首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the absence of peripheral chemoreceptors, the effects of graded hypoxemia on the carotid sinus control of central and regional hemodynamics were studied in anesthetized mongrel dogs. Baroreceptor stimulation was effected by carotid sinus isolation and perfusion under controlled pressure. Blood flows were measured in the aorta and the celiac, mesenteric, left renal, and right iliac arteries. Carotid sinus reflex set-point pressures were well maintained until hypoxemia was severe. Carotid sinus reflex set-point gain was maximal during mild hypoxemia. Reflex operating point regional flows were unaffected by hypoxemia. A factorial analysis of overall reflex increases in mean aortic pressure, flow, and power during reduced baroreceptor stimulation showed potentiation by increasing hypoxemia. Corresponding effects of baroreceptor stimulation and hypoxemia on aortic resistance and heart rate were additive. Celiac, renal, and iliac blood flows increased during both hypoxemia and reduced baroreceptor stimulation. Only in the celiac bed were blood flow changes independent of concomitant changes in cardiac output. Thus, at maximum sympathetic stimulation (low carotid sinus pressure) during hypoxemia, the cardiovascular system maintained both central and regional blood flows at high systemic blood pressures independent of the peripheral chemoreceptors.  相似文献   

2.
We hypothesized that performanceof exercise during heart failure (HF) would lead to hypoperfusion ofactive skeletal muscles, causing sympathoactivation at lower workloadsand alteration of the normal hemodynamic and hormonal responses. Wemeasured cardiac output, mean aortic and right atrial pressures,hindlimb and renal blood flow (RBF), arterial plasma norepinephrine(NE), plasma renin activity (PRA), and plasma arginine vasopressin(AVP) in seven dogs during graded treadmill exercises and at rest. Incontrol experiments, sympathetic activation at the higher workloadsresulted in increased cardiac performance that matched the increasedmuscle vascular conductance. There were also increases in NE, PRA, and AVP. Renal vascular conductance decreased during exercise, such thatRBF remained at resting levels. After control experiments, HF wasinduced by rapid ventricular pacing, and the exercise protocols wererepeated. At rest in HF, cardiac performance was significantly depressed and caused lower mean arterial pressure, despite increased HR. Neurohumoral activation was evidenced by renal and hindlimb vasoconstriction and by elevated NE, PRA, and AVP levels, but it didnot increase at the mildest workload. Beyond mild exercise, sympathoactivation increased, accompanied by progressive renal vasoconstriction, a fall in RBF, and very large increases of NE, PRA,and AVP. As exercise intensity increased, peripheral vasoconstriction increased, causing arterial pressure to rise to near normal levels, despite depressed cardiac output. However, combined with redirection ofRBF, this did not correct the perfusion deficit to the hindlimbs. Weconclude that, in dogs with HF, the elevated sympathetic activity observed at rest is not exacerbated by mild exercise. However, withheavier workloads, sympathoactivation begins at lower workloads andbecomes progressively exaggerated at higher workloads, thus alteringdistribution of blood flow.

