首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A Oblin  M J Danse  B Zivkovic 《Life sciences》1989,44(20):1467-1474
Substance P is a neuropeptide released in vivo from the substantia nigra, the principal substance P nerve terminal region in the rat brain. Its inactivation was investigated in a purified nigral synaptic membrane preparation. The membrane-bound enzyme shares many features with the endopeptidase 24-11 (EC 3.4.24.11): 1) hydrolysis of peptide bonds Gln6-Phe7, Phe7-Phe8 and Gly9-Leu10, 2) sensitivity to the inhibition by phosphoramidon and 3) relative affinity for substance P. Bestatine and captopril inhibit only the hydrolysis of the metabolites. These results suggest that substance P is inactivated in substantia nigra by endopeptidase 24-11 and that a bestatin-sensitive aminopeptidase and angiotensin converting enzyme may play a role in subsequent degradation of the substance P metabolites.  相似文献   

2.
Hydrolysis of substance P and nine kinds of substance P analogs by angiotensin-converting enzyme highly purified from rat lung was examined by using amino-group fluorometry and high-performance liquid chromatography. The enzyme hydrolyzed substance P and several analogs, notwithstanding that they did not contain free C-terminal residues. The analyses of cleavage products separated by high-performance liquid chromatography indicated that the enzyme hydrolyzed substance P and its analogs mainly at the bond between Phe8-Gly9 and also at another bond, possibly between Gly9-Leu10, to a lesser extent by an endopeptidase action, followed by successive release of dipeptides by a dipeptidyl carboxypeptidase action. The analogs that had D-amino acid residues substituted at the presumed cleavage sites were scarcely hydrolyzed. It was further found that (Pyr6)-fragment (6-11) was hydrolyzed by the enzyme more efficiently than the other fragment-type analogs and was cleaved at a single bond by the endopeptidase activity of the enzyme. Therefore, this fragment was used as a substrate in order to characterized the endopeptidase activity of the enzyme by employing fluorometry. The activity was dependent on chloride ion, and was inhibited by captopril, MK-421, and EDTA. Thus, the endopeptidase activity of the enzyme showed properties similar to those of the dipeptidyl carboxypeptidase activity of the enzyme.  相似文献   

3.
Prolyl endopeptidase cleaves peptide bonds on the carboxyl side of proline residues within a peptide chain. The enzyme readily degrades a number of neuropeptides including substance P, neurotensin, thyrotropin-releasing hormone, and luteinizing hormone-releasing hormone. The finding that the enzyme is inhibited by benzyloxycarbonyl-prolyl-proline, with a Ki of 50 microM, prompted the synthesis of benzyloxycarbonyl-prolyl-prolinal as a potential transition state analog inhibitor. Rabbit brain prolyl endopeptidase was purified to homogeneity for these studies. The aldehyde was found to be a remarkably potent inhibitor of prolyl endopeptidase with a Ki of 14 nM. This Ki is more than 3000 times lower than that of the corresponding acid or alcohol. By analogy with other transition state inhibitors, it can be assumed that binding of the prolinal residue to the S1 subsite and the formation of a hemiacetal with the active serine of the enzyme greatly contribute to the potency of inhibition. The specificity of the inhibitor is indicated by the finding that a variety of proteases were not affected at concentrations 150 times greater than the Ki for prolyl endopeptidase. The data indicate that benzyloxycarbonyl-prolyl-prolinal is a specific and potent inhibitor of prolyl endopeptidase and that consequently it should be of value in in vivo studies on the physiological role of the enzyme.  相似文献   

4.
Abstract— An enzyme with the specificity of a prolyl endopeptidase was purified about 880-fold from rabbit brain. The enzyme hydrolyzes peptidylprolyl-peptide and peptidylprolyl-amino acid bonds. Several biologically active peptides such as angiotensin, bradykinin, neurotensin. substance P and thyrotropin releasing hormone are degraded by hydrolysis of the bond between the carboxyl group of proline and the adjacent amino acid or ammonia respectively. The enzyme is activated by dithiothreitol and inhibited by heavy metals and thiol blocking agents. The serine protease inhibitor phenylmethanesulfonylfluoride has no effect on activity; however, inhibition was obtained with diisopropylfluorophosphate. Prolyl endopeptidase has a molecular weight of about 66,000 and a pH optimum of about 8.3. A new chromogenic substrate, N -benzyloxycarbonylglycyl-L-prolylsulfamethoxazole, was used for determination of enzyme activity. The substrate is hydrolyzed to N -benzyloxycarbonylglycyl-L-proline and free sulfamethoxazole which can be conveniently determined by a colorimetric procedure.  相似文献   

