首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
H Y Meltzer  R So 《Life sciences》1979,25(6):531-535
The ability of morphine, leu-enkephalin and β-endorphin to antagonize the binding of 3H-spiroperidol to bovine anterior pituitary membranes was studied. All three drugs were virtually inactive despite their ability to stimulate prolactin secretion invivo and the reported ability of morphine to antagonize the inhibitory effect of dopamine on prolactin release from rat hemi-pituitaries. These results suggest that opiates do not produce their direct effect on prolactin secreation at the pituitary level through an effect on the 3H-spiroperidol binding site. The opiates may antagonize the effect of dopamine at a component of the dopamine receptor which is independent of the 3H-spiroperidol binding site, or the opiates may stimulate prolactin secretion by an effect on the lactotrophes which is independent of dopamine.  相似文献   

2.
In vivo binding of 3H-spiperone is saturable in the striatum, the limbic system and the frontal cortex but not in the cerebellum. A specific binding is different in all the brain regions thus the amount of labelling in the cerebellum may not be considered as a blank value.3H-spiperone binding revealed a specific subcellular distribution only when a very low dose was injected into rats.Ex vivo experiments allow the assessment of biochemical profiles of neuroleptic drugs according to their relative affinity for dopamine or serotonin receptors.  相似文献   

3.
Systematic administration of the enkephalin analog FK 33-824 was previously shown to stimulate PRL secretion and to inhibit ACTH secretion in man. Naloxone prevented the effect on PRL release, but not on ACTH release. In this study, the direct action of this analog on hormone release by rat anterior pituitary lobes invitro were investigated. 1 uM FK 33-824 inhibited basal ACTH secretion by anterior pituitary glands in vitro, while 0.1 uM and 1 uM attenuated the lysine vasopressin stimulated ACTH release. Naloxone did not reverse the inhibitory action of the analog on ACTH release. β-Endorphin (0.01 - 1 uM) did not directly affect ACTH release. Basal and dopamine-induced inhibition of PRL release by anterior pituitary glands was neither influenced by FK 33-824 (0.1 and 1 uM), nor by β-endorphin (0.1 and 1 uM) with or without bacitracin. This study shows that the long-acting met-enkephalin analog FK 33-824 differentially affects PRL and ACTH secretion by the pituitary gland. It seems to stimulate PRL release at a suprapituitary site and this action probably involves u opiate receptors, because naloxone prevents these stimulatory effects. The inhibitory effect of FK 33-824 on ACTH release, however, is mediated via a direct effect at the pituitary level, which does not involve u receptors, as naloxone did not prevent this effect. In this respect, its action differs from that of β-endorphin, which does not directly affect ACTH release by the anterior pituitary gland.  相似文献   

4.
Injection of [Asu1,7]-eel calcitonin (CT) (0.1–2.5μg) into the lateral ventricle resulted in a significant and dose-related increase of plasma prolactin (PRL) levels in urethane-anesthetized male rats. Naloxone failed to block [Asu1,7]-eel CT induced PRL release. Salmon CT, human CT and porcine CT were similarly effective to stimulate PRL release when injected intraventricularly. Intravenous administration of [Asu1,7]-eel CT(20 μg) failed to cause any significant changes in plasma PRL levels, while this peptide (10?8?10?6M) possesed a mild stimulating activity of PRL release from the anterior pituitary cells cultured in vitro. These results suggest that CT stimulates rat PRL secretion mainly through the central nervous system like one of the neurotransmitters, though it may also act directly on the pituitary.  相似文献   

5.
Studies of the ontogeny of dopamine and neuroleptic receptors in the central nervous system of the rat were carried out in vivo using 3H-spiperone as ligand. It was demonstrated that intraperitoneal injections can be successfully used to label these receptors in rat pups up to at least 30 days of age. The time course and characteristics of 3H-spiperone binding in the brain of 5, 15 and 30 day old rat pups were determined and found to include appropriate regional distribution, saturability and appropriate pharmacology. The developmental pattern of 3H-spiperone binding paralleled what has been seen using in vitro techniques. In addition preliminary autoradiographic studies describe the neuroanatomical pattern of dopamine receptor ontogeny in the striatum.  相似文献   

6.
Some opiates with morphinan- and benzomorphan-structures possess affinities for neuroleptic receptors as revealed by their abilities to compete with 3H-spiroperidol for common binding sites in rat striatum in vitro (IC50 in the range between 10?6 and 10?5M). The binding of these opiates to neuroleptic receptors appears to be of pharmacological significance, since in vivo studies in mice revealed a small but significant displacement of spiroperidol by high doses of the opiate antagonist levallorphan from specific binding sites in the striatum. In addition, there exists some correlation between the ability of opiates to bind to neuroleptic receptor sites in vitro and their potency to evoke “bizarre behavior” in rats in vivo. In contrast, a wide variety of other opiates having morphine-, morphinone- or oripavine-structure showed no affinity for neuroleptic binding sites in vitro (IC50 greater than 10?4 M). Of the opioid peptides (methionine-enkephalin, leucine-enkephalin and β-endorphin) none has an affinity for neuroleptic binding sites. A variety of other peptides were also investigated but did not interfere with spiroperidol binding. Only ACTH showed a moderate affinity for neuroleptic binding sites.  相似文献   

7.
Various dopamine antagonists, including two novel non-neuroleptic drugs domperidone and halopemide, stimulated apomorphine-suppressed prolactin secretion from cultured rat pituitary cells. The potency of these drugs closely paralleled their rank-order in displacing in vitro H3-haloperidol binding in rat striatum reported by others (10). Concentration-effect curves were parallel except those of pimozide and clopimozide which were biphasic : prolactin secretion was stimulated at low concentrations but depressed at concentrations above 25nM. When added alone, pimozide and clopimozide, but none of the other drugs tested, also depressed prolactin secretion. The present findings indicate that prolactin secretion from cultured pituitary cells may provide an in vitro test system suitable to differentiate antagonists of dopamine receptors and possibly to distinguish pure from partial antagonists.  相似文献   

8.
K.D. Fagin  J.D. Neill 《Life sciences》1982,30(13):1135-1141
The relationship between prolactin (PRL) secretion and the neurointermediate lobe (NIL) of the pituitary gland was investigated. Plasma PRL concentrations in rats bearing anterior pituitaries autografted with or without the NIL to the renal capsule were elevated to equal extents at 1 through 6 weeks after surgery (p > 0.10). PRL levels in ovariectomized rats in which the NIL had been removed surgically (NIL-X) or only visualized (NIL-C) were 3–7 ng/ml 4, 7, and 28 days after surgery (p > 0.10); however, they were slightly higher in NIL-X vs. NIL-C rats 14 days after surgery (p < 0.05). Plasma luteinizing hormone (LH) concentrations in NIL-C rats increased by 36% from 2 to 4 weeks after surgery (p < 0.05); this increase was not detected in NIL-X rats. PRL and LH surges were induced by estradiol implants in ovariectomized NIL-X and NIL-C rats; the profiles of the PRL surges were superimposable, although the magnitude of the LH surge was only 50% that in NIL-C rats (p < 0.05). These results cast doubt on the importance of the NIL in the regulation of PRL secretion either via secreting hypophysiotropic hormones or via conducting anterior pituitary hormones directly to the median eminence. However, the NIL may have a physiologically important role in the regulation of LH secretion.  相似文献   

9.
A number of sites have been hypothesized as loci at which opioid substances act to alter the secretion of luteinizing hormone (LH) and prolactin (PRL) (1–8). The aim of the present study was to determine the site(s) at which the opioid peptide β-endorphin (β-END) acts to influence plasma LH and PRL levels in the ovariectomized (OVX) rat. β-END, administered into the third ventricle of conscious OVX rats fitted with jugular catheters, significantly decreased plasma LH in doses ? 50 ng and increased PRL levels at all doses administered (10, 50, 100 and 250 ng) in a dose dependent fashion. To identify possible central nervous system sites of action, 250 ng β-END was unilaterally infused into various brain sites. Plasma LH was significantly decreased and plasma PRL significantly increased by infusions into the ventromedial hypothalamic area, the anterior hypothalamic area, and the preoptic-septal area. There was no significant effect of β-END infusions into the lateral hypothalamic area, amygdala, midbrain central gray, or caudate nucleus. When hemipituitaries of OVX rats were incubated invitro with β-END (10?7M to 10?5M), there was no suppression of basal or LHRH-induced LH release, nor was there any alteration of basal PRL release. It is concluded that β-END acts at a medial hypothalamic and/or preoptic-septal site and not the pituitary, to alter secretion of LH and PRL.  相似文献   