  相似文献   

3.
Modulation of cardiovascular reflexes by arginine vasopressin   总被引:1,自引:0,他引:1  
Arginine vasopressin (AVP), a potent vasoconstrictor, does not raise arterial pressure in normal humans or neurally intact animals, even during infusions that achieve pathophysiological plasma concentrations. It has been proposed that this is because AVP facilitates the baroreflex control of the circulation. We performed a series of investigations to test this hypothesis, and to determine sites at which AVP might act to augment the baroreflex. In anesthetized rabbits, vasopressin (36 pmol.kg-1.min-1) increased discharge from both medullated and nonmedullated single fibres from aortic baroreceptor nerves during elevations in aortic arch pressure. Similarly, vasopressin (36 pmol.kg-1.min-1) increased the response of left ventricular mechanoreceptor single fibre discharge to elevations of left ventricular end-diastolic pressure. These observations suggest that sensitization of high and low pressure baroreceptors is one mechanism by which vasopressin may facilitate baroreflexes. In a further series of experiments in sinoaortic denervated anesthetized rabbits, vasopressin (18 pmol.kg-1.min-1) facilitated vagally mediated reflex inhibition of renal sympathetic nerve activity during volume expansion. In humans, AVP (0.37 pmol.kg-1.min-1) raised plasma AVP to an antidiuretic level (22 +/- 4 fmol/mL), but did not change blood pressure or the baroreflex control of heart rate or forearm vascular resistance.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Exaggerated natriuresis in experimental hypertension   总被引:1,自引:0,他引:1  
The exaggerated natriuretic response to intravenous isotonic saline volume expansion in conscious spontaneous hypertensive rats (SHR), compared to normotensive Wistar-Kyoto rats (WKY), is associated with an exaggerated inhibition of renal nerve activity. Following bilateral renal denervation, the natriuresis was significantly attenuated in SHR but unaffected in WKY. Thus, the exaggerated natriuretic response to intravenous isotonic saline in SHR is dependent on their enhanced inhibition of renal nerve activity. Conscious Dahl salt-sensitive rats, on either low or high salt diet, did not exhibit an exaggerated natriuretic response to intravenous isotonic saline volume expansion which may be explained by their known impairment of cardiopulmonary baroreceptor reflex mediated suppression of efferent sympathetic nerve activity during intravenous volume expansion. Conscious hypertensive DOCA-NaCl rats exhibited an exaggerated natriuretic response to oral but not to intravenous isotonic saline volume expansion, suggesting differences in gastrointestinal absorption of isotonic saline. It is concluded that enhanced inhibition of efferent renal sympathetic nerve activity via cardiopulmonary baroreceptor reflex activation contributes to the exaggerated natriuretic response to intravenous isotonic saline volume expansion in certain models of experimental hypertension.  相似文献   

5.
We tested the hypothesis that there is a topographical sympathetic activation in rats submitted to experimental cirrhosis. Baseline renal (rSNA) and splanchnic (sSNA) sympathetic nerve activities were evaluated in anesthetized rats. In addition, we evaluated main arterial pressure (MAP), heart rate (HR), and baroreceptor reflex sensitivity (BRS). Cirrhotic Wistar rats were obtained by bile duct ligation (BDL). MAP and HR were measured in conscious rats, and cardiac BRS was assessed by changes in blood pressure induced by increasing doses of phenylephrine or sodium nitroprusside. The BRS and baseline for the control of sSNA and rSNA were also evaluated in urethane-anesthetized rats. Cirrhotic rats had increased baseline sSNA (BDL, 102 vs control, 58 spikes/s; p<0.05), but no baseline changes in the rSNA compared to controls. These data were accompanied by increased splanchnic BRS (p<0.05) and decreased cardiac (p<0.05) and renal BRS (p<0.05). Furthermore, BDL rats had reduced basal MAP (BDL, 93 vs control, 101 mmHg; p<0.05) accompanied by increased HR (BDL, 378 vs control, 356; p<0.05). Our data have shown topographical sympathetic activation in rats submitted to experimental cirrhosis. The BDL group had increased baseline sSNA, independent of dysfunction in the BRS and no changes in baseline rSNA. However, an impairment of rSNA and HR control by arterial baroreceptor was noted. We suggest that arterial baroreceptor impairment of rSNA and HR is an early marker of cardiovascular dysfunction related to liver cirrhosis and probably a major mechanism leading to sympathoexcitation in decompensated phase.  相似文献   

6.
Effects of blood viscosity on renin secretion.   总被引:1,自引:0,他引:1  
S Chien  K M Jan  S Simchon 《Biorheology》1990,27(3-4):589-597
The effects of alterations in blood and plasma viscosities on plasma renin activity (PRA) were studied in dogs anesthetized with pentobarbital. Blood viscosity was altered by changing the hematocrit (Hct) level by isovolemic exchange using packed red blood cells or plasma. Plasma viscosity was elevated by isovolemic exchange using Hct-matched blood with high molecular weight dextran (Dx, mean m.w. approximately 450,000) dissolved in plasma. Following control measurements of plasma and blood viscosities, plasma [Dx], PRA, Hct and hemodynamic functions, the dog was subjected to isovolemic exchange transfusions to either alter the Hct or administer the Dx. Various measurements were repeated 40-60 min after each exchange. Arterial pressure and renal blood flow remained relatively constant after exchanges; increases in plasma and blood viscosities were accompanied by a decrease in renal vascular hindrance (vasodilation) to keep the renal flow resistance at control level. PRA rose with increases in plasma [Dx] and viscosity, and the rise in PRA was best correlated with the decrease in renal hindrance. The changes in PRA and renal hindrance have the same regression line whether blood viscosity was altered by Hct variation or Dx administration. The results indicate that increases in viscosity cause a compensatory vasodilation of renal vessels to cause renin secretion.  相似文献   