5.
A novel metallo-endopeptidase from human neuroblastoma NB-OK-1 cells was partially purified and characterized. This enzyme activity was detected in the culture medium and could be detached from intact cells by gentle washing, suggesting a peripheral localization of the enzyme. This endopeptidase inactivated Atrial Natriuretic Peptide (ANP) by a unique and selective cleavage of the Ser123-Phe124 bond. It also produced hydrolysis at the Xaa-Phe, Xaa-Leu, or Xaa-Ile bonds of other peptide hormones such as bradykinin, somatostatin 14, litorin, substance P, neuromedin C and angiotensin II. The substrate selectivity and inhibition profile of the enzyme showed obvious similarities with the peptide hormone inactivating endopeptidase (PHIE) recently purified from Xenopus laevis skin secretions and indicated a thermolysin-like activity distinct from neutral endopeptidase (EC 3.4.24.11) and from angiotensin converting enzyme (EC 3.4.15.1).  相似文献   

6.
The effects of substance P on acetylcholinesterase activity have been examined. The neuropeptide produced a significant increase in the activity of the enzyme in rat cerebral cortex. Pretreatment of rats with either actinomycin-D or cycloheximide did not fully abolish the substance P-mediated stimulation of cerebral acetylcholinesterase. Substance P increased the enzyme activity in rat brain slices; moreover, substance P increased the activity of electric eel acetylcholinesterase in in vitro experiments. These observations indicate that substance P produces an induction of acetylcholinesterase in cerebral cortex of rats and in addition indicate that a direct action on the enzyme takes place.  相似文献   

7.
Eclosion hormone was isolated from trimmed pharate adult heads of Manduca sexta by an eight step purification procedure using a Heliothis virescens in vivo bioassay. The neuropeptide was active in second stadium M. sexta. The primary structure was determined by sequence analyses of the intact peptide and fragment peptides generated by lysyl endopeptidase, endoproteinase Glu-C, and proline-specific endopeptidase. The nature of the carboxyl terminus as a free acid was elucidated by analysis of amino acids from digestion of the intact peptide with lysyl endopeptidase, which liberated leucine, but no leucine amide. The complete primary structure of M. sexta closion hormone is H-Asn-Pro-Ala-Ile-Ala-Thr-Gly-Tyr-Asp-Pro-Met-Glu-Ile-Cys-Ile-Glu-Asn-Cy s-Ala- Gln-Cys-Lys-Lys-Met-Leu-Gly-Ala-Trp-Phe-Glu-Gly-Pro-Leu-Cys-Ala-Glu-Ser- Cys-Ile Lys-Phe-Lys-Gly-Lys-Leu-Ile-Pro-Glu-Cys-Glu-Asp-Phe-Ala-Ser-Ile-Ala-Pro- Phe-Leu-Asn-Lys-Leu-OH.  相似文献   

8.
Removal of epithelium from mammalian tracheae has been shown to enhance responsiveness to a variety of contractile and relaxant agents. One of the most dramatic shifts reported has been for guinea pig tracheal tissue denuded of epithelium and treated with substance P. We investigated whether this shift in responsiveness was because of 1) removal of an epithelium-associated enzyme, neutral endopeptidase, which degrades substance P and 2) loss of an epithelium-derived noncyclooxygenase relaxant factor. Using a muscle bath preparation we performed concentration-response curves with substance P and acetylcholine on indomethacin-treated tissues with and without intact epithelium and with and without pretreatment with the neutral endopeptidase inhibitor, phosphoramidon. Epithelium removal potentiated the mean agonist concentration calculated to causes 30% of the maximal contractile response by 148-fold for substance P and by 7-fold for acetylcholine. Phosphoramidon potentiated the contractile response to substance P, but not to acetylcholine, by both the epithelium-intact and denuded tissues (P less than 0.05). However, the degree of enhancement by phosphoramidon was much greater in the intact tissues. With phosphoramidon treatment, therefore, the difference in responsiveness to substance P between the intact and denuded tissues was reduced from 148-fold to 18-fold. This effect of phosphoramidon suggests that the hyperresponsiveness to substance P of epithelium-denuded airway tissue is largely because of removal of neutral endopeptidase. Because all tissues were treated with indomethacin, the leftward shifts in substance P and in acetylcholine responsiveness induced by epithelium removal further suggest that an epithelium-derived noncyclooxygenase factor other than neutral endopeptidase also modulates the contractile response to substance P and to acetylcholine.  相似文献   