10.
Corticotropin releasing factor (CRF) was tested for its ability to stimulate ACTH and β-endorphin secretion from clonal AtT-20D16-16 mouse pituitary tumor cells. Release of both hormones was stimulated 4 to 5-fold over the basal release at nanomolar concentrations of synthetic CRF. CRF analogues stimulated ACTHβ-endorphin release with the same order of potency in the tumor cells as in primary cultures of anterior pituitary cells. A 90-min exposure to CRF elicited a 29–35% increase in total ACTH and β-endorphin immunoreactivity in tumor cell cultures. Dexamethasone markedly inhibited CRF-stimulated and basal ACTH and β-endorphin release. AtT-20D16-16 cells may serve as a good model system for studying the biochemistry of CRF receptor-mediated events involved in ACTHβ-endorphin release and synthesis.  相似文献   

11.
Dopamine (DA) antagonists promote the secretion of prolactin (PRL) from the anterior pituitary gland by blocking the effects of DA at receptors in the pituitary itself. Thus, comparison of the properties of these receptors with DA receptors in the striatal, meso-limbic and meso-cortical regions is of interest. Evidence is presented that clozapine, RMI-81, 582 (a morphanthridine derivative), trebenzomine (CI-686, a chromanamine derivative) and sultopride (a benzamide) have much weaker effects on human and rat PRL secretion than would be predicted by their anti-psychotic potency. The reverse is true of two other benzamides, sulpiride and metoclopramide. Classical neuroleptics of the phenothiazine, butyrophenone and thioxanthene types appear to affect rat and human PRL secretion in a manner which is mainly but not entirely consistent with their known effects on striatal and meso-limbic/meso-cortical postsynaptic DA receptors. Preliminary studies indicate presynaptic receptors which affect prolactin secretion are not present in rats. Supersensitivity may develop in the tubero-infundibular (TI) system after chronic neuroleptic treatment but altered sensitivity of these receptors was not found in schizophrenics given apomorphine.  相似文献   

12.
The in vivo binding of the radiobrominated neuroleptic brombenperidol in rat brain was studied. The accumulation of the radiolabeled neuroleptic was high in the striatum and relatively low in the cerebellum, cortex, and blood. Striatal binding of brombenperidol was saturable and displaced by subsequent administration of benperidol. The rationale for the development of 75Br-brombenperidol as a radiopharmaceutical for the non-invasive imaging of cerebral dopamine receptor areas is presented.  相似文献   

13.
The synthetic replicate of a 44 amino acid peptide isolated from a human pancreatic tumor which had caused acromegaly possesses high specific activity to release growth hormone (GH) in anesthetized male rats. The GH secretion induced by this peptide is dose-dependent from 50 ng to 1 μg, with plasma GH concentrations increasing more than 10-fold within 5 min of iv administration at the higher doses. Two enzymatic degradation products of the 44 residue peptide were also isolated and consist of the first 37 and 40 amino acids. All three peptides appear to possess similar potency, on a molar basis, invivo, contrary to invitro results. The specificity of these peptides on GH release was shown by their failure to alter plasma concentrations of prolactin (PRL), thyroid-stimulating hormone (TSH), luteinizing hormone (LH), follicle-stimulating hormone (FSH) and corticosterone. Based on these invivo results, the three peptides with serve as powerful tools with which to investigate the mechanisms of GH secretion.  相似文献   

14.
An agonist of chicken hypothalamic luteinizing hormone-releasing hormone (cLH-RH). [D-Trp6] cLH-RH, was synthesized and tested for luteinizing hormone (LH)-releasing activity using dispersed chicken anterior pituitary cells, as well as for binding to rat anterior pituitary membrane receptors. cLH-RH and mammalian LH-RH (mLH-RH) gave identical dose-response curves in stimulating chicken LH release (ED50=1.6 and 1.8×10?9M respectively) and similar estimates of potency. The [D-Trp6] analogs of cLH-RH and mLH-RH stimulated LH release at lower doses (ED50=7.0 and ~7.0×10?11M respectively) and were approximately 20-fold more potent. In contrast to the activity in the chicken bioassay, cLH-RH bound to rat anterior pituitary membrane receptors with a much lower affinity than did mLH-RH and had a relative potency of 2%. [D-Trp6] cLH-RH was approximately 100-fold more potent than cLH-RH in the rat receptor assay while [D-Trp6] mLH-RH was 28-fold more active than mLH-RH. These data demonstrate that substitution of Gly6 of LH-RH with D-Trp enhances the LH release from chicken pituitary cells to a similar extent to that observed in mammals, and indicate that the approaches used to produce active LH-RH analogs in mammals are likely to be applicable to birds.  相似文献   

