首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Equilibrium binding of [3H]dihydromorphine was assayed in brain regions of young and aged male F344 rats. Young rats had significantly higher receptor densities than old rats in the frontal poles, anterior cortex, and striatum. In the frontal poles, the decline in receptor concentration with age was accompanied by a significant increase in the apparent affinity of dihydromorphine for receptors, which may be compensatory for the decrease in Bmax. This pattern of receptor alterations is different than that previously observed in aged female rats. Therefore, processes which underlie synaptic alterations with age may be different in males and females.  相似文献   

2.
The establishment of sex-specific neural morphology, which underlies sex-specific behaviors, occurs during a perinatal sensitive window in which brief exposure to gonadal steroid hormones produces permanent masculinization of the brain. In the rodent, estradiol derived from testicular androgens is a principal organizational hormone. The mechanism by which transient estradiol exposure induces permanent differences in neuronal anatomy has been widely investigated, but remains elusive. Epigenetic changes, such as DNA methylation, allow environmental influences to alter long-term gene expression patterns and therefore may be a potential mediator of estradiol-induced organization of the neonatal brain. Here we review data that demonstrate sex and estradiol-induced differences in DNA methylation on the estrogen receptor α (ERα), estrogen receptor β (ERβ), and progesterone receptor (PR) promoters in sexually dimorphic brain regions across development. Contrary to the overarching view of DNA methylation as a permanent modification directly tied to gene expression, these data demonstrate that methylation patterns on steroid hormone receptors change across the life span and do not necessarily predict expression. Although further exploration into the mechanism and significance of estradiol-induced alterations in DNA methylation patterns in the neonatal brain is necessary, these results provide preliminary evidence that epigenetic alterations can occur in response to early hormone exposure and may mediate estradiol-induced organization of sex differences in the neonatal brain.  相似文献   

3.
Unique Features of the Insulin Receptor in Rat Brain   总被引:4,自引:3,他引:1  
We examined the structure of the affinity-labeled insulin receptors in rat brain, rat liver, and human IM-9 lymphocytes using sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In gels run under reducing conditions, the alpha-subunit of the insulin receptor in brain had an apparent Mr of 127,000 distinctly lower than that seen in both rat liver and human lymphocytes (apparent Mr = 136,000). Exposure to neuraminidase increased the electrophoretic mobility of the liver receptor, but had no effect on the insulin receptor in brain. The carbohydrate moieties of the insulin receptors in rat brain and liver were further examined by chromatography on wheat-germ agglutinin agarose. The receptors in both tissues adsorbed to the wheat-germ agglutinin; elution with 0.3 M N-acetyl glucosamine resulted in slightly better recovery of the brain than of the liver receptor. Exposure to neuraminidase virtually abolished the interaction of the liver receptor with the lectin, whereas adsorption of the brain receptor was unaffected by neuraminidase. These results indicate that the insulin receptor in brain is distinguished from those in peripheral tissues by structural alterations, including changes in the carbohydrate moiety of the receptor. Such alterations contrast sharply with the previously observed similarities in insulin binding properties between insulin receptors in brain and other tissues. The implications of such structural alterations for the program of insulin action expressed by the receptors in brain remain to be explored.  相似文献   

4.
Glutamate-mediated neurotransmission may be involved in the range of adaptive changes in brain which occur after ethanol administration in laboratory animals, and in chronic alcoholism in human cases. Excitatory amino acid transmission is modulated by a complex system of receptors and other effectors, the efficacy of which can be profoundly affected by altered gene or protein expression. Local variations in receptor composition may underlie intrinsic regional variations in susceptibility to pathological change. Equally, ethanol use and abuse may bring about alterations in receptor subunit expression as the essence of the adaptive response. Such considerations may underlie the regional localization characteristic of the pathogenesis of alcoholic brain damage, or they may form part of the homeostatic change that constitutes the neural substrate for alcohol dependence.  相似文献   

