasma were studied in a urodele amphibian, the Japanese newt (Cynops pyrrhogaster), to investigate the possible roles of melatonin in the circadian system. Melatonin levels in the pineal region and the lateral eyes exhibited daily variations with higher levels during the dark phase than during the light phase under a light-dark cycle of 12 h light and 12 h darkness (LD12:12). These rhythms persisted even under constant darkness but the phase of the rhythm was different from each other. Melatonin levels in the plasma also exhibited significant day-night changes with higher values at mid-dark than at mid-light under LD 12:12. The day-night changes in plasma melatonin levels were abolished in the pinealectomized (Px), ophthalmectomized (Ex), and Px+Ex newts but not in the sham-operated newts. These results indicate that in the Japanese newts, melatonin production in the pineal organ and the lateral eyes were regulated by both environmental light-dark cycles and endogenous circadian clocks, probably located in the pineal organ and the retina, respectively, and that both the pineal organ and the lateral eyes are required to maintain the daily variations of circulating melatonin levels.  相似文献   

9.
Effect of light intensity and photoperiod on growth, indoleamines and carotenoid production was studied in unicellular green algae D. bardawil. Maximum biomass and carotenoid contents were found when cultures were grown in light (intensity of 2.0 Klux) at a photoperiod of 16/8h light and dark cycle. There was a profound influence of tested photoperiod conditions of light:dark viz. 8:16, 10:14, and 12:12 hr, continuous light on indoleamines (SER and MEL) production as estimated by HPLC and confirmed by mass spectral data obtained from LC-MS-ESI studies. Serotonin level increased from 908 to 1765 pg/g fresh wt with increase in light duration and melatonin level increased from 267 to 584 pg/g fresh wt during increase in dark phase. Carotenoids production was high in continuous light than other tested conditions.  相似文献   

10.
In mammals, the nocturnal rise in pineal melatonin is regulated by signals from the endogenous clock, the hypothalamic suprachiasmatic nuclei. There have been few reports on whether anaesthetics which modulate multisynaptic neuronal functions affect melatonin secretion. We studied the effects of three commonly used anaesthetics, halothane, pentobarbital and ketamine, on serum melatonin levels in male New Zealand white rabbits. Seven blood samples were collected, 30-60 min apart, before, during and after anaesthesia. Experiments were performed in the late light and early dark period, so that changes in melatonin secretion would be reflected in the onset and/or level of nocturnal serum melatonin. Serum melatonin levels were determined by radioimmunoassay. Our results indicated that halothane attenuated the release of melatonin and pentobarbital had no apparent effect, whereas ketamine potentiated the release of melatonin. These findings suggest that melatonin levels may be affected in patients anaesthetized with halothane or ketamine, resulting in disturbed biological rhythms, especially the sleep-wake cycle following recovery.  相似文献   

11.
Mink are seasonal photosensitive breeders; testis activity is triggered when days have less than 10 h light. Increasing and decreasing plasma concentrations of prolactin induce the spring and autumn moults. In a 5 year experiment, males were maintained under short days (8 h light:16 h dark) at 13 degrees C or long days (16 h light:8 h dark) at 21 degrees C, winter and summer conditions, respectively. Under winter and summer conditions, circannual cycles of prolactin secretion and moulting were observed at intervals of about 11 months. Recurrence of testis cycles was not evident. In a second experiment, males were maintained under an 8 h light:16 h dark cycle from the winter solstice or under 10 h light:14 h dark, 12 h light:12 h dark or 14 h light:10 h dark cycles from 10 February. Under 8 h light:16 h dark cycle, testis regression was slightly later than under natural conditions, indicating photorefractoriness. However, mink remained sensitive to light: the longer the photoperiod, the faster the testis regression. In a third experiment, males were transferred under 8 h light:16 h dark or 16 h light:8 h dark from 15 May (group 1), 12 June (group 2) or 4 July (group 3); males submitted to long days received melatonin capsules on the day of transfer. Increasing concentrations of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) and testis volume were shown by half the males in group 2 and nearly all the males in group 3; the constant release of melatonin from implants was more efficient than short days; but in the three groups, prolactin concentrations decreased in the few days after short-day or melatonin treatment. Overall, the results demonstrate endogenous circannual rhythms of prolactin secretion, body weight and moulting. Although a refractory period to short days was observed, the annual cycle of testis activity totally relies on the annual changes in daylength.  相似文献   

