首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The apparent diversity of suspension feeding animals is, inone sense, more apparent than real. Virtually all suspensionfeeders capture particles from the water at low Reynolds numberswith cylindrical filtering elements, so, at the level of thefiltering elements, flow patterns are identical and viscousforces dominate the situation. Six particle capture mechanismsare likely to be operating alone or in combination: (1) scanand trap (isolation of a parcel of fluid containing the particle),(2) sieving, (3) direct interception, (4) inertial impaction,(5) gravitational deposition, and (6) diffusive deposition.To insure that all variables relevant to the suspension feedingprocess are recorded, future work on suspension feeding shouldreport the diameter and spacing of the filtering elements, flowspeeds, diameter of particles available and captured, particlesettling velocities, particle mobility (active or passive),and particle surface properties.  相似文献   

2.
Considerable progress has been made on modeling particle deposition in the oral-tracheal airway under some normal breathing conditions,i.e.,resting,light activity and moderate exercise.None of these standard breathing patterns correspond to very low inhalation profiles.It is known that particle deposition in the oral-tracheal airway is greatly influenced by flow and particle inlet conditions.In this work,very low inhalation flow rates are considered.Particle deposition is numerically investigated in different oral-tracheal airway models,i.e.,circular,elliptic and realistic oral-tracheal airway models.Both micro- and nano-particles that are normally present in cigarette smoke are considered.Results show that inhalation profiles greatly influence the particle deposition.Due to relatively low flow rate,for ultra-fine particles,the oral deposition is enhanced due to longer residence time in oral cavity and stronger Brownian motion.However,for larger particles,less particles deposit in the oral-tracheal airway due to the weaker impaction.The transition happens when particle size changes from 0.01 μm to 0.1 μm.The influence of the limited entrance area is shown and discussed.Under the low inhalation profiles,the highest deposition fraction could be in either circular or realistic models depending on the particle property and the geometric characteristic of oral cavity.The knowledge obtained in this study may be beneficial for the design of bionic inhaler and understanding of health effect from smoke particle on human being.  相似文献   

3.

Steady laminar axisymmetric inhalation flow and wall deposition of micron-size particles in representative triple bifurcation airways have been simulated using a commercial finite-volume code with user-enhanced programs. Assuming spherical non-interacting particles (3 μm≤ d p ≤7 μm), various inlet Reynolds numbers (Re=500-2000) and Stokes numbers (St=0.02-0.23) were considered. The resulting particle deposition patterns were analyzed and then summarized in terms of deposition efficiencies, i.e. DE=DE(Re,St) Surprisingly high DE-values occur at relatively low Reynolds numbers (e.g., Re=500 ) in the third bifurcation. The quantitative results are of interest to researchers either conducting health risk assessment studies for inhaled particulate pollutants or analyzing drug aerosol inhalation and deposition at desired lung target sites.  相似文献   

4.
A computational model for flow and particle deposition in a three-dimensional representation of the human nasal cavity is developed. Simulations of steady state and dynamic airflow during inhalation are performed at flow rates of 9–60 l/min. Depositions for particles of size 0.5–20 μm are determined and compared with experimental and simulation results from the literature in terms of deposition efficiencies. The nasal model is validated by comparison with experimental and simulation results from the literature for particle deposition under steady-state flow. The distribution of deposited particles in the nasal cavity is presented in terms of an axial deposition distribution as well as a bivariate axial deposition and particle size distribution. Simulations of dynamic airflow and particle deposition during an inhalation cycle are performed for different nasal cavity outlet pressure variations and different particle injections. The total particle deposition efficiency under dynamic flow is found to depend strongly on the dynamics of airflow as well as the type of particle injection.  相似文献   

5.
The selection of food particles by Abra tenuis (Montagu), A. alba (Wood) and A. nitida (Müller) has been investigated.Material for ingestion smaller than 30μm is not selected according to size by A. tenius. Particles smaller than 0.5 μm are retained by the palliai organs and ingested but only particles larger than 1 μm appear to be retained with an efficiency approaching 100 %. The mesh size of the gill filter is found to be ≈ 3.0 × 0.5 μm.A. tenuis does not appear able to discriminate between particles smaller than 20 μm by their food value; however, relatively large silica particles which are devoid of food are partially rejected by the labial palps in favour of particles of similar size but having a bacterial coating. To a lesser extent the physical nature of particles seems to influence their selection by A. tenuis; clean angular particles are rejected in favour of clean rounded ones.Small, light particles appear to be transported on the gills directly to the mouth without coming into contact with the palps. Larger, heavier particles tend to drop from the gill to be caught by the palps which extend posteriorly to cup the entire ventral margin of the inner demibranch when the animal is feeding.The material ingested by A. alba is significantly finer than that taken into the mantle cavity indicating that the pallial organs actively select food by size. Selection of material for ingestion by size in A. nitida appears to be optional since only some of the animals examined had stomach contents significantly finer than material from the mantle cavity.  相似文献   