9.
Several lines of anatomic, biochemical, and pharmacological evidence suggest that the neuropeptide substance P has a direct action on cells of the anterior pituitary lobe via a specific neurokinin-1 receptor. In the present study we confirmed this association by combining Bolton-Hunter iodinated substance P-receptor autoradiography with immunocytochemistry on cultured anterior pituitary cells. Radiolabeled substance P was bound to living cell cultures at 0 degrees C, and after a brief wash the cultures were fixed and processed immunocytochemically for prolactin and luteinizing hormone. A large proportion of cultured anterior pituitary cells possessed substance P binding sites. When receptor autoradiography was combined with immunocytochemistry, it was evident that both prolactin- and luteinizing hormone-immunoreactive cells were labeled with radiolabeled substance P. However, a small proportion of the radioligand-labeled cells were not stained by the immunocytochemical procedure, suggesting that additional cell types possess substance P receptors. The present study presents morphological evidence that substance P binds to prolactin- and luteinizing hormone-containing cells of the anterior pituitary lobe. Therefore, it is likely that substance P has a direct action on mammotrophs and gonadotrophs.  相似文献   

10.
Viral infection increases the airway smooth muscle response to substance P. This effect is due to decreased activity of neutral endopeptidase (EC 3.4.24.11), an enzyme that degrades substance P. Inhibition of neutral endopeptidase activity also potentiates substance P-induced 35SO4-labeled macromolecule secretion. Therefore we examined the in vitro effects of substance P on 35SO4-macromolecule secretion from the tracheae of influenza-infected ferrets. Despite a virus-induced loss of neutral endopeptidase activity (demonstrated in muscle bath experiments), there was no difference between control and infected tracheae in either baseline secretion [697 +/- 125 vs. 579 +/- 67 (SE) cpm/15 min; n = 15 tissues) or in the response to 10(-6) M substance P (increased by 218 +/- 63 and 195 +/- 51, respectively) or 10(-5) M substance P (increased by 416 +/- 95 and 354 +/- 54, respectively). Although phosphoramidon (10(-6) M) potentiated the secretory response to substance P, there was again no difference between control and infected tracheae. These data show that although viral infection decreases airway neutral endopeptidase activity, virus-induced hypersecretion is not due to a resulting increase in the secretory response to substance P.  相似文献   

11.
Neutral endopeptidase is a mammalian type II integral membrane zinc-containing endopeptidase, which degrades and inactivates a number of bioactive peptides. The range of substrates cleaved by neutral endopeptidase in vitro includes the enkephalins, substance P, endothelin, bradykinin and atrial natriuretic factor. Due to the physiological importance of neutral endopeptidase in the modulation of nociceptive and pressor responses there is considerable interest in inhibitors of this enzyme as novel analgesics and anti-hypertensive agents. Here we describe the crystal structure of the extracellular domain (residues 52-749) of human NEP complexed with the generic metalloproteinase inhibitor phosphoramidon at 2.1 A resolution. The structure reveals two multiply connected folding domains which embrace a large central cavity containing the active site. The inhibitor is bound to one side of this cavity and its binding mode provides a detailed understanding of the ligand-binding and specificity determinants.  相似文献   