12.
The principal goal of this study was to determine the effect of the photoperiod on oxidative damage biomarkers in rats submitted to different light/darkness patterns, in a hyperlipidemic nephropathy model (induced by adriamycin), as well as its possible relationship with melatonin and leptin secretion rhythms. To test this hypothesis, six different groups were used (N = 6 rats per group): control (12 h/12h light:dark); exposure to permanent illumination (24 h light); exposure to darkness (22 h dark); injected with adriamycin, 12h/12h light:dark; injected with adriamycin + exposure to permanent illumination and injected with adriamycin + exposure to darkness (22 h dark). The different photoperiods were begun two weeks prior to medication and were maintained up to the day of the animal''s sacrifice, ten days after medication. The following parameters were analysed: i) weight evolution; ii) in plasma: urea, creatinine, uric acid, total proteins, albumen, lactate dehydrogenase, creatinine-quinase, aspartate aminotransferase, alanine aminotransferase and total cholesterol; iii) in urine: urea, creatinine, total proteins and microalbumen; iv) biomarkers of oxidative damage in kidneys, heart, liver and brain: lipoperoxides, total glutathione, reduced glutathione, catalase, glutathione peroxidase, glutathione reductase and glutathione transferase; v) melatonin (pineal gland tissue and plasma) and leptin (plasma). From the results obtained it was concluded that the administration of adriamycin generated oxidative stress in renal, cerebral, hepatic and cardiac tissue. Additionally, in the healthy animal, but of a lesser relevance in the adriamycin animal, permanent light worsened the oxidative stress, whereas darkness improved it. This could be related to the circadian rhythm of the inverse release shown by melatonin and leptin, accentuating the release of melatonin in the darkness phase and that of leptin in the light phase. The correlation between melatonin and leptin in the healthy animal seemed to confirm the relationship between both variables and their influence on oxidative damage biomarkers.  相似文献   

13.
Immunoreactive melatonin levels were measured in the retina and Harderian gland of adult male rats throughout a 24 hour period. The animals were maintained under a light:dark cycle of 14:10 (lights on at 0600h). In intact animals, immunoreactive melatonin values in both organs exhibited a 24h rhythm with peak levels being measured at 0800h, 2 hours after lights on. Pinealectomy significantly increased peak levels at 0800h in both the retina and the Harderian gland. Gonadectomy abolished the peak retinal melatonin levels at 0800h. Likewise, continual light exposure for 1 week depressed the melatonin peak in the retina but not in the Harderian gland.  相似文献   

14.
Daily variations in plasma melatonin levels in the rainbow trout Oncorhynchus mykiss were studied under various light and temperature conditions. Plasma melatonin levels were higher at mid-dark than those at mid-light under light-dark (LD) cycles. An acute exposure to darkness (2 hr) during the light phase significantly elevated the plasma melatonin to the level that is comparable with those at mid-dark, while an acute exposure to a light pulse (2 hr) during the dark phase significantly suppressed melatonin to the level that is comparable with those at mid-light. Plasma melatonin kept constantly high and low levels under constant darkness and constant light, respectively. No circadian rhythm was seen under both conditions. When the fish were subjected to simulative seasonal conditions (simulative (S)-spring: under LD 13.1:10.9 at 13 degrees C; S-summer: under LD 14.3:9.7 at 16.5 degrees C; S-autumn: under LD 11.3:12.7 at 13 degrees C; S-winter: under LD 10.1:13.9 at 9 degrees C), melatonin levels during the dark phase were significantly higher than those during the light phase irrespective of simulative seasons. The peak melatonin level in each simulative season significantly correlated with temperature but not with the length of the dark phase employed. In addition, the peak melatonin level in S-autumn was significantly higher than those in S-spring although water temperature was the same under these conditions. These results indicate that the melatonin rhythm in the trout plasma is not regulated by an endogenous circadian clock but by combination of photoperiod and water temperature.  相似文献   