7.
Norepinephrine (NE) release and pressor response to sympathetic stimulation were studied in dogs under furosemide-induced acute volume depletion. The rise in blood pressure observed following carotid clamping proved similar before and after acute salt and water depletion in the first group of animals and NE rose comparably in these two conditions. Similar results were obtained in a second group of dogs that received an angiotensin II converting enzyme inhibitor (CEI). This study shows that contrary to isotonic saline loading, acute salt and water depletion cause a progressive increase in NE plasma levels. Moreover, these results clearly demonstrate that the decrease in sympatho--adrenergic response and the predominant role played by the renin--aniotensin system during chronic salt depletion are not observed in acute conditions.  相似文献   

8.
Studies were performed to determine the mechanism by which the antihypertensive agent clonidine increased urine flow. The response of the kidney has been examined in four combinations. The parameters of renal function have been compared during volume expansion by 1.5-2.0% body weight Ringer solution. In the control animals, volume expansion by 2% body weight, resulted in a slight increase in sodium excretion and urine flow. In 10 anesthetized dogs 1.0 microgram/kg/min of clonidine infused i.v. during 30 minutes (the total amount of clonidine infused was 30 micrograms/kg) decreased the arterial blood pressure from 136 +/- 13 mmHg to 127 +/- 12 mmHg and elevated urine flow from 2.95 +/- 1.65 ml/min to 4.34 +/- 1.77 ml/min while the urine osmolality diminished from 399 +/- 107 mosm/l to 265 +/- 90 mosm/l and the glomerular filtration remained constant. In 5 animals 0.1 microgram/kg/min of clonidine was infused into the left renal artery (this dose is corresponding to the renal fraction of the cardiac output) without any effects in the left kidney. 1.0 microgram/kg/min of clonidine infused directly into the left renal artery produced vasoconstriction in the ipsilateral kidney, decreased the glomerular filtration rate and the urine flow. By contrast in the right kidney the urine flow rose without hemodynamic changes, and the urine osmolality became hypoosmotic compared to the plasma. In ten dogs 1.0 microgram/kg/min of clonidine and 1 mU/kg/min of arginine-vasopressin were infused intravenously. The vasopressin infusion superimposed on the clonidine could not inhibit the increase of the urine excretion, and the fall of the urine osmolality. The results suggest that the clonidine increases the renal medullary blood flow possibly via a direct mechanism, decreases the sympathetic outflow to the kidney and via an indirect pathway, mediated by the renin-angiotensin system. The renal medullary flow increase produces a washout of the medullary osmotic gradient, and the water reabsorption diminishes.  相似文献   

9.
The influence of aortic baroreceptors and vagal afferent nerves on the release of immunoreactive vasopressin (iVP) and immunoreactive atrial natriuretic factor (iANF) was examined in anaesthetized rabbits. Changes in plasma concentrations of iVP and iANF, heart rate, mean arterial pressure, and right atrial pressure were measured in response to blood volume changes (+20, +10, -10, -20%). Carotid sinus pressure was maintained at 100 mmHg (1 mmHg = 133.3 Pa), and blood volume changes were performed before and after bilateral vagotomy (VNX) in all experiments. Two experimental groups were studied: rabbits with aortic depressor nerves intact (ADNI) and those with aortic depressor nerves sectioned (ADNX). Mean arterial and right atrial pressures decreased during haemorrhage and increased in response to volume expansion. Plasma iVP concentrations increased with haemorrhage and decreased with volume expansion in the ADNI group. Plasma iANF, however, decreased with haemorrhage and increased during volume expansion in both ADNI and ADNX groups. Vagotomy caused an increase in baseline plasma iANF in the ADNX group. The responses of iANF to blood volume changes were augmented after VNX and ADNX. The results show that neither the aortic baroreceptor nor the vagal afferent input are needed for the iANF response to changes in blood volume, over the range of +/- 20%. In contrast, intact aortic baroreceptors are essential for changes in circulating iVP in this preparation.  相似文献   