6.
1. Suspension feeding by caseless caddisfly larvae (Trichoptera) constitutes a major pathway for energy flow, and strongly influences productivity, in streams and rivers. 2. Consideration of the impact of these animals on lotic ecosystems has been strongly influenced by a single study investigating the efficiency of particle capture of nets built by one species of hydropsychid caddisfly. 3. Using water sampling techniques at appropriate spatial scales, and taking greater consideration of local hydrodynamics than previously, we examined the size‐frequency distribution of particles captured by the nets of Hydropsyche siltalai. Our results confirm that capture nets are selective in terms of particle size, and in addition suggest that this selectivity is for particles likely to provide the most energy. 4. By incorporating estimates of flow diversion around the nets of caseless caddisfly larvae, we show that capture efficiency (CE) is considerably higher than previously estimated, and conclude that more consideration of local hydrodynamics is needed to evaluate the efficiency of particle capture. 5. We use our results to postulate a mechanistic explanation for a recent example of interspecific facilitation, whereby a reduction of near‐bed velocities seen in single species monocultures leads to increased capture rates and local depletion of seston within the region of reduced velocity.  相似文献   

7.
A local disruption of the metachronal wave always accompanies capture of algal cells by tentacles of Flustrellidra hispida (Fabricius). Beat changes for ≈0.2 s over ≈100μm of the ciliated band during capture of a 10-μm particle. The halted parcel of water is therefore larger than the particle of food but much smaller than the flow that continues past the tentacles elsewhere. These events are consistent with the hypothesis that an induced local reversal of beat concentrates particles for those suspension feeders that retain particles upstream from a band of simple cilia (adults or larvae of bryozoans, brachiopods, phoronids, hemichordates, and echinoderms). These events are not explained by other hypotheses that have been advanced for concentration of particles by these suspension feeders. Aerosol filtration models of direct interception are not applicable to this type of ciliary suspension feeder because retention depends on the magnitude of a stimulus and response to it. The stimulus will not be the same function of diameter of the food particle, and response is unlikely below a threshold stimulus.  相似文献   

8.
A theory is derived to calculate the regional and total deposition of aerosol particles in the nasal passages during inhalation. The particle size studied range from 0.2 to 10.0 μm diameter. The deposition is calculated in five regions; (I) the region filled with nasal hair, (II) the nasal valve, (III) the expansion region, (IV) the turbinate region and (V) the posterior bend. Equations are derived to determine the deposition caused by direct impaction on the nasal hairs and bends of the passages. The calculations show the deposition due to direct impaction does not account for the amount or location of deposited particles measured in experiments. Secondary flows have been speculated to exist in the expansion region after the nasal valve and an equation is derived to estimate the deposition caused by the secondary flows. The calculated deposition, due to direct impaction and secondary flows, shows general agreement with the experiment as to the predicted amount and location of deposited particles.  相似文献   

9.
To study impaction versus impingement for the collection and recovery of viable airborne microorganisms, three new bioaerosol samplers have been designed and built. They differ from each other by the medium onto which the bioaerosol particles are collected (glass, agar, and liquid) but have the same inlet and collection geometries and the same sampling flow rate. The bioaerosol concentrations recorded by three different collection techniques have been compared with each other: impaction onto a glass slide, impaction onto an agar medium, and impingement into a liquid. It was found that the particle collection efficiency of agar slide impaction depends on the concentration of agar in the collection medium and on the sampling time, when samples are collected on a nonmoving agar slide. Impingement into a liquid showed anomalous behavior with respect to the sampling flow rate. Optimal sampling conditions in which all three new samplers exhibit the same overall sampling efficiency for nonbiological particles have been established. Inlet and collection efficiencies of about 100% have been achieved for all three devices at a sampling flow rate of 10 liters/min. The new agar slide impactor and the new impinger were then used to study the biological factors affecting the overall sampling efficiency. Laboratory experiments on the total recovery of a typical environmental microorganism, Pseudomonas fluorescens ATCC 13525, showed that both sampling methods, impaction and impingement, provided essentially the same total recovery when relatively nonstressed microorganisms were sampled under optimal sampling conditions. Comparison tests of the newly developed bioaerosol samplers with those commercially available showed that the incorporation of our research findings into the design of the new samplers yields better performance data than data from currently available samplers.  相似文献   

10.
T.M. MADELIN AND H.E. JOHNSON. 1992. An aerodynamic particle sizer (APS) that uses laser Doppler velocimetry was used to determine aerodynamic diameters of spores of fungal and thermophilic actinomycete species common in mouldy hay, acrosolized at different humidities and temperatures. Results were compared with those obtained from inertial impaction in a cascade impactor. The APS gave slightly smaller measurements than the cascade impactor. Both methods gave aerodynamic diameters generally slightly smaller than the average spore dimensions observed on cascade impactor slides with a microscope. The latter measurements were less than axial dimensions given in the literature. Brief passage of spores through air at 95% relative humidity (RH) and 38°C, compared with 40% RH and 20°C, caused an immediate increase in their aerodynamic diameter and the breaking of chains of spores. Cultures maintained at 75% RH and aerosolized at 98% RH similarly produced larger spore particles than those passed through dry air. These findings have implications for mould-induced asthma and allergic alveolitis since they relate to physical behaviour of airborne spores and particle deposition sites in the lung.  相似文献   

11.
An aerodynamic particle sizer (APS) that uses laser Doppler velocimetry was used to determine aerodynamic diameters of spores of fungal and thermophilic actinomycete species common in mouldy hay, aerosolized at different humidities and temperatures. Results were compared with those obtained from inertial impaction in a cascade impactor. The APS gave slightly smaller measurements than the cascade impactor. Both methods gave aerodynamic diameters generally slightly smaller than the average spore dimensions observed on cascade impactor slides with a microscope. The latter measurements were less than axial dimensions given in the literature. Brief passage of spores through air at 95% relative humidity (RH) and 38 degrees C, compared with 40% RH and 20 degrees C, caused an immediate increase in their aerodynamic diameter and the breaking of chains of spores. Cultures maintained at 75% RH and aerosolized at 98% RH similarly produced larger spore particles than those passed through dry air. These findings have implications for mould-induced asthma and allergic alveolitis since they relate to physical behaviour of airborne spores and particle deposition sites in the lung.  相似文献   