5.
Enhanced binding of 3H-arginine8-vasopressin in the Brattleboro rat   总被引:1,自引:0,他引:1  
L M Shewey  D M Dorsa 《Peptides》1986,7(4):701-704
Specific binding sites for 3[H]-arginine8-vasopressin (AVP) were characterized using membrane preparations of liver, renal medulla and brain (septal) tissue of heterozygous (HE) and homozygous (HO) Brattleboro (BB) rats. Measurement of binding sites indicated that significantly greater numbers of AVP receptors are present in the liver and septum of HO-BB rats. Similar numbers of AVP receptors were present in renal medullary tissue from HO-BB and HE-BB rats. Higher equilibrium dissociation constants were measured in the HO-BB septal tissue indicating a lower affinity of the brain receptor for 3[H]-AVP than in heterozygotes. No significant differences in AVP receptor affinity were noted in liver or kidney tissue. It is concluded that "up-regulation" of AVP receptor number and, in the brain, alterations in AVP receptor affinity may occur in the absence of endogenous AVP.  相似文献   

6.
Molecular processes regulating brain stem serotonergic receptors play an important role in the control of respiration. We evaluated 5-HT(2A) receptor alterations in the brain stem of neonatal rats exposed to hypoxic insult and the effect of glucose, oxygen, and epinephrine resuscitation in ameliorating these alterations. Hypoxic stress increased the total 5-HT and 5-HT(2A) receptor number along with an up regulation of 5-HT Transporter and 5-HT(2A) receptor gene in the brain stem of neonates. These serotonergic alterations were reversed by glucose supplementation alone and along with oxygen to hypoxic neonates. The enhanced brain stem 5-HT(2A) receptors act as a modulator of ventilatory response to hypoxia, which can in turn result in pulmonary vasoconstriction and cognitive dysfunction. The adverse effects of 100% oxygenation and epinephrine administration to hypoxic neonates were also reported. This has immense clinical significance in neonatal care.  相似文献   

7.
Preclinical studies, using primarily rodent models, have shown acetylcholine to have a critical role in brain maturation via activation of nicotinic acetylcholine receptors (nAChRs), a structurally diverse family of ligand-gated ion channels. nAChRs are widely expressed in fetal central nervous system, with transient upregulation in numerous brain regions during critical developmental periods. Activation of nAChRs can have varied developmental influences that are dependent on the pharmacologic properties and localization of the receptor. These include regulation of transmitter release, gene expression, neurite outgrowth, cell survival, and synapse formation and maturation. Aberrant exposure of fetal and neonatal brain to nicotine, through maternal smoking or nicotine replacement therapy (NRT), has been shown to have detrimental effects on cholinergic modulation of brain development. These include alterations in sexual differentiation of the brain, and in cell survival and synaptogenesis. Long-term alterations in the functional status and pharmacologic properties of nAChRs may also occur, which result in modifications of specific neural circuitry such as the brainstem cardiorespiratory network and sensory thalamocortical gating. Such alterations in brain structure and function may contribute to clinically characterized deficits that result from maternal smoking, such as sudden infant death syndrome and auditory-cognitive dysfunction. Although not the only constituent of tobacco smoke, there is now abundant evidence that nicotine is a neural teratogen. Thus, alternatives to NRT should be sought as tobacco cessation treatments in pregnant women.  相似文献   