10.
Renal nerves are thought to play an important role in cardiovascular regulation under both normotensive and hypertensive conditions. In the present study the effect of renal denervation on the changes in plasma renin activity (PRA) after aortic baroreceptor deafferentation (tADN) were investigated in the rat. Bilateral renal denervation did not alter arterial pressure (AP, 100 +/- 4 mmHg; 1 mmHg = 133.32 Pa), heart rate (HR, 363 +/- 12 bpm), or PRA (2.9 +/- 0.6 ng.mL-1.h-1) compared with the respective sham renal denervation values of 106 +/- 3 mmHg (AP), 385 +/- 13 bpm (HR), and 3.3 +/- 0.7 ng.mL-1.h-1 (PRA). On the other hand, bilateral tADN resulted in significant increases in AP, HR, and PRA. One and 3 days after tADN, AP was 130 +/- 4 and 127 +/- 6 mmHg, HR was 461 +/- 15 and 463 +/- 20 bpm, and PRA was 9.1 +/- 3.0 and 11.9 +/- 4.5 ng.mL-1.h-1, respectively. Renal denervation before tADN prevented the increases in AP and PRA, but it did not affect the increase in HR. These data indicate that renal denervation does not alter basal PRA in normotensive animals but prevents the increased renin release observed in neurogenic hypertension. These data suggest that the increased PRA may be one of several factors that contributes to the elevated AP after tADN.  相似文献   

11.
Our previous study (27) showed that the cardiac sympathetic afferent reflex (CSAR) was enhanced in dogs with congestive heart failure. The aim of this study was to test whether blood volume expansion, which is one characteristic of congestive heart failure, potentiates the CSAR in normal dogs. Ten dogs were studied with sino-aortic denervation and bilateral cervical vagotomy. Arterial pressure, left ventricular pressure, left ventricular epicardial diameter, heart rate, and renal sympathetic nerve activity were measured. Coronary blood flow was also measured and, depending on the experimental procedure, controlled. Blood volume expansion was carried out by infusion of isosmotic dextran into a femoral vein at 40 ml/kg at a rate of 50 ml/min. CSAR was elicited by application of bradykinin (5 and 50 microg) and capsaicin (10 and 100 microg) to the epicardial surface of the left ventricle. Volume expansion increased arterial pressure, left ventricular pressure, left ventricular diameter, and coronary blood flow. Volume expansion without controlled coronary blood flow only enhanced the RSNA response to the high dose (50 microg) of epicardial bradykinin (17. 3 +/- 1.9 vs. 10.6 +/- 4.8%, P < 0.05). However, volume expansion significantly enhanced the RSNA responses to all doses of bradykinin and capsaicin when coronary blood flow was held at the prevolume expansion level. The RSNA responses to bradykinin (16. 9 +/- 4.1 vs. 5.0 +/- 1.3% for 5 microg, P < 0.05, and 28.9 +/- 3.7 vs. 10.6 +/- 4.8% for 50 microg, P < 0.05) and capsaicin (29.8 +/- 6.0 vs. 9.3 +/- 3.1% for 10 microg, P < 0.05, and 34.2 +/- 2.7 vs. 15.1 +/- 2.7% for 100 microg, P < 0.05) were significantly augmented. These results indicate that acute volume expansion potentiated the CSAR. These data suggest that enhancement of the CSAR in congestive heart failure may be mediated by the concomitant cardiac dilation, which accompanies this disease state.  相似文献   

12.
To study the influence of dietary modification on prostaglandin synthesis and on blood pressure regulation, the effects of dietary enrichment with linolenic or linoleic acid was compared with standard rat chow in 3 groups of 13 rats before and after renal artery constriction and contralateral nