首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mahmoud Sharkawi 《Life sciences》1980,27(21):1939-1945
Disulfiram inhibited mouse and rat liver alcohol dehydrogenase (LADH) invitro. Inhibition of LADH by disulfiram appears to be non-competitive. The inhibition constants (Ki) were about 1.5 × 10?4 M and 4.3 × 10?5 M for mouse and rat LADH respectively. Ethanol elimination was significantly reduced in mice pretreated with disulfiram. At identical time intervals after ethanol administration, the concentration of ethanol in blood from disulfiram-, cyanamide-, or dimethyl formamide-treated mice were significantly higher than the ethanol concentration in blood from control mice. Both cyanamide and dimethyl formamide (DMF) can precipitate a disulfiram-like reaction in man when ethanol is ingested. These and previous experiments suggest that elevated concentrations of ethanol should be considered in the etiology of some of the symptoms seen in the disulfiram-ethanol reaction.  相似文献   

2.
Uptake of alpha amino isobutyric acid was measured in human placental villus tissue exposed in vitro to ethyl alcohol (ethanol) (0.3 g/dl–2 g/d1) or acetaldehyde (50 μM-20 mM). Ethanol and acetaldehyde significantly inhibited uptake of amino acid at higher, pharmacologic concentrations (2 g/dl and 2–20 mM respectively). Inhibition by 10 mM acetaldehyde was partially reversible. The results suggest that the human placenta is resistant to acute ethanol-associated effects upon amino acid transport in vitro. However, both ethanol and its major circulating metabolite, acetaldehyde, may still alter placental function during in vivo chronic exposure.  相似文献   

3.
T T Chau  W L Dewey 《Life sciences》1981,29(21):2149-2156
The antinociceptive effects of intraventricularly administered acetylcholine (ACh) and its congeners have been demonstrated by previous investigators. The opiate receptor binding concept was used in this study to investigate possible correlations between ACh antinociception and its effects on opiate stereospecific binding. ACh in vitro decreased the stereospecific binding of 3H-dihydromorphine in mouse brain homogenates. Such decrease was also observed in the brain homogenates of mice which had been treated with ACh intracerebroventricularly (i.v.t.). The decrease in the stereospecific binding of 3H-dihydromorphine induced by (i.v.t.) acetylcholine was inhibited by naloxone, atropine, cyclazocine and pentazocine. The d-isomers of cyclazocine and pentazocine were more potent than the l-isomers in antagonizing the inhibitory effects of i.v.t. acetylcholine upon the stereospecific binding of 3H-dihydromorphine to mouse brain homogenates. The same stereospecificity of these two narcotic analgesics in blocking acetylcholine had been previously observed in the tail-flick test. It is suggested that the antinociceptive effects of acetylcholine are related to the inhibition of opiate stereospecific binding, the mechanism of which is yet to be understood.  相似文献   

4.
Homologous series of N-methyl, N-allyl and N-cyclopropylmethylmorphinans, differing only in the position of the plenolic hydroxy group, were examined with respect to their binding affinities for the opiate receptor. IC50's were determined for competition with 3H-naltrexone in the presence and absence of 100 mM NaCl. While the compounds with the hydroxy in the 3-position had, as expected, by far the highest affinity, the corresponding molecules with the hydroxy in the 2- or 4- position had significant binding affinity ranging from 30 nM in the cyclopropyl- methyl series to 400 nM for the 2-hydroxy N-methyl morphinan. The sodium indices were also very similar to those of the corresponding 3-hydroxy compounds. The only 1-hydroxy derivative available was about 5-fold weaker than the corresponding 2- and 4-hydroxy compounds. Covering or removing the hydroxy group greatly weakened the binding but did not totally destroy it. There was good correlation between binding affinity and pharmacological potency for all except the methoxy compounds. Their high potency is consonant with in vivo hydrolysis of the methyl ether.  相似文献   

