首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Comparing and computing distances between phylogenetic trees are important biological problems, especially for models where edge lengths play an important role. The geodesic distance measure between two phylogenetic trees with edge lengths is the length of the shortest path between them in the continuous tree space introduced by Billera, Holmes, and Vogtmann. This tree space provides a powerful tool for studying and comparing phylogenetic trees, both in exhibiting a natural distance measure and in providing a euclidean-like structure for solving optimization problems on trees. An important open problem is to find a polynomial time algorithm for finding geodesics in tree space. This paper gives such an algorithm, which starts with a simple initial path and moves through a series of successively shorter paths until the geodesic is attained.  相似文献   

3.
The input to a supertree problem is a collection of phylogenetic trees that intersect pairwise in their leaf sets; the goal is to construct a single tree that retains as much as possible of the information in the input. This task is complicated by inconsistencies due to errors. We consider the case where the input trees are rooted and are represented by the clusters they exhibit. The problem is to find the minimum number of flips needed to resolve all inconsistencies, where each flip moves a taxon into or out of a cluster. We prove that the minimum-flip problem is NP-complete, but show that it is fixed-parameter tractable and give approximation algorithms for special cases.  相似文献   

4.
Phylogenetic dating with confidence intervals using mean path lengths   总被引:4,自引:0,他引:4  
The mean path length (MPL) method, a simple method for dating nodes in a phylogenetic tree, is presented. For small trees the age estimates and corresponding confidence intervals, calibrated with fossil data, can be calculated by hand, and for larger trees a computer program gives the results instantaneously (a Pascal program is available upon request). Necessary input data are a rooted phylogenetic tree with edge lengths (internode lengths) approximately corresponding to the number of substitutions between the nodes. Given this, the MPL method produces relative age estimates with confidence intervals for all nodes of the tree. With the age of one or several nodes of the tree being known from reference fossils, the relative age estimates induce absolute age estimates and confidence intervals of the nodes of the tree. The MPL method relies on the assumptions that substitutions occur randomly and independently in different sites in the DNA sequence and that the substitution rates are approximately constant in time, i.e., assuming a molecular clock. A method is presented for identification of the nodes in the tree at which significant deviations from the clock assumption occur, such that dating may be done using different rates in different parts of the tree. The MPL method is illustrated with the Liliales, a group of monocot flowering plants.  相似文献   

5.
In this paper, we investigate a conjecture by Arndt von Haeseler concerning the Maximum Parsimony method for phylogenetic estimation, which was published by the Newton Institute in Cambridge on a list of open phylogenetic problems in 2007. This conjecture deals with the question whether Maximum Parsimony trees are hereditary. The conjecture suggests that a Maximum Parsimony tree for a particular (DNA) alignment necessarily has subtrees of all possible sizes which are most parsimonious for the corresponding subalignments. We answer the conjecture affirmatively for binary alignments on 5 taxa but also show how to construct examples for which Maximum Parsimony trees are not hereditary. Apart from showing that a most parsimonious tree cannot generally be reduced to a most parsimonious tree on fewer taxa, we also show that compatible most parsimonious quartets do not have to provide a most parsimonious supertree. Last, we show that our results can be generalized to Maximum Likelihood for certain nucleotide substitution models.  相似文献   

6.
The maximum-likelihood (ML) solution to a simple phylogenetic estimation problem is obtained analytically The problem is estimation of the rooted tree for three species using binary characters with a symmetrical rate of substitution under the molecular clock. ML estimates of branch lengths and log-likelihood scores are obtained analytically for each of the three rooted binary trees. Estimation of the tree topology is equivalent to partitioning the sample space (space of possible data outcomes) into subspaces, within each of which one of the three binary trees is the ML tree. Distance-based least squares and parsimony-like methods produce essentially the same estimate of the tree topology, although differences exist among methods even under this simple model. This seems to be the simplest case, but has many of the conceptual and statistical complexities involved in phylogeny estimation. The solution to this real phylogeny estimation problem will be useful for studying the problem of significance evaluation.  相似文献   

7.
The neighbor-joining method: a new method for reconstructing phylogenetic trees   总被引:673,自引:29,他引:673  
A new method called the neighbor-joining method is proposed for reconstructing phylogenetic trees from evolutionary distance data. The principle of this method is to find pairs of operational taxonomic units (OTUs [= neighbors]) that minimize the total branch length at each stage of clustering of OTUs starting with a starlike tree. The branch lengths as well as the topology of a parsimonious tree can quickly be obtained by using this method. Using computer simulation, we studied the efficiency of this method in obtaining the correct unrooted tree in comparison with that of five other tree-making methods: the unweighted pair group method of analysis, Farris's method, Sattath and Tversky's method, Li's method, and Tateno et al.'s modified Farris method. The new, neighbor-joining method and Sattath and Tversky's method are shown to be generally better than the other methods.   相似文献   

8.
Abstract— Inspection of trees of varying lengths (by the option ALL TREES, which produces a histogram for tree lengths in PAUP 3.0) has been used to evaluate cladistic data and results. For example, a result may be judged more effective if the groups supported in the most parsimonious tree are preserved in trees that require increasingly greater amounts of homoplasy. Evaluation of grouping purely on the basis of this stability criterion ignores other highly relevant aspects of cladistic results. In particular, some data sets may incorporate additional taxa that introduce homoplasy to the shortest tree in a manner that concurrently allows for a revised understanding of character optimization patterns. These taxa may render groups preserved in the shortest tree less stable, but this result is not necessarily deficient if the homoplasy underlying such instability reveals possible character state changes for the given taxa irretrievable from the original matrix. The hypothetical example described here is relevant to so called "stem", "basal" or "plesiomorphic sister" taxa that are commonly considered in studies of both fossil and extant taxa.  相似文献   

9.
We present fast new algorithms for evaluating trees with respectto least squares and minimum evolution (ME), the most commonlyused criteria for inferring phylogenetic trees from distancedata. The new algorithms include an optimal O(N2) time algorithmfor calculating the edge (branch or internode) lengths on atree according to ordinary or unweighted least squares (OLS);an O(N3) time algorithm for edge lengths under weighted leastsquares (WLS) including the Fitch-Margoliash method; and anoptimal O(N4) time algorithm for generalized least-squares (GLS)edge lengths (where N is the number of taxa in the tree). TheME criterion is based on the sum of edge lengths. Consequently,the edge lengths algorithms presented here lead directly toO(N2), O(N3), and O(N4) time algorithms for ME under OLS, WLS,and GLS, respectively. All of these algorithms are as fast asor faster than any of those previously published, and the algorithmsfor OLS and GLS are the fastest possible (with respect to orderof computational complexity). A major advantage of our new methodsis that they are as well adapted to multifurcating trees asthey are to binary trees. An optimal algorithm for determiningpath lengths from a tree with given edge lengths is also developed.This leads to an optimal O(N2) algorithm for OLS sums of squaresevaluation and corresponding O(N3) and O(N4) time algorithmsfor WLS and GLS sums of squares, respectively. The GLS algorithmis time-optimal if the covariance matrix is already inverted.The speed of each algorithm is assessed analytically—thespeed increases we calculate are confirmed by the dramatic speedincreases resulting from their implementation in PAUP* 4.0.The new algorithms enable far more extensive tree searches andstatistical evaluations (e.g., bootstrap, parametric bootstrap,or jackknife) in the same amount of time. Hopefully, the fastalgorithms for WLS and GLS will encourage the use of these criteriafor evaluating trees and their edge lengths (e.g., for approximatedivergence time estimates), since they should be more statisticallyefficient than OLS.  相似文献   

10.
The general problem of representing collections of trees as a single graph has led to many tree summary techniques. Many consensus approaches take sets of trees (either inferred as separate gene trees or gleaned from the posterior of a Bayesian analysis) and produce a single “best” tree. In scenarios where horizontal gene transfer or hybridization are suspected, networks may be preferred, which allow for nodes to have two parents, representing the fusion of lineages. One such construct is the cluster union network (CUN), which is constructed using the union of all clusters in the input trees. The CUN has a number of mathematically desirable properties, but can also present edges not observed in the input trees. In this paper we define a new network construction, the edge union network (EUN), which displays edges if and only if they are contained in the input trees. We also demonstrate that this object can be constructed with polynomial time complexity given arbitrary phylogenetic input trees, and so can be used in conjunction with network analysis techniques for further phylogenetic hypothesis testing.  相似文献   