12.
脯氨酸内肽酶是一类能够特异性水解多肽链中脯氨酸残基羧基端的内切酶,是丝氨酸蛋白酶家族成员之一,其能有效降解小于30个含有脯氨酸残基的多肽链,在对PEP的研究中发现它能特异性地水解许多含脯氨酸的多肽类神经递质和激素,如促甲状腺激素释放激素、P物质(Substance P)等,因此研究认为PEP可能参与一些神经类疾病的发生,如老年性记忆障碍等。本研究经过阅读相关期刊文献,对脯氨酸内肽酶的分布情况、基本理化和酶学性质、分子结构、作用机理以及在食品、医药领域的最新研究和应用进行了综合性评述,以期能对脯氨酸内肽酶相关性质、机理的后续研究以及在食品、医药领域更广泛的应用提供一定的参考。  相似文献   

13.
Abstract: Several neuropeptides, including neurotensin, somatostatin, bradykinin, angiotensin II, substance P, and luteinizing hormone-releasing hormone but not vasopressin and oxytocin, were actively metabolized through proteolytic degradation by cultivated astrocytes obtained from rat cerebral cortex. Because phenanthroline was an effective degradation inhibitor, metalloproteases were responsible for neuropeptide fragmentation. Neurotensin was cleaved by astrocytes at the Pro10-Tyr11 and Arg8- Arg9 bonds, whereas somatostatin was cleaved at the Phe6-Phe7 and Thr10-Phe11 bonds. These cleavage sites have been found previously with endopeptidases 24.16 and 24.15 purified from rat brain. Addition of specific inhibitors of these proteases, the dipeptide Pro-He and N -[1-( RS )-carboxy-3-phenylpropyl]-Ala-Ala-Phe-4-aminobenzoate, significantly reduced the generation of the above neuropeptide fragments by astrocytes. The presence of endopeptidases 24.16 and 24.15 in homogenates of astrocytes could also be demonstrated by chromatographic separations of supernatant solubilized cell preparations. Proteolytic activity for neurotensin eluted after both gel and hydroxyapatite chromatography at the same positions as found for purified endopeptidase 24.16 or 24.15. In incubation experiments or in chromatographic separations no phosphoramidon-sensitive endopeptidase 24.11 (enkephalinase) or captopril-sensitive peptidyl dipeptidase A (angiotensin-converting enzyme) could be detected in cultivated astrocytes. Because astrocytes embrace the neuronal synapses where neuropeptides are released, we presume that the endopeptidases 24.16 and 24.15 on astrocytes are strategically located to contribute significantly to the inactivation of neurotensin, somatostatin, and other neuropeptides in the brain.  相似文献   

14.
Peptides with hormonal or neuronal activity are derived by enzymatic processing from pro-hormones, which by themselves are biologically inert. Processing and other enzymatic conversions may occur step-wise, leading to the formation of a cascade of biologically active (or inactive) peptides. The neurokin in substance P is known to be metabolically transformed both by amino- and endopeptidases. More N-terminal substance (1-7) has been found than C-terminal (2-11 to 5-11) fragments in various CNS areas. The substance P (1-7) fragment also shows biological activity e.g., providing analgesia, lowering blood pressure, inhibiting aggressive behavior and (in contrast to substance P) inhibiting grooming behavior. An endopeptidase generating substance P (1-7) and to a lesser extent, substance (1-8), has been isolated and characterized from human cerebrospinal fluid (CSF) and bovine spinal cord, as a metalloenzyme with essential SH-groups. Substance P co-exists with calcitonin gene related peptide (CGRP) in a large population of non-myelinated primary afferent ('pain') fibers. Intrathecal injection of substance P causes behavioral and physiological responses which are potentiated and prolonged by CGRP. It was found that CGRP competes with substance P for the endopeptidase. It is suggested that the main action of CGRP in the spinal cord is to inhibit substance P degradation.  相似文献   

15.
A membrane-bound metallo-endopeptidase that hydrolyzes human parathyroid hormone (1-84) and reduced hen egg lysozyme between hydrophilic amino acid residues was isolated from rat kidney [Yamaguchi et al. (1991) Eur. J. Biochem. 200, 563-571]. In this study, the hydrolyses of various peptide hormones and neuropeptides by the metallo-endopeptidase were examined using an automated gas-phase protein sequencer. The purified enzyme hydrolyzed the oxidized insulin B chain and substance P most rapidly, followed by big endothelin 1, neurotensin, angiotensin 1, endothelin 1, rat alpha-atrial natriuretic peptide and bradykinin, in this order. The enzyme mainly cleaved these peptides at bonds involving a hydrophilic amino acid residue. However, it cleaved bonds between less hydrophilic amino acid pairs in several short peptides, e.g. at the His5-Leu6 bond in oxidized insulin B chain, the Ile28-Val29 bond in big endothelin-1 and the Ile5-His6 and Phe8-His9 bonds in angiotensin 1. The enzyme cleavage sites of oxidized insulin B chain and angiotensin 1 were different from the reported sites cleaved by meprin and by endopeptidase 2, respectively. Kinetic determination of bradykinin hydrolysis by the purified enzyme yielded values of Km = 18.1 microM and kcat = 0.473 s-1, giving a ratio of kcat/Km = 2.62 x 10(4) s-1.M-1. The Km value was about 20-fold lower than that reported for meprin and endopeptidase 2. These results indicate that the membrane-bound metallo-endopeptidase from rat kidney is distinguished from meprin and endopeptidase 2 in its substrate specificity and is not parathyroid hormone specific, but has potential capacities to inactivate various biologically active peptide hormones and neuropeptides in vivo.  相似文献   

16.
Prolyl endopeptidase is a proteolytic enzyme which could have a neuropeptide catabolising role in the central nervous system. Although prolyl endopeptidase has been described as a cytosolic enzyme, it has become clear that it can also be found in particulate form. The regional and subcellular distribution of this enzyme was evaluated in rat and human brain. The activity of the enzyme was higher in the human than in the rat brain. In the human brain, the activity levels of both soluble and particulate prolyl endopeptidase were the highest in frontal, parietal and occipital cortices and the lowest in the cerebellum. In the rat brain, the regional distribution of the enzyme was more homogeneous. The activity in all the areas of the central nervous system is higher than in peripheral tissues. Subcellular distribution of the enzyme in the brain indicates that prolyl endopeptidase was higher in the cytosolic fraction than in the particulate fractions. The particulate form was enriched in the synaptosomal and the myelinic membranes. The high activity of prolyl endopeptidase in the human cortex suggests that prolyl endopeptidase could play a role in the functions of this brain area.  相似文献   

17.
The electric organ of Torpedo marmorata contains a membrane-bound, captopril-sensitive metallopeptidase that resembles mammalian angiotensin converting enzyme (peptidyl dipeptidase A; EC 3.4.15.1). The Torpedo enzyme has now been purified to apparent homogeneity from electric organ by a procedure involving affinity chromatography using the selective inhibitor lisinopril immobilised to Sepharose via a 28-A spacer arm. The purified protein, like the mammalian enzyme, acted as a peptidyl dipeptidase in cleaving dipeptides from the C-terminus of a variety of peptide substrates, including angiotensin I, bradykinin, [Met5]enkephalin, [Leu5]enkephalin, and the model substrate hippuryl (benzoylglycyl; BzGly)-His-Leu. The hydrolysis of BzGly-His-Leu was activated by Cl-. Enzyme activity was inhibited by classical angiotensin converting enzyme inhibitors, including captopril, enalaprilat (MK422), and lisinopril (MK521). Torpedo angiotensin converting enzyme, like its mammalian counterpart, was also able to act as an endopeptidase in hydrolysing the amidated neuropeptide substance P. Hydrolysis of substance P occurred primarily at the Phe8-Gly9 bond with release of the C-terminal tripeptide, Gly-Leu-MetNH2, and this hydrolysis was blocked by selective inhibitors. The Torpedo enzyme was recognised by a polyclonal antibody to pig kidney angiotensin converting enzyme on immunoelectrophoretic (Western) blot analysis. Thus, on the basis of substrate specificity, inhibitor sensitivity, and immunological criteria, the Torpedo enzyme closely resembles mammalian angiotensin converting enzyme. However, the Torpedo enzyme appears somewhat larger (Mr = 190,000) than the pig kidney enzyme (Mr = 180,000) on sodium dodecyl sulphate-polyacrylamide gel electrophoresis. The endogenous peptide substrate(s) for Torpedo electric organ angiotensin converting enzyme and the physiological role of the enzyme in this tissue remain to be evaluated.  相似文献   