15.
Continuously superfused rat anterior pituitary cells were used to study the effects of exogenous prostaglandins (PGs) and thromboxanes (TXz) on the secretion of prolactin (PRL). No change in hormone release was observed upon superfusion with TXB2 (10−5M) or the TX synthesis inhibitor, imidazole (1.5 mM). PGs A2, B2, d2, e1, e2, f1α, F2α, and endoperoxide analogs, U-44069 and U-46619, also had no effect on PRL secretion (all at 10−5M), In contrast 10−5M PGI2 was repeteadly found to stimulate PRL release to a level at least 125% above control, while producing no apparent change in the amount of hormone secreted in response to TRH. Somatostatin (SRIF), at a dose of 10M, maximally inhibited TRH-induces PRL output, but failed to alter the PRL response to PGI2. These studies indicate that PGI2 may have a direct effect on the anterior pituitary to modify PRL secretion.  相似文献   

16.
Buspirone produces a dose-dependent but short-lived elevation in striatal dopamine (DA) metabolites in the rat. Invitro, buspirone possesses an affinity similar to sulpiride for DA receptors (3H-spiperone). A moderate affinity for α1 receptors was also observed while buspirone was inactive at α2, β, muscarinic and serotonin2 receptors. This pharmacological profile as well as previous behavioral data indicate that buspirone may be a potential “atypical” neuroleptic.  相似文献   

17.
Met5-enkephalin amide, D-Ala2-Met5-enkephalin amide, D-Ala2-Leu5-enkephalin amide, morphine sulfate and naloxone hydrochloride were examined for their effects on growth hormone and prolactin release invivo and invitro. Subcutaneous injection of D-Ala2-Met5 enkephalin amidea, D-Ala2-Leu5 enkephalin amideb and morphine sulfate, but not Met5-enkephalin and amidec, resulted in significant elevations in the serum growth hormone and prolactin of immature female rats. Naloxone blocked the hormone-stimulatory effect of the opioid receptor agonists and when administered alone significantly reduced serum growth hormone and prolactin concentrations. None of the drugs demonstrated a direct action on anterior pituitary tissue growth hormone or prolactin release invitro.  相似文献   

18.
The synthesis by solid-phase methodology of two glycosylated analogs of somatostatin [Glc-Asn5]-SS and [NAcGlc-Asn5]-SS is described. These two analogs have been biologically tested on the secretion of pituitary growth hormone, pancreatic glucagon and insulin. The results show that glycosylation of somatostatin on the Asn5 residue decreases by a hundred fold the inhibition activity on GH release when tested invitro. Invivo, since the activity is similar to somatostatin the carbohydrates are probably removed by some enzymatic reaction and thus liberate the full activity of somatostatin.  相似文献   

19.
A series of peptide analogs of luteinizing hormone releasing hormone (LH-RH), altered at position 6 and 10, was synthesized and evaluated in vivo for the ability to induce ovulation in the diestrous rat and in vitro for ability to release pituitary luteinizing hormone and follicle stimulating hormone. All the analogs with D-amino acid substitutions at position 6, even those with large bulky side chain, exhibited an amazingly high potency compared with the parent hormone, LH-RH. On the basis of the biological activities, structure-activity relationships in the central part of this molecule were discussed in detail.  相似文献   

20.
The binding of the gamma labeled neuroleptic, 77Br-p-bromosprioperidol, in the rat brain was examined in vivo. This binding parallels the binding of 3H-spiroperidol, in that binding is especially high in dopaminergically innervated areas, is saturable, and is displaced by high doses of unlabeled spiroperidol (1–5). Thus, 77Br-p-bromospiroperidol is a suitable ligand for use in gamma ray imaging techniques for in vivo monitoring of receptor binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号