5.
Eisuke P. Murono 《Steroids》1983,42(4):457-468
Acute ethanol exposure has been demonstrated to inhibit testosterone synthesis both in vivo and in vitro; however, the precise step(s) affected is controversial. Using intact collagenase-dispersed interstitial cells or 10,000xg supernatants of interstitial cell homogenates, studies were undertaken to determine whether ethanol specifically inhibited Δ5-3β-hydroxysteroid dehydrogenase-isomerase activity. In both cellular preparations, varing concentrations of ethanol (2.2 – 652 mM) inhibited this enzyme activity. Because alcohol dehydrogenase activity was identified specifically in Leydig cells and because the inhibition of Δ5-3β-hydroxysteroid dehydrogenase-isomerase activity by concentrations of ethanol normally observed in circulation of alcoholic men (2.2 – 65 mM) could be reversed by saturating concentrations of NAD+ (0.2 mM) or by 4-methylpyrazole (2 mM), these results suggest that the mechanism of this inhibition is by limitation of available cofactor.  相似文献   

6.
Identification of opiate receptor binding in intact animals.   总被引:1,自引:0,他引:1  
C B Pert  S H Snyder 《Life sciences》1975,16(10):1623-1634
After intravenous administration of 3H-naloxone to rats, particulate bound radioactivity accumulated in the brain is selectively associated with opiate receptor binding sites, providing a means of labeling the opiate receptor in vivo. The regional distribution of 3H-naloxone bound in vivo closely parallels regional differences in opiate receptor binding in vitro with highest levels in the corpus striatum, negligible receptor-associated binding in the cerebellum and intermediate levels in other regions. 3H-Naloxone binding in vivo is saturable with the same total number of binding sites determined in vivo as by in vitro procedures. Nalorphine is markedly more potent than morphine in inhibiting 3H-naloxone binding in vivo and non-opiates are ineffective. The half-life for dissociation of 3H-naloxone bound to particles in vivo is the same as its dissociation rate after binding occurs in vitro, and sodium stabilizes 3H-naloxone bound in vivo from initial rapid dissociation as predicted from the known properties of the opiate receptor in vitro.  相似文献   

7.
Characterization of temperature-sensitive [3H]serotonin (5-HT) binding sites (1 and 4 nM Kd sites) revealed complex inhibition by neuroleptics and serotonin antagonists. There was no simple correlation with affinities for S1 and S2 receptors. In vivo pretreatment (48 h before) with mianserin did not alter Bmax or Kd for the 1 nM Kd [3H]5-HT site, although [3H]ketanserin (S2) densities were decreased by 50%. This suggested that possible S2 components of [3H]5-HT binding must be negligeable, even though ketanserin competed with high affinity (IC50 = 3 nM) for a portion of the 1 nM Kd [3H]5-HT site. Low concentrations of mianserin inhibited the 1 nM Kd [3H]5-HT site in a non-competitive manner, as shown by a decrease in Bmax with no change in Kd after in vitro incubation. The complex inhibition data may therefore represent indirect interactions through another site.  相似文献   

8.
The effects of prolyl-leucyl-glycinamide and cyclo (leucyl-glycine) on morphine-induced antinociception in mice and on in vitro binding of 3H-ligands for opiate receptor subtypes (μ, δ and κ) the mouse brain homogenate were determined. Subcutaneous administration of either of the above peptides (1, 2, and 4 mg/kg) 10 min prior to the injection of morphine did not affect morphine-induced antinociception as evidenced by the identical ED50 values of morphine in vehicle and peptide treated groups. The binding of 3H-dihydromorphine and 3H-naloxone ( μ receptors), 3HDAla2DLeu5-enkephalin (δ receptors), and 3H-ethylketocyclazocine (κ receptors) to opiate receptors in the mouse brain homogenate was also unaffected by both the peptides over a large concentration range. It is concluded that these peptides do not interact with brain opiate receptors.  相似文献   