12.
Microfluidic encapsulation methods have been previously utilized to capture cells in picoliter-scale aqueous, monodisperse drops, providing confinement from a bulk fluid environment with applications in high throughput screening, cytometry, and mass spectrometry. We describe a method to not only encapsulate single cells, but to repeatedly capture a set number of cells (here we demonstrate one- and two-cell encapsulation) to study both isolation and the interactions between cells in groups of controlled sizes. By combining drop generation techniques with cell and particle ordering, we demonstrate controlled encapsulation of cell-sized particles for efficient, continuous encapsulation. Using an aqueous particle suspension and immiscible fluorocarbon oil, we generate aqueous drops in oil with a flow focusing nozzle. The aqueous flow rate is sufficiently high to create ordering of particles which reach the nozzle at integer multiple frequencies of the drop generation frequency, encapsulating a controlled number of cells in each drop. For representative results, 9.9 μm polystyrene particles are used as cell surrogates. This study shows a single-particle encapsulation efficiency P(k=1) of 83.7% and a double-particle encapsulation efficiency P(k=2) of 79.5% as compared to their respective Poisson efficiencies of 39.3% and 33.3%, respectively. The effect of consistent cell and particle concentration is demonstrated to be of major importance for efficient encapsulation, and dripping to jetting transitions are also addressed. INTRODUCTION: Continuous media aqueous cell suspensions share a common fluid environment which allows cells to interact in parallel and also homogenizes the effects of specific cells in measurements from the media. High-throughput encapsulation of cells into picoliter-scale drops confines the samples to protect drops from cross-contamination, enable a measure of cellular diversity within samples, prevent dilution of reagents and expressed biomarkers, and amplify signals from bioreactor products. Drops also provide the ability to re-merge drops into larger aqueous samples or with other drops for intercellular signaling studies. The reduction in dilution implies stronger detection signals for higher accuracy measurements as well as the ability to reduce potentially costly sample and reagent volumes. Encapsulation of cells in drops has been utilized to improve detection of protein expression, antibodies, enzymes, and metabolic activity for high throughput screening, and could be used to improve high throughput cytometry. Additional studies present applications in bio-electrospraying of cell containing drops for mass spectrometry and targeted surface cell coatings. Some applications, however, have been limited by the lack of ability to control the number of cells encapsulated in drops. Here we present a method of ordered encapsulation which increases the demonstrated encapsulation efficiencies for one and two cells and may be extrapolated for encapsulation of a larger number of cells. To achieve monodisperse drop generation, microfluidic "flow focusing" enables the creation of controllable-size drops of one fluid (an aqueous cell mixture) within another (a continuous oil phase) by using a nozzle at which the streams converge. For a given nozzle geometry, the drop generation frequency f and drop size can be altered by adjusting oil and aqueous flow rates Q(oil) and Q(aq). As the flow rates increase, the flows may transition from drop generation to unstable jetting of aqueous fluid from the nozzle. When the aqueous solution contains suspended particles, particles become encapsulated and isolated from one another at the nozzle. For drop generation using a randomly distributed aqueous cell suspension, the average fraction of drops D(k) containing k cells is dictated by Poisson statistics, where D(k) = λ(k) exp(-λ)/(k!) and λ is the average number of cells per drop. The fraction of cells which end up in the "correctly" encapsulated drops is calculated using P(k) = (k x D(k))/Σ(k' x D(k)'). The subtle difference between the two metrics is that D(k) relates to the utilization of aqueous fluid and the amount of drop sorting that must be completed following encapsulation, and P(k) relates to the utilization of the cell sample. As an example, one could use a dilute cell suspension (low λ) to encapsulate drops where most drops containing cells would contain just one cell. While the efficiency metric P(k) would be high, the majority of drops would be empty (low D(k)), thus requiring a sorting mechanism to remove empty drops, also reducing throughput. Combining drop generation with inertial ordering provides the ability to encapsulate drops with more predictable numbers of cells per drop and higher throughputs than random encapsulation. Inertial focusing was first discovered by Segre and Silberberg and refers to the tendency of finite-sized particles to migrate to lateral equilibrium positions in channel flow. Inertial ordering refers to the tendency of the particles and cells to passively organize into equally spaced, staggered, constant velocity trains. Both focusing and ordering require sufficiently high flow rates (high Reynolds number) and particle sizes (high Particle Reynolds number). Here, the Reynolds number Re =uD(h)/ν and particle Reynolds number Rep =Re(a/D(h))2, where u is a characteristic flow velocity, D(h) [=2wh/(w+h)] is the hydraulic diameter, ν is the kinematic viscosity, a is the particle diameter, w is the channel width, and h is the channel height. Empirically, the length required to achieve fully ordered trains decreases as Re and Re(p) increase. Note that the high Re and Re(p) requirements (for this study on the order of 5 and 0.5, respectively) may conflict with the need to keep aqueous flow rates low to avoid jetting at the drop generation nozzle. Additionally, high flow rates lead to higher shear stresses on cells, which are not addressed in this protocol. The previous ordered encapsulation study demonstrated that over 90% of singly encapsulated HL60 cells under similar flow conditions to those in this study maintained cell membrane integrity. However, the effect of the magnitude and time scales of shear stresses will need to be carefully considered when extrapolating to different cell types and flow parameters. The overlapping of the cell ordering, drop generation, and cell viability aqueous flow rate constraints provides an ideal operational regime for controlled encapsulation of single and multiple cells. Because very few studies address inter-particle train spacing, determining the spacing is most easily done empirically and will depend on channel geometry, flow rate, particle size, and particle concentration. Nonetheless, the equal lateral spacing between trains implies that cells arrive at predictable, consistent time intervals. When drop generation occurs at the same rate at which ordered cells arrive at the nozzle, the cells become encapsulated within the drop in a controlled manner. This technique has been utilized to encapsulate single cells with throughputs on the order of 15 kHz, a significant improvement over previous studies reporting encapsulation rates on the order of 60-160 Hz. In the controlled encapsulation work, over 80% of drops contained one and only one cell, a significant efficiency improvement over Poisson (random) statistics, which predicts less than 40% efficiency on average. In previous controlled encapsulation work, the average number of particles per drop λ was tuned to provide single-cell encapsulation. We hypothesize that through tuning of flow rates, we can efficiently encapsulate any number of cells per drop when λ is equal or close to the number of desired cells per drop. While single-cell encapsulation is valuable in determining individual cell responses from stimuli, multiple-cell encapsulation provides information relating to the interaction of controlled numbers and types of cells. Here we present a protocol, representative results using polystyrene microspheres, and discussion for controlled encapsulation of multiple cells using a passive inertial ordering channel and drop generation nozzle.  相似文献   