15.
In crustaceans, melatonin has been detected in the central nervous system and some other organs. The aim of this study was to analyze the melatonin content in the visual system of Procambarus clarkii, by means of radioimmunoassay, at different day-night phases. We have also studied the action of exogenous melatonin on the main properties of the electroretinogram (ERG) circadian rhythm. Experiments were conducted with 25 specimens maintained under controlled conditions of 16°C and 12 h of light alternating with 12 h of darkness. Eyes where cut in dim red light and shock frozen with liquid nitrogen and pulverized in a mortar until a homogenous powder was obtained. Melatonin was extracted with acetone, followed by centrifugation, diluted with an equal volume of equa bidest to ensure freezing at ?80°C for at least 90 min and lyophilization at the same temperature. Lyophilizates, after having been dissolved in RIA buffer, were used for determinations of melatonin. Long-term recordings of electrical responses to light (ERG) were obtained for 10 or more consecutive days. At the 5th day, a single dose of melatonin was injected and its effects on amplitude and period of the ERG circadian rhythm were measured. Melatonin concentrations differed considerably depending on the circadian time and attained a maximum during dark phase. Among the crustaceans, Procambarus clarkii represents the first case in which melatonin peaks during the night following the typical pattern known in the majority of organisms. After melatonin injection, period and amplitude of the ERG circadian rhythm were increased. This effect suggests the involvement of melatonin in the oscillators underlying the generation and expression of circadian rhythms in crayfish.  相似文献   

16.
Melatonin is a biogenic amine, known from almost all phyla of living organisms. In vertebrates melatonin is produced rhythmically in the pinealocytes of the pineal gland, relaying information of the environmental light/dark cycle to the organism. With regard to crustaceans only a handful of studies exist that has attempted to identify the presence and possible daily variation of this substance. We set out to investigate whether in the crab Neohelice granulata melatonin was produced in the optic lobes of these animals and underwent rhythmic fluctuations related to the daily light/dark cycle. Our experimental animals were divided into three groups exposed to different photoperiods: normal photoperiod (12L:12D), constant dark (DD), and constant light (LL). The optic lobes were collected every 4 hours over a 24-h period for melatonin quantification by radioimmunoassay (RIA). N. granulata kept under 12 L:12D and DD conditions, showed daily melatonin variations with two peaks of abundance (p<0.05), one during the day and another, more extensive one, at night. Under LL-conditions no significant daily variations were noticeable (p>0.05). These results demonstrate the presence of a daily biphasic fall and rise of melatonin in the eyestalk of N. granulata and suggest that continuous exposure to light inhibits the production of melatonin synthesis.  相似文献   

17.
Early morning rectal body temperature is lowest when melatonin levels are highest in humans. Although pharmacological doses of melatonin are hypothermic in humans, the relationship between endogenous melatonin and temperature level has not been investigated. We measured rectal body temperature in nine normal men whose melatonin levels were suppressed by all-night sleep deprivation in bright light and compared values with those seen in sleep in the dark, sleep deprivation in dim light (to control for the stimulatory effect of wakefulness on temperature), and sleep deprivation in bright light with an infusion of exogenous melatonin that replicated endogenous levels. Minimum rectal temperature, calculated from smoothed temperature data from 2300 to 0515 h, was greater in bright-light sleep deprivation, resulting in suppression of melatonin, than in conditions of sleep deprivation in dim light or sleep in the dark. An exogenous melatonin infusion in bright light returned the minimum temperature to that seen in dim-light sleep deprivation. A nonsignificant elevation in mean and minimum temperature was noted in all conditions of sleep deprivation relative to sleep. We conclude that melatonin secretion contributes to the lowering of core body temperature seen in the early morning in humans.  相似文献   