11.
A central task in the study of molecular evolution is the reconstruction of a phylogenetic tree from sequences of current-day taxa. The most established approach to tree reconstruction is maximum likelihood (ML) analysis. Unfortunately, searching for the maximum likelihood phylogenetic tree is computationally prohibitive for large data sets. In this paper, we describe a new algorithm that uses Structural Expectation Maximization (EM) for learning maximum likelihood phylogenetic trees. This algorithm is similar to the standard EM method for edge-length estimation, except that during iterations of the Structural EM algorithm the topology is improved as well as the edge length. Our algorithm performs iterations of two steps. In the E-step, we use the current tree topology and edge lengths to compute expected sufficient statistics, which summarize the data. In the M-Step, we search for a topology that maximizes the likelihood with respect to these expected sufficient statistics. We show that searching for better topologies inside the M-step can be done efficiently, as opposed to standard methods for topology search. We prove that each iteration of this procedure increases the likelihood of the topology, and thus the procedure must converge. This convergence point, however, can be a suboptimal one. To escape from such "local optima," we further enhance our basic EM procedure by incorporating moves in the flavor of simulated annealing. We evaluate these new algorithms on both synthetic and real sequence data and show that for protein sequences even our basic algorithm finds more plausible trees than existing methods for searching maximum likelihood phylogenies. Furthermore, our algorithms are dramatically faster than such methods, enabling, for the first time, phylogenetic analysis of large protein data sets in the maximum likelihood framework.  相似文献   

12.
Gene family evolution is determined by microevolutionary processes (e.g., point mutations) and macroevolutionary processes (e.g., gene duplication and loss), yet macroevolutionary considerations are rarely incorporated into gene phylogeny reconstruction methods. We present a dynamic program to find the most parsimonious gene family tree with respect to a macroevolutionary optimization criterion, the weighted sum of the number of gene duplications and losses. The existence of a polynomial delay algorithm for duplication/loss phylogeny reconstruction stands in contrast to most formulations of phylogeny reconstruction, which are NP-complete. We next extend this result to obtain a two-phase method for gene tree reconstruction that takes both micro- and macroevolution into account. In the first phase, a gene tree is constructed from sequence data, using any of the previously known algorithms for gene phylogeny construction. In the second phase, the tree is refined by rearranging regions of the tree that do not have strong support in the sequence data to minimize the duplication/lost cost. Components of the tree with strong support are left intact. This hybrid approach incorporates both micro- and macroevolutionary considerations, yet its computational requirements are modest in practice because the two-phase approach constrains the search space. Our hybrid algorithm can also be used to resolve nonbinary nodes in a multifurcating gene tree. We have implemented these algorithms in a software tool, NOTUNG 2.0, that can be used as a unified framework for gene tree reconstruction or as an exploratory analysis tool that can be applied post hoc to any rooted tree with bootstrap values. The NOTUNG 2.0 graphical user interface can be used to visualize alternate duplication/loss histories, root trees according to duplication and loss parsimony, manipulate and annotate gene trees, and estimate gene duplication times. It also offers a command line option that enables high-throughput analysis of a large number of trees.  相似文献   

13.
L. Excoffier  P. E. Smouse 《Genetics》1994,136(1):343-359
We formalize the use of allele frequency and geographic information for the construction of gene trees at the intraspecific level and extend the concept of evolutionary parsimony to molecular variance parsimony. The central principle is to consider a particular gene tree as a variable to be optimized in the estimation of a given population statistic. We propose three population statistics that are related to variance components and that are explicit functions of phylogenetic information. The methodology is applied in the context of minimum spanning trees (MSTs) and human mitochondrial DNA restriction data, but could be extended to accommodate other tree-making procedures, as well as other data types. We pursue optimal trees by heuristic optimization over a search space of more than 1.29 billion MSTs. This very large number of equally parsimonious trees underlines the lack of resolution of conventional parsimony procedures. This lack of resolution is highlighted by the observation that equally parsimonious trees yield very different estimates of population genetic diversity and genetic structure, as shown by null distributions of the population statistics, obtained by evaluation of 10,000 random MSTs. We propose a non-parametric test for the similarity between any two trees, based on the distribution of a weighted coevolutionary correlation. The ability to test for tree relatedness leads to the definition of a class of solutions instead of a single solution. Members of the class share virtually all of the critical internal structure of the tree but differ in the placement of singleton branch tips.  相似文献   

14.
Reconstruction of phylogenetic trees is a fundamental problem in computational biology. While excellent heuristic methods are available for many variants of this problem, new advances in phylogeny inference will be required if we are to be able to continue to make effective use of the rapidly growing stores of variation data now being gathered. In this paper, we present two integer linear programming (ILP) formulations to find the most parsimonious phylogenetic tree from a set of binary variation data. One method uses a flow-based formulation that can produce exponential numbers of variables and constraints in the worst case. The method has, however, proven extremely efficient in practice on datasets that are well beyond the reach of the available provably efficient methods, solving several large mtDNA and Y-chromosome instances within a few seconds and giving provably optimal results in times competitive with fast heuristics than cannot guarantee optimality. An alternative formulation establishes that the problem can be solved with a polynomial-sized ILP. We further present a web server developed based on the exponential-sized ILP that performs fast maximum parsimony inferences and serves as a front end to a database of precomputed phylogenies spanning the human genome.  相似文献   

15.
The groupings of taxa in a phylogenetic tree cannot represent all the conflicting signals that usually occur among site patterns in aligned homologous genetic sequences. Hence a tree-building program must compromise by reporting a subset of the patterns, using some discriminatory criterion. Thus, in the worst case, out of possibly a large number of equally good trees, only an arbitrarily chosen tree might be reported by the tree-building program as "The Tree." This tree might then be used as a basis for phylogenetic conclusions. One strategy to represent conflicting patterns in the data is to construct a network. The Buneman graph is a theoretically very attractive example of such a network. In particular, a characterization for when this network will be a tree is known. Also the Buneman graph contains each of the most parsimonious trees indicated by the data. In this paper we describe a new method for constructing the Buneman graph that can be used for a generalization of Hadamard conjugation to networks. This new method differs from previous methods by allowing us to focus on local regions of the graph without having to first construct the full graph. The construction is illustrated by an example.  相似文献   

16.
菝葜科基于形态学证据的系统发育分析   总被引:1,自引:0,他引:1  
对全世界范围分布的菝葜科Smilacaceae的79个代表种(包括了全部的属和组), 以分布于南美洲的Philesia Comm. ex Juss.和Lapageria Ruiz &; Pav.属为外类群, 选取包括花粉和染色体性状在内的47个广义的形态学性状进行了分支分类系统发育分析, 同时以表征分类的方法构建了距离树(NJ)辅助分析, 首次对世界分布的菝葜科各属间及属内的系统发育关系作了探讨。(1)Ripogonum与菝葜属Smilax +肖菝葜属Heterosmilax互为姐妹群, 但是距离较远, 支持将类菝葜属(新拟中文名)Ripogonum独立为科的观点; (2)肖菝葜属在菝葜科内处于较为进化的分支上, 并与菝葜属土茯苓组sect. Coilanthus的部分种组成一个具较高支持率(88%)的单系分支, 分析表明肖菝葜属并非是一个好属, 应归入菝葜属; (3)菝葜属6个组的划分大都没有得到支持, 只有东亚北美间断分布的草本菝葜组sect. Nemexia的单系得到很好的支持(93%); (4)分布于南美洲巴西的种类聚为一个单系类群, 表明它们可能有共同的起源, 但由于取样局限, 南美洲种类的系统地位有待进一步研究。  相似文献   