13.
The capture of Bacillus subtilis var. niger spores on an antibody-coated surface can be enhanced when that coated surface acts as an acoustic reflector in a quarter wavelength ultrasonic (3 MHz) standing wave resonator. Immunocapture in such a resonator has been characterised here for both spores and 1 microm diameter biotinylated fluorescent microparticles. A mean spatial acoustic pressure amplitude of 460 kPa and a frequency of 2.82 MHz gave high capture efficiencies. It was shown that capture was critically dependent on reflector thickness. The time dependence of particle deposition on a reflector in a batch system was broadly consistent with a calculated time of 35 s to bring 95% of particles to the coated surface. A suspension flow rate of 0.1 ml/min and a reflector thickness of 1.01 mm gave optimal capture in a 2 min assay. The enhancement of particle detection compared with the control (no ultrasound) situation was x 70. The system detects a total of five particles in 15 fields of view in a 2 min assay when the suspending phase concentration was 10(4) particles/ml. A general expression for the dependence of minimum concentration detectable on; number of fields examined, sample volume flowing through the chamber and assay time shows that, for a practical combination of these variables, the threshold detection concentration can be two orders of magnitude lower.  相似文献   

14.
A model describing the ciliary driven flow and motion of suspended particles in downstream suspension feeders is developed. The quasi-steady Stokes equations for creeping flow are solved numerically in an unbounded fluid domain around cylindrical bodies using a boundary integral formulation. The time-dependent flow is approximated with a continuous sequence of steady state creeping flow fields, where metachronously beating ciliary bands are modelled by linear combinations of singularity solutions to the Stokes equations. Generally, the computed flow fields can be divided into an unsteady region close to the driving ciliary bands and a steady region covering the remaining fluid domain. The size of the unsteady region appears to be comparable to the metachronal wavelength of the ciliary band. A systematic investigation is performed of trajectories of infinitely small (fluid) particles in the simulated unsteady ciliary driven flow. A fraction of particles appear to follow trajectories, that resemble experimentally observed particle capture events in the downstream feeding system of the polycheate Sabella penicillus, indicating that particles can be captured by ciliary systems without mechanical contact between particle and cilia. A local capture efficiency is defined and its value computed for various values of beat frequencies and other parameters. The results indicate that the simulated particle capture process is most effective when the flow field oscillates within timescales comparable to transit timescales of suspended particles passing the unsteady region near the ciliary bands. However, the computed retention efficiencies are found to be much lower than those obtained experimentally.  相似文献   

15.
Polystyrene particles (size range 300nm-3μm diameter) were radioiodinated and their capture by rat peritoneal macrophages measured in vitro. For unmodified particles, most efficient accumulation was observed using a diameter of 600nm (Endocytic Index (E.I.) = 16.4 ± 2.9μl/106cells/h). Particles (3μm diameter) which had been modified to become more hydrophilic by hydroxymethylation showed an increased rate of capture (E.I. = 136.6 ± 91.2μl/106cells/h). Following intraperitoneal administration to rats, unmodified 3μm particles showed selective accumulation in the omentum (18.4% injected dose/g), and this was increased for the hydroxymethylated bead (35.3% dose/g). The smaller (800 nm) particles were better able to leave the peritoneal compartment. Radiolabelled particles isolated from a peritoneal wash after 5h were mostly cell-associated (72–86%, depending on the type of particle).  相似文献   