9.
We have used [125I] angiotensin II to investigate the presence of specific angiotensin II receptors in beef heart sarcolemmal membranes. The observed binding is saturable, reversible and specific. The apparent equilibrium dissociation constant is 2.23 ± 0.15 (x ± SEM) and the maximal number of binding sites per mg membrane protein is 32.8 ± 5.4 fmol (x ± SEM). The specific binding is 80–100% of the total [125I] angiotensin II bound and is directly proportional to membrane protein concentration over the range of 33–173 μg protein per ml. Angiotensin II and its antagonists competed for binding in a potency order of (agent, Ki): angiotensin II, 0.9nM > Sar1 Ala3, 7 nM > Sar1-Ile3, 51 nM > Sar1-Leu3, 427nM > angiotensin I, 1709 nM. The ability to characterize and quantify these receptors should now provide a method for investigating the mechanisms underlying the effects of angiotensin II on myocardial tissues.  相似文献   

10.
Muscarinic receptors in the smooth muscle of the cat pylorus (pyloric sphincter) were identified by binding of the ligand (±) [3H]-quinuclidinyl benzilate ([3H]-QNB). Receptor related binding of [3H]-QNB reached steady-state in thirty minutes at 37°C, was saturable, showed pharmacologic specificity and was stereoselective. An apparent equilibrium dissociation constant, KD, of 1.9 ± 0.3 nM and maximum receptor concentration of 122 ± 13 femtomoles per mg of protein (means ± S.E.M.) were determined from Scatchard plots of [3H]-QNB binding. Hill coefficients of 0.99 and 1.01 indicated the absence of cooperative interactions. The muscarinic antagonists atropine and propantheline inhibited binding with IC50 values in the nanomolar range, whereas bethanechol was over four orders of magnitude less potent. Noncholinergic agents had little or no effect on [3H]-QNB binding. The levo isomer of QNB was about seventy times more effective at inhibiting binding than its dextro isomer while dextro benzetimide was greater than two thousand fold more active than levo benzetimide. The isomers of another anticholinergic compound, tropicamide, also competed for [3H]-QNB binding sites in a stereoselective manner, the levo isomer being eighty-five times more potent than the dextro isomer.  相似文献   

11.
A radioiodinated form of the highly potent enkephalin analog FK 33-824 has been characterized with respect to its binding properties in vitro. 125I-FK 33-824 is distinctive among the short opioid peptides in three ways. First, 125I-FK 33-824 binds stereospecifically to rat brain homogenates with very high affinity (Kd = 0.42 nM). Secondly, dissociation of the 125l-labelled peptide from membrane-bound opiate receptors occurs with a relatively long τ12 of 25 min at 4° in contrast to other enkephalins which dissociate more rapidly. Third, competitive binding analyses reveal that the 125l-FK 33-824 binds equally well to both enkephalin (δ) and morphine (μ) classes of opiate receptors. These characteristics distinguish the 125l-labelled peptide as a particularly suitable probe for molecular studies and purification of the opiate receptor.  相似文献   

12.
beta-Endorphin: characteristics of binding sites in the rat brain.   总被引:3,自引:0,他引:3  
Stereospecific binding of human β-endorphin to rat membrane preparations is described for the first time using [3H-Tyr27]-βh-endorphin as the ligand. The binding is time dependent and saturable with respect to βh-endorphin with an apparent dissociation constant of 0.3 nM. Sodium ion (100 mM) elevates this value to 2.5 nM but has no effect on the total number of binding sites present in the membrane preparation. The ability of certain β-endorphin analogs, opiate agonists as well as antagonists to inhibit the binding of βh-endorphin, is presented.  相似文献   

13.
John P. Durham 《Life sciences》1980,26(17):1423-1430
Isoproterenol (0.3 mmole/kg body wt.), when injected into the mouse intraperitoneally, increases the weight by 35% and stimulates DNA synthesis 30-fold in the parotid gland. The induction of both hypertrophy and hyperplasia is completely inhibited by ethanol at a dose of 200 mmole/kg body wt. but is almost unaffected by 60 mmole/kg. The full inhibiton of both growth parameters is observed when ethanol is administered up to 5 hr after isoproterenol. Partial inhibition is observed when ethanol is given as long as 15 hr after isoproterenol. It contrast ethanol did not alter the secretion of α-amylase in response to isoproterenol. Ethanol had no effect upon the rise in cyclic GMP level caused by isoproterenol but augmented the rise in cyclic GMP In agreement with these invivo observations, low concentrations of ethanol activated adenylate cyclase invitro, however guanylate cyclase activity was quite strongly inhibited. Although high levels of ethanol (300 mmole/kg) inhibited the induction of both ornithine decarboxylase and S-adenosylmethionine decarboxylase little inhibition was seen at 200 mmole/kg suggesting that the interference with polyamine metabolism is not the mechanism of the ethanol effect upon isoproterenol-induced parotid growth.  相似文献   