18.
Melatonin is a biogenic amine, known from almost all phyla of living organisms. In vertebrates melatonin is produced rhythmically in the pinealocytes of the pineal gland, relaying information of the environmental light/dark cycle to the organism. With regard to crustaceans only a handful of studies exist that has attempted to identify the presence and possible daily variation of this substance. We set out to investigate whether in the crab Neohelice granulata melatonin was produced in the optic lobes of these animals and underwent rhythmic fluctuations related to the daily light/dark cycle. Our experimental animals were divided into three groups exposed to different photoperiods: normal photoperiod (12L:12D), constant dark (DD), and constant light (LL). The optic lobes were collected every 4 hours over a 24-h period for melatonin quantification by radioimmunoassay (RIA). N. granulata kept under 12 L:12D and DD conditions, showed daily melatonin variations with two peaks of abundance (p<0.05), one during the day and another, more extensive one, at night. Under LL-conditions no significant daily variations were noticeable (p>0.05). These results demonstrate the presence of a daily biphasic fall and rise of melatonin in the eyestalk of N. granulata and suggest that continuous exposure to light inhibits the production of melatonin synthesis.  相似文献   

19.
In Atlantic salmon, the preadaptation to a marine life, i.e., parr-smolt transformation, and melatonin production in the pineal gland are regulated by the photoperiod. However, the clock genes have never been studied in the pineal gland of this species. The aim of the present study was to describe the diurnal expression of clock genes (Per1-like, Cry2, and Clock) in the pineal gland and brain of Atlantic salmon parr and smolts in freshwater, as well as plasma levels of melatonin and cortisol. By employing an out-of-season smolt production model, the parr-smolt transformation was induced by subjecting triplicate groups of parr to 6 wks (wks 0 to 6) under a 12?h:12?h light-dark (LD) regime followed by 6 wks (wks 6 to 12) of continuous light (LL). The measured clock genes in both pineal gland and brain and the plasma levels of melatonin and cortisol showed significant daily variations in parr under LD in wk 6, whereas these rhythms were abolished in smolts under LL in wk 12. In parr, the pineal Per1-like and Cry2 expression peaked in the dark phase, whereas the pineal Clock expression was elevated during the light phase. Although this study presents novel findings on the clock gene system in the teleost pineal gland, the role of this system in the regulation of smoltification needs to be studied in more detail.  相似文献   

20.
This study investigated the effects of the photophase light intensity on the scotophase melatonin response. Twelve, 8-month-old crossbred gilts were allocated to three groups of four and housed in temperature- and lighting-controlled climate rooms. The rooms had a light intensity of 40, 200 or 10,000 lx and a light-dark cycle of 12 L:12 D. The gilts were allowed to acclimatize to a new lighting regimen for 1 week before being sampled at 2h intervals for 24h. Following the sampling, pigs were transferred under a different light intensity, allowed to adjust for 1 week and sampled again. The procedure was repeated three times so that all the groups went through all three lighting regimens (light intensities). All the gilts exhibited a clear circadian serum melatonin rhythm under each lighting regimen with high melatonin concentrations occurring during the scotophase. There was no difference in the scotophase melatonin response in terms of mean concentrations or duration of increased melatonin levels within or between the groups under different lighting regimens. There was considerable inter-individual variation in the dark phase melatonin response but the individual profiles were consistent under the different lighting regimens. It is concluded that when a certain threshold light intensity (<40lx) is exceeded, the photophase light intensity has no effect on the scotophase melatonin response. These results imply that extremely high light intensities during the photophase would provide no additional benefits compared with normal comfortable light intensity, if artificial lighting programs were introduced to commercial piggeries in order to reduce seasonal effects on reproduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号