16.
The life cycle of almost all dung beetles revolve around mammalian dung, the feed on dung, look for mating partners on dung and lay eggs in the dung. We know they feed on dung, but we still do not understand how exactly they filter‐feed on the dung and which particles size range they are ingesting. The aim on this study was to investigate the filter feeding by particle selection by adult dung beetles using Scarabaeus goryi and how that improves the nutrient quality of the ingested particles. We compared the particle sizes and nutrient content of the dung with the ingested material in the foregut, hindgut and the faeces of the dung beetle. Adult dung beetles do select smaller dung particles when feeding, we found the maximum particle size for the ingested particle to be around 1400 μm. The average particle size increased through the gut length. Dung beetles also selected particles with higher nitrogen content when feeding, the nitrogen content increased from about 1.5% in the dung to just over 5% in the foregut which then decreased to the level of the unprocessed dung in the dung beetle faeces. Carbon content did not increase from the unprocessed dung to the foregut but decreased through the gut length. Feeding by particle size selection by dung beetles helps in selecting particles with higher nitrogen content to compensate for the low levels found in dung.  相似文献   

17.
Measured deposition rates of Erysiphe graminis conidia are often greater than those calculated from spore fall speed, vs, and mean wind speed. The predictions of two gradient transfer models of spore dispersal in crops, in which sedimentation and inertial impaction were calculated from vs and local wind speed or estimated from measured values (Mc Cartney and Bainbridge 1987), were compared. Comparisons of the models suggest that deposition rates close to the source may be underestimated by a factor of two and deposition half distances may be doubled when deposition is calculated conventionally. The results illustrate the importance of accurately describing deposition processes when constructing spore dispersal models.  相似文献   

18.
BackgroundImpaction bone grafting with large particles is considered as mechanically superior to smaller morsels. Interest of freeze-dried irradiated bone for impaction bone grafting has been observed with small particles. Influence of bone process on other particle sizes still needed to be assessed.Material and methodsTwenty-four osteoarthrotic femoral heads were used to prepare fresh-frozen and freeze-dried irradiated cancellous bone. Each group was divided into four batches of different particle sizes, each batch containing 18 samples. The different particle sizes were obtained with a Retsch Cross Beater Mill SK 100, Noviomagus rotating bone mills with two sizes of rasps and a Luer bone rongeur. Bone grafts were impacted in a contained cylinder. Stiffness was monitored during impaction.ResultsFreeze-dried irradiated grafts showed higher stiffness than fresh-frozen bone whatever the size of the particles. Large particles obtained with the rongeur and the large rasp from the Noviomagus bone mill were mechanically superior than small particles up to 30 impactions.InterpretationLarge particles offer better mechanical performance as a greater magnitude of force would be required to deform and break the particles. Freeze-dried irradiated bone brittleness reduces this advantage after 30 impactions. Large particles embrittlement leads to similar mechanical results as small particles at higher impaction rate. This may account for partial collapse of the graft layer in clinical situation when impaction rate is lower. This model supports the use of small particles obtained with thin rasp bone mill when freeze-dried irradiated bone for impaction bone grafting and large particles obtained with the Rongeur when fresh-frozen bone is available.  相似文献   

19.
The preseparator of an Andersen impactor with different coating treatments for a range of particle-size distributions was evaluated. Limited theoretical simulations constrained by simplifying assumptions of the airflow fields in the preseparator and upper stages of an 8-stage Andersen impactor were used to reveal low-velocity and high-pressure regions for potential deposition. These regions were then sampled in subsequent particle deposition experiments. Disodium fluorescein aerosols were sampled with different coating treatments of the preseparator floor. Particles collected at impactor stages determined particle size distributions. Stage deposition was compared between different preseparator treatments (buffer and silicon oil). Collection efficiency in the preseparator followed the pattern buffer >silicon oil >untreated. Statistical differences (P>0.05) were noted in collection efficiency of large particles (45 μm-75 μm) in the preseparator. The mass median aerodynamic diameters and geometric standard deviations showed some statistical differences when different preseparator treatments for large particles were used; therefore, preseparator coating was shown to influence performance and thereby estimates of particle size by intertial impaction.  相似文献   

20.
The bolus delivery method is designed to deliver a dose to the desired location in the lung, and it has the advantage of fewer side effects and a more efficient way of delivery. Based upon the lung deposition model developed for continuously inhaling aerosols of constant concentration, a mathematical model of aerosol bolus deposition is proposed. The calculated results show that the recovery depends on the bolus penetration depth, flow rate, particle size, breath holding time and bolus volume. Three sets of published experimental data with different controlling factors (particle size, flow rate and breath holding time) are adopted to make the quantitative comparisons with the calculated results. The predictions and data for the low intrinsic motion particles (~1 μm) have good agreement, as do the coarse particles in the shallow airways region. For females, the recovery was found to be consistently lower than that for males.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号