14.
D T Wong  J S Horng 《Life sciences》1973,13(11):1543-1556
Membranes from homogenates of corpus striatum bound 3H-dihydromorphine in a saturable fashion with a Km value of 1 × 10?9M. The binding of 3H-dihydromorphine to the membranes was reduced to about 10% by 10?7M levorphanol but not by 10?7M dextrorphan. The binding of 3H-dihydromorphine became less sensitive to 10?7M levorphanol when the concentration of 3H-dihydromorphine was greater than 2 × 10?9M. Other opiate narcotics, e.g. morphine and l-methadone, were as effective as levorphanol in competition for the binding 3H-dihydromorphine with ED50 values of 2–4 × 10?9M. d-Methadone and dextrorphan were about 1/50 and 1/2000 as effective as their respective levo-isomers. The opiate antagonist, naloxone, also competed effectively for the binding sites with an ED50 value of 3.3 × 10?9M. Substances like acetylcholine, choline, serotonin, norepinephrine and dopamine were ineffective. Only ionophores specific for divalent cations stimulated the binding of 3H-dihydromorphine suggesting that some endogenous divalent cations may be inhibitory to the binding of the opiate narcotic. The receptors of 3H-dihydromorphine probably exist in the membranes of nerve endings and have a density of 6 × 1012 sites per g in corpus striatum. We conclude that the described technique can successfully detect the opiate narcotic receptors in the central nervous system without the usual method of displacement.  相似文献   

15.
Harmaline, a known inhibitor of the (Na+ + K+)-ATPase in cell membranes, inhibited 50% of the 22Na efflux from barnacle muscle fibres at an extracellular concentration of 2.4 mM. Injected harmaline inhibited 50% of the efflux at an estimated intracellular concentration of about 8 mM · kg?1, assuming complete equilibration with no binding. Total fibre harmaline was measured in separate fibres by ultraviolet spectrophotometry. Fibres in 3 mM harmaline saline accumulated harmaline with a half-time of 17 min and a final total fibre concentration of 6–12 mM · kg?1. In harmaline-free saline this accumulated harmaline was lost exponentially with a half-time of 35 min; injected harmaline was lost exponentially from fibres with a half-time of 50 min. It is proposed that harmaline crosses the fibre membrane as the uncharged base and that its apparent accumulation against a concentration gradient is mainly due to intracellular binding with an additional contribution from a transmembrane pH gradient. It is concluded that, in fibres exposed to harmaline saline, the intracellular concentration can reach a sufficiently high value, as judged from the results of the injection experiments, to inhibit Na+ efflux at an interior-facing site on the fibre membrane. In contrast, harmaline appears to inhibit the Na+-dependent uptake of l-glutamate at an extracellular site.  相似文献   

16.
R Simantov 《Life sciences》1978,23(25):2503-2508
Mouse pituitary tumor cells grown in tissue culture release endorphins spontaneously to the culture medium. Depolarization of these cells by incubation with high K+ concentration (56 mM) increased 2–3 folds the release of endorphins. The K+ evoked release was Ca++ dependent by that: a, removal of Ca++ ions inhibited 90% of K+ stimulated release. b, ethyleneglycol-bis (β-aminoethyl ether) N,N′-tetraacetic acid (EGTA) inhibited release of endorphins in the presence of high K+ and Ca++. It is suggested that dual regulatory system inhibit and/or stimulate in-vivo release of endorphins from the pituitary glands.  相似文献   

17.
[3H]Flunitrazepam was used to characterize benzodiazepine binding sites in human brain. The benzodiazepine binding sites exhibited high affinity, pharmacological specificity and saturability in their binding of [3H]flunitrazepam. The dissociation constant (KD) of [3H]flunitrazepam binding was determined by three different methods and found to be in the range of 2–3 nM. The potency of several benzodiazepine analogs to inhibit specific [3H]-flunitrazepam binding invitro correlated well with their potency in several invivo human and animal tests. The density of [3H]-flunitrazepam binding sites was highest in the cerebrocortical and rhinencephalic areas, intermediate in the cerebellum, and lowest in the brain stem and commissural tracts.  相似文献   

18.
The invitro binding of [3H]serotonin ([3H]5-HT) to cerebral cortex from young and old adult humans was studied. With cortex from human males 23–29 years old, the binding of [3H]5-HT was a saturable process, and bound [3H]5-HT could be displaced by unlabeled 5-HT or by lysergic acid diethylamide (LSD). Two separate binding sites were discernible by Scatchard analysis. The dissociation constants were 7 nM (Kd1) and 52 nM (Kd2), and the total number of binding sites were 0.65 (n1) and 2.06 (n2) pmoles/mg protein, respectively. In cerebral cortex from aged humans (61–70 years old), the dissociation constant for [3H]5-HT binding was 198 nM, and the total number of binding sites were 4.78 pmoles/mg protein. The alteration of serotonin binding sites may be related to cerebral malfunction in old people, particularly to mental depression and sleep disturbances that commonly occur.  相似文献   

19.
[3H] quinuclidinyl benzilate (QNB), a specific muscarinic antagonist, was utilized to identify muscarinic cholinergic receptors on dispersed anterior pituitary cells. Scatchard analysis of [3H] QNB binding to receptors departs from linearity with upward concavity. A high affinity binding site having a dissociation constant (Kd) of 1.5 nM was observed when the [3H] QNB concentration was varied from 0.15 to 20 nM. A low affinity binding site (Kd 20 nM) was observed when [3H] QNB concentration was above 20 nM. Using 10 nM [3H] QNB for binding, the second order association rate constant (k1) of 0.064 nM?1 min?1 and first order dissociation rate constant (k2) of 0.078 min?1(T12 8 min) were observed. k2/k1 = Kd of 1.22 nM is in good agreement with Kd = 1.5 nM from equilibrium data. Muscarinic cholinergic receptor antagonists, atropine and scopolamine, and agonist oxtoremorine potently competed with [3H] QNB binding. A nicotinic cholinergic receptor agonist was 50 times less potent as a competitor of [3H] QNB binding than the muscarinic agonist.  相似文献   

20.
Active in both binding and biological assays, morphiceptin (NH2 Tyr-Pro-Phe-Pro-CONH2), a potent opioid peptide derivative of β-casamorphine, binds specifically and selectively to mu or morphine-type receptors with little affinity for delta sites. Displacement studies of a variety of 3H-labeled opiates and enkephalins show biphasic curves. Naloxazone, which blocks irreversibly and selectively high affinity opiate and enkephalin binding, abolishes morphiceptin's inhibition of binding at low concentrations, suggesting that the high affinity binding of enkephalins and opiates represents a mu or morphine-type receptor. Unlike the reversible antagonist naloxone, naloxazone treatment invivo inhibits for over 24 hours the analgesic activity of morphiceptin like it inhibits morphine, β-endorphin and enkephalin analgesia. Together, these studies imply that opiates and enkephalins bind with highest affinity to a mu receptor which mediates their analgesic activity. The 3H-D-ala2-D-leu5-enkephalin binding remaining after naloxazone treatment, representing a lower affinity site (KD 4 nM), is quite insensitive to morphiceptin inhibition and has the characteristics of a delta receptor. However, the 3H-dihydromorphine binding present after naloxazone treatment, which also represents a lower affinity site (KD 6 nM), is far more sensitive to both morphine and morphiceptin and may represent a second morphine-like, or mu, receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号