8.
The early-life social environment has profound effects on brain development and subsequent expression of social behavior. Oxytocin and vasopressin are expressed and released in the brain and are important regulators of social behavior. Accordingly, the early social environment may alter social behaviors via changes in the oxytocin and/or vasopressin systems. To test this hypothesis, and to gain mechanistic insights, rodent models mimicking either a deprived (e.g. maternal separation) or enriched (e.g. neonatal handling) early social environment have been utilized. Findings indeed show that differences in the quality of the early social environment are associated with brain region-specific alterations in oxytocin and vasopressin expression and oxytocin receptor and vasopressin 1a receptor binding. Early social environment-induced changes in oxytocin and vasopressin systems were associated with changes in several forms of social behavior, including maternal care, aggression, play-fighting, and social recognition. First studies provide evidence for a causal link between altered vasopressin responsiveness and impairments in social recognition in rats exposed to maternal separation and a role for epigenetic mechanisms to explain persistent increases in vasopressin expression in mice exposed to maternal separation. Overall, initial findings suggest that oxytocin and vasopressin systems may mediate early social environment-induced alterations in social behavior. Additional comprehensive studies will be necessary to advance our understanding to what extent changes in oxytocin and vasopressin underlie early social environment-induced alterations in social behavior. This article is part of a Special Issue entitled Oxytocin, Vasopressin, and Social Behavior.  相似文献   

9.

Background

Most studies investigating the neurobiology of depression and suicide have focused on the serotonergic system. While it seems clear that serotonergic alterations play a role in the pathogenesis of these major public health problems, dysfunction in additional neurotransmitter systems and other molecular alterations may also be implicated. Microarray expression studies are excellent screening tools to generate hypotheses about additional molecular processes that may be at play. In this study we investigated brain regions that are known to be implicated in the neurobiology of suicide and major depression are likely to represent valid global molecular alterations.

Methodology/Principal Findings

We performed gene expression analysis using the HG-U133AB chipset in 17 cortical and subcortical brain regions from suicides with and without major depression and controls. Total mRNA for microarray analysis was obtained from 663 brain samples isolated from 39 male subjects, including 26 suicide cases and 13 controls diagnosed by means of psychological autopsies. Independent brain samples from 34 subjects and animal studies were used to control for the potential confounding effects of comorbidity with alcohol. Using a Gene Ontology analysis as our starting point, we identified molecular pathways that may be involved in depression and suicide, and performed follow-up analyses on these possible targets. Methodology included gene expression measures from microarrays, Gene Score Resampling for global ontological profiling, and semi-quantitative RT-PCR. We observed the highest number of suicide specific alterations in prefrontal cortical areas and hippocampus. Our results revealed alterations of synaptic neurotransmission and intracellular signaling. Among these, Glutamatergic (GLU) and GABAergic related genes were globally altered. Semi-quantitative RT-PCR results investigating expression of GLU and GABA receptor subunit genes were consistent with microarray data.

Conclusions/Significance

The observed results represent the first overview of global expression changes in brains of suicide victims with and without major depression and suggest a global brain alteration of GLU and GABA receptor subunit genes in these conditions.  相似文献   

10.
Deciphering the molecular pathways associated with N-methyl-D-aspartate receptor (NMDAr) hypofunction and its interaction with antipsychotics is necessary to advance our understanding of the basis of schizophrenia, as well as our capacity to treat this disease. In this regard, the development of human brain-derived models that are amenable to studying the neurobiology of schizophrenia may contribute to filling the gaps left by the widely employed animal models. Here, we assessed the proteomic changes induced by the NMDA glutamate receptor antagonist MK-801 on human brain slice cultures obtained from adult donors submitted to respective neurosurgery. Initially, we demonstrated that MK-801 diminishes NMDA glutamate receptor signaling in human brain slices in culture. Next, using mass-spectrometry-based proteomics and systems biology in silico analyses, we found that MK-801 led to alterations in proteins related to several pathways previously associated with schizophrenia pathophysiology, including ephrin, opioid, melatonin, sirtuin signaling, interleukin 8, endocannabinoid, and synaptic vesicle cycle. We also evaluated the impact of both typical and atypical antipsychotics on MK-801-induced proteome changes. Interestingly, the atypical antipsychotic clozapine showed a more significant capacity to counteract the protein alterations induced by NMDAr hypofunction than haloperidol. Finally, using our dataset, we identified potential modulators of the MK-801-induced proteome changes, which may be considered promising targets to treat NMDAr hypofunction in schizophrenia. This dataset is publicly available and may be helpful in further studies aimed at evaluating the effects of MK-801 and antipsychotics in the human brain.  相似文献   

11.
beta-Adrenergic receptors in brain microvessels of diabetic rats   总被引:1,自引:0,他引:1  
A significant decrease in the number of beta-adrenergic receptors was observed in cerebral microvessels of fatty (fa/fa) and streptozotocin-induced diabetic rats, without receptor affinity changes. These results suggest that alterations of central adrenergic regulation of small vessels may be involved in brain microvasculature disturbances that occur with diabetes.  相似文献   

12.
Diabetic patients and streptozotocin (STZ)-induced diabetes mellitus (DM) models exhibit signals of brain dysfunction, evidenced by neuronal damage and memory impairment. Astrocytes surrounding capillaries and synapses modulate many brain activities that are connected to neuronal function, such as nutrient flux and glutamatergic neurotransmission. As such, cognitive changes observed in diabetic patients and experimental models could be related to astroglial alterations. Herein, we investigate specific astrocyte changes in the rat hippocampus in a model of DM induced by STZ, particularly looking at glial fibrillary acidic protein (GFAP), S100B protein and glutamate uptake, as well as the content of advanced glycated end products (AGEs) in serum and cerebrospinal fluid (CSF), as a consequence of elevated hyperglycemia and the content of receptor for AGEs in the hippocampus. We found clear peripheral alterations, including hyperglycemia, low levels of proinsulin C-peptide, elevated levels of AGEs in serum and CSF, as well as an increase in RAGE in hippocampal tissue. We found specific astroglial abnormalities in this brain region, such as reduced S100B content, reduced glutamate uptake and increased S100B secretion, which were not accompanied by changes in GFAP. We also observed an increase in the glucose transporter, GLUT-1. All these changes may result from RAGE-induced inflammation; these astroglial alterations together with the reduced content of GluN1, a subunit of the NMDA receptor, in the hippocampus may be associated with the impairment of glutamatergic communication in diabetic rats. These findings contribute to understanding the cognitive deficits in diabetic patients and experimental models.  相似文献   

13.
Cholinergic receptors in upper motor neurons of brain stem control locomotion and coordination. Present study unravels cholinergic alterations in brain stem during spinal cord injury to understand signalling pathway changes which may be associated with spinal cord injury mediated motor deficits. We evaluated cholinergic function in brain stem by studying the expression of choline acetyl transferase and acetylcholine esterase. We quantified metabotropic muscarinic cholinergic receptors by receptor assays for total muscarinic, muscarinic M1 and M3 receptor subunits, gene expression studies using Real Time PCR and confocal imaging using FITC tagged secondary antibodies. The gene expression of ionotropic nicotinic cholinergic receptors and confocal imaging were also studied. The results from our study showed metabolic disturbance in cholinergic pathway as choline acetyl transferase is down regulated and acetylcholine esterase is up regulated in spinal cord injury group. The significant decrease in muscarinic receptors showed by decreased receptor number along with down regulated gene expression and confocal imaging accounts for dysfunction of metabotropic acetylcholine receptors in spinal cord injury group. Ionotropic acetylcholine receptor alterations were evident from the decreased gene expression of alpha 7 nicotinic acetylcholine receptors and confocal imaging. The motor coordination was analysed by Grid walk test which showed an increased foot slips in spinal cord injured rats. The significant reduction in brain stem cholinergic function might have intensified the motor dysfunction and locomotor disabilities.  相似文献   

14.
Huntington's Disease, an autosomal dominant neurological disorder, is characterized by diffuse neuronal degeneration particularly in the basal ganglia and cerebral cortex. The purpose of this study was to examine various discrete regions of choreic and control brains for alterations in muscarinic cholinergic receptor binding and choline acetyltransferase (ChAc) activity. Nine postmortem brains, three from patients with Huntington's Disease and six controls, were dissected into 17 discrete regions. Each regional homogenate was assayed for muscarinic receptor concentration by measuring specific membrane binding of [3H]-QNB, a potent muscarinic antagonist which selectively labels brain muscarinic receptors. Aliquots from each brain region were also assayed for ChAc activity. Of significance was the marked reduction in specific [3H]-QNB receptor binding in the caudate nucleus, putamen and globus pallidus of choreic brain while no significant alterations were detected in other brain regions. Significant decreases in ChAc activity were found in the caudate nucleus, putamen, and globus pallidus with no alterations in ChAc activity in the rest of the brain regions examined. The tissues were chosen such that protein levels were similar in both choreic and normal brain samples. The apparent reduction in the number of muscarinic cholinergic receptors in the choreic brains suggests that treatment with cholinomimetic drugs might be beneficial in Huntington's Disease.  相似文献   

15.
Type 1 diabetes mellitus (DM), a "classical" result of a pancreatic-beta cell damage, is associated with various metabolic, neuronal, endocrine and immune alterations at cellular, tissue and organ levels. Nerve growth factor (NGF) is one of the most extensively studied neurotrophic factors, which is produced and released by numerous cells including the pancreatic beta cells. NGF plays an important role during brain development and may be able to delay or even reverse damaged forebrain cholinergic neurons that undergo degeneration in aged animals and in Alzheimer's disease (AD). Recent reports indicate that experimentally induced DM in rodents can cause brain biochemical and molecular alterations similar to those observed in sporadic AD. Given the importance of NGF in the pathophysiology of brain cholinergic neurons, we looked for NGF changes in the pancreas and brain of diabetic rats. The aim of this study was, therefore, to investigate the effect of streptozotocin-induced DM on NGF and NGF receptor expression in pancreas and brain. The results showed that DM is associated with altered NGF, NGF-receptor expression in both pancreas and brain.  相似文献   

16.
Hypoxia in neonates causes dysfunction of excitatory and inhibitory neurotransmission resulting in permanent brain damage. The present study is to understand the cerebellar GABA(A) receptor alterations and neuroprotective effect of glucose supplementation prior to current sequence of resuscitation - oxygen and epinephrine supplementation in hypoxic neonatal rats. Hypoxic insult caused a significant decrease in GABA(A) receptor number along with down regulated expression of GABA(Aα1,) GABA(Aα5), GABA(Aδ) and GABA(Aγ3) receptor subunits in the cerebellum which accounts for the respiratory inhibition. Hypoxic rats supplemented with glucose alone and with oxygen showed a reversal of the receptor alterations and changes in GABA(A) receptor subunits expression to near control. Glucose can reduce ATP-depletion-induced alterations in GABA receptors, thereby assisting in overcoming the neuronal damage caused by hypoxia. Resuscitation with oxygen alone and epinephrine was less effective in reversing the receptor alterations. The reduction in the GABA(A) receptors functional regulation during hypoxia plays an important role in cerebellar damage. Resuscitation with glucose alone and glucose with oxygenation to hypoxic neonatal rats helps in protecting the brain from severe hypoxic damage.  相似文献   

17.
Increased brain ammonia concentrations are a hallmark feature of several neurological disorders including congenital urea cycle disorders, Reye's syndrome and hepatic encephalopathy (HE) associated with liver failure. Over the last decade, increasing evidence suggests that hyperammonemia leads to alterations in the glutamatergic neurotransmitter system. Studies utilizing in vivo and in vitro models of hyperammonemia reveal significant changes in brain glutamate levels, glutamate uptake and glutamate receptor function. Extracellular brain glutamate levels are consistently increased in rat models of acute liver failure. Furthermore, glutamate transport studies in both cultured neurons and astrocytes demonstrate a significant suppression in the high affinity uptake of glutamate following exposure to ammonia. Reductions in NMDA and non-NMDA glutamate receptor sites in animal models of acute liver failure suggest a compensatory decrease in receptor levels in the wake of rising extracellular levels of glutamate. Ammonia exposure also has significant effects on metabotropic glutamate receptor activation with implications, although less clear, that may relate to the brain edema and seizures associated with clinical hyperammonemic pathologies. Therapeutic measures aimed at these targets could result in effective measures for the prevention of CNS consequences in hyperammonemic syndromes.  相似文献   

18.
Hypoxia in neonates disrupts the oxygen flow to the brain, essentially starving the brain and preventing it from performing vital biochemical processes important for central nervous system development. Hypoxia results in a permanent brain damage by gene and receptor level alterations mediated through neurotransmitters. The present study evaluated GABA, GABAA, GABAB receptor functions and gene expression changes in glutamate decarboxylase in the corpus striatum of hypoxic neonatal rats and the treatment groups with glucose, oxygen and epinephrine. Since GABA is the principal neurotransmitter involved in hypoxic ventilatory decline, the alterations in its level under hypoxic stress points to an important aspect of respiratory control. Following hypoxic stress, a significant decrease in total GABA, GABAA and GABAB receptors function and GAD expression was observed in the striatum, which accounts for the ventilator decline. Hypoxic rats treated with glucose alone and with oxygen showed a reversal of the receptor alterations and changes in GAD to near control. Being a source of immediate energy, glucose can reduce the ATP-depletion-induced changes in GABA and oxygenation helps in overcoming reduction in oxygen supply. Treatment with oxygen alone and epinephrine was not effective in reversing the altered receptor functions. Thus, our study point to the functional role of GABA receptors in mediating ventilatory response to hypoxia and the neuroprotective role of glucose treatment. This has immense significance in the proper management of neonatal hypoxia for a better intellect in the later stages of life.  相似文献   

19.
5-HT receptor changes remain controversial in posttraumatic stress disorder (PTSD) models. This study looks at the relationship between traumatic injuries and the alterations in 5-HT(2A) and 5-HT(2C) receptors in the goldfish brain. The effect of treatment with doxepin and fluoxetine, known to be selective serotonin reuptake inhibitor (SSRI) antidepressants, on 5-HT receptor expression in goldfish with fin ablation was also investigated. We demonstrated that fin ablation induced anxiety-like behavioural alterations and significant up-regulation of c-fos expression in goldfish cerebellum. The behavioural alterations correlated well with an increased expression of 5-HT(2A) receptors in the cerebellum of the fish with traumatic injury. An increase in the number of apoptotic cells and a higher caspase-8 protein level was present in the brains of goldfish with fin ablation compared to the control. Our findings suggest that neuronal apoptosis occured in the cerebellum as a result of fin ablation and may be related to the alterations of 5-HT(2A) and 5-HT(2C) levels and that the beneficial clinical effects of doxepin/fluoxetine treatment are due to the down-regulation of 5-HT(2A) and up-regulation of 5-HT(2C) receptors in the brain.  相似文献   

20.
T. Koide  H. Matsushita 《Life sciences》1981,28(10):1139-1145
The chronic effects of antidepressant treatment on striatal dopaminergic (DA) and muscarinic cholinergic (mACh) receptors of the rat brain have been examined comparatively in this study using 3H- spiroperidol (3H-SPD) and 3H-quinuclidinyl benzilate (3H-QNB) as the respective radioactive ligands. Imipramine and desipramine were used as prototype antidepressants. Although a single administration of imipramine or desipramine did not affect each receptor sensitivity, chronic treatment with each drug caused a supersensitivity of mACh receptor subsequent to DA receptor subsensitivity. Furthermore, it has been suggested that anti-mACh properties of imipramine or desipramine may not necessarily be related to the manifestation of mACh receptor supersensitivity and that sustained DA receptor subsensitivity may play some role in the alterations of mACh receptor sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号