17.
Cheon S  Liang F 《Bio Systems》2008,91(1):94-107
Monte Carlo methods have received much attention recently in the literature of phylogenetic tree construction. However, they often suffer from two difficulties, the curse of dimensionality and the local-trap problem. The former one is due to that the number of possible phylogenetic trees increases at a super-exponential rate as the number of taxa increases. The latter one is due to that the phylogenetic tree has often a rugged energy landscape. In this paper, we propose a new phylogenetic tree construction method, which attempts to alleviate these two difficulties simultaneously by making use of the sequential structure of phylogenetic trees in conjunction with stochastic approximation Monte Carlo (SAMC) simulations. The use of the sequential structure of the problem provides substantial help to reduce the curse of dimensionality in simulations, and SAMC effectively prevents the system from getting trapped in local energy minima. The new method is compared with a variety of existing Bayesian and non-Bayesian methods on simulated and real datasets. Numerical results are in favor of the new method in terms of quality of the resulting phylogenetic trees.  相似文献   

18.
Mardulyn P 《Molecular ecology》2012,21(14):3385-3390
Phylogenetic trees and networks are both used in the scientific literature to display DNA sequence variation at the intraspecific level. Should we rather use trees or networks? I argue that the process of inferring the most parsimonious genealogical relationships among a set of DNA sequences should be dissociated from the problem of displaying this information in a graph. A network graph is probably more appropriate than a strict consensus tree if many alternative, equally most parsimonious, genealogies are to be included. Within the maximum parsimony framework, current phylogenetic inference and network‐building algorithms are both unable to guarantee the finding of all most parsimonious (MP) connections. In fact, each approach can find MP connections that the other does not. Although it should be possible to improve at least the maximum parsimony approach, current implementations of these algorithms are such that it is advisable to use both approaches to increase the probability of finding all possible MP connections among a set of DNA sequences.  相似文献   

19.
The increasing use of phylogeny in biological studies is limited by the need to make available more efficient tools for computing distances between trees. The geodesic tree distance-introduced by Billera, Holmes, and Vogtmann-combines both the tree topology and edge lengths into a single metric. Despite the conceptual simplicity of the geodesic tree distance, algorithms to compute it don't scale well to large, real-world phylogenetic trees composed of hundred or even thousand leaves. In this paper, we propose the geodesic distance as an effective tool for exploring the likelihood profile in the space of phylogenetic trees, and we give a cubic time algorithm, GeoHeuristic, in order to compute an approximation of the distance. We compare it with the GTP algorithm, which calculates the exact distance, and the cone path length, which is another approximation, showing that GeoHeuristic achieves a quite good trade-off between accuracy (relative error always lower than 0.0001) and efficiency. We also prove the equivalence among GeoHeuristic, cone path, and Robinson-Foulds distances when assuming branch lengths equal to unity and we show empirically that, under this restriction, these distances are almost always equal to the actual geodesic.  相似文献   

20.
Abstract— Protein variation among 37 species of carcharhiniform sharks was examined at 17 presumed loci. Evolutionary trees were inferred from these data using both cladistic character and a distance Wagner analysis. Initial cladistic character analysis resulted in more than 30 000 equally parsimonious tree arrangements. Randomization tests designed to evaluate the phylogenetic information content of the data suggest the data are highly significantly different from random in spite of the large number of parsimonious trees produced. Different starting seed trees were found to influence the kind of tree topologies discovered by the heuristic branch swapping algorithm used. The trees generated during the early phases of branch swapping on a single seed tree were found to be topologically similar to those generated throughout the course of branch swapping. Successive weighting increased the frequency and the consistency with which certain clades were found during the course of branch swapping, causing the semi-strict consensus to be more resolved. Successive weighting also appeared resilient to the bias associated with the choice of initial seed tree causing analyses seeded with different trees to converge on identical final character weights and the same semi-strict consensus tree.
The summary cladistic character analysis and the distance Wagner analysis both support the monophyly of two major clades, the genus Rhizoprionodon and the genus Sphyrna. . The distance Wagner analysis also supports the monophyly of the genus Carcharhinus . However, the cladistic analysis suggests that Carcharhinus is a paraphyletic group that includes the blue shark Prionace glauca .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号