18.
Post-proline cleaving enzyme (prolyl endopeptidase) from bovine brain   总被引:2,自引:0,他引:2  
A post-proline cleaving enzyme [prolyl endopeptidase, EC 3.4.21.26] was purified about 3,700-fold from an extract of bovine brain by a series of column chromatographies on DEAE-Sephadex, hydroxyapatite and PCMB-T-Sepharose, and gel filtration on Sephadex G-200 using N-carbobenzoxy-Gly-Pro-beta-naphthylamide (Z-Gly-Pro-2-NNap), thyrotropin releasing hormone (TRH) and oxytocin as substrates. The purified enzyme appeared homogeneous as judged by disc gel and SDS gel electrophoreses. The enzyme was most active at pH 7.5 and 7.2 with Z-Gly-Pro-2-NNap and TRH, respectively, and hydrolyzed peptide bonds involving Pro-X (X=amino acid, peptide, ester and amide) bonds of synthetic substrates, oxytocin, vasopressin, neurotensin, substance P, tuftsin, bradykinin, and insulin B chain. However, the enzyme was inert toward collagen, gelatin, and casein. The enzyme was completely inactivated by diisopropylphosphorofluoridate (DFP), Z-Gly-Pro-chloromethyl ketone and p-chloromercuribenzoate (PCMB), while it was not inhibited by phenylmethane sulfonylfluoride (PMSF) or metal chelators. Determination of the amino acid composition revealed that the enzyme contained 25 half-cystines. Modification of three cysteine residues of the enzyme by PCMB led to complete inactivation. The isoelectric point of the enzyme was 4.8, and the molecular weight was estimated to be 76,000 by ultracentrifugal analysis and 75,000-74,000 by both gel filtration and sodium dodecyl sulfate (SDS) gel electrophoresis, suggesting that the enzyme is present as a monomer. These results indicate that the post-proline cleaving enzyme from bovine brain is very similar to those previously purified from lamb brain and kidney in its enzymatic properties, substrate specificity and physicochemical properties, in sharp contrast with the results obtained by Tate, who reported that the bovine brain prolyl endopeptidase was inert toward oxytocin, vasopressin and bradykinin.  相似文献   

19.
Two structurally related arthropod neuropeptides, red pigment concentrating hormone (RPCH) and adipokinetic hormone (AKH), are potent excitors of the heart of the clam Mercenaria mercenaria. The response is bimodal: whereas the threshold for affected hearts is 1-3 X 10(-9) M, about 40% of the preparations are virtually unresponsive. Aqueous extracts of Mercenaria ganglia contain a substance which concentrates the red pigment in the erythrophores of intact destalked Uca pugilator and even of its isolated legs. This substance is retained on Sephadex G-15 and co-elutes with synthetic shrimp RPCH. The active fractions also concentrate the erythrophores and the leucophores of destalked shrimp (Penaeus). Neither dopamine nor the molluscan neuropeptide FMRFamide had any chromatophorotropic effect in these assays. The activity of the ganglion extracts was abolished by digestion with chymotrypsin. In conclusion, molluscan ganglion extracts contain a peptide factor, possibly an analog of RPCH, that concentrates the pigments of crustacean chromatophores by a direct action on the cells.  相似文献   

20.
Biological responses to neuropeptides are rapidly attenuated by overlapping mechanisms that include peptide degradation by cell-surface proteases, receptor uncoupling from heterotrimeric G-proteins and receptor endocytosis. We have investigated the mechanisms that terminate the proinflammatory effects of the neuropeptide substance P (SP), which are mediated by the neurokinin 1 receptor (NK1R). Neutral endopeptidase degrades SP in the extracellular fluid and is one of the first mechanisms to terminate signalling. G-protein receptor kinases and second-messenger kinases phosphorylate the NK1R to permit interaction with beta-arrestins, which uncouple the receptor from G-proteins to terminate the signal. SP-induces NK1R endocytosis by a beta-arrestin-dependent mechanism, which also involves the GTPases dynamin and Rab5a. Endocytosis contributes to desensitization by depleting receptors from the cell surface. Disruption of these mechanisms results in uncontrolled stimulation and disease. Thus the deletion of neutral endopeptidase in mice exacerbates inflammation of many tissues. There are similarities and distinct differences in the mechanisms that regulate signalling by neuropeptide receptors and other G-protein-coupled receptors, in particular those that are activated irreversibly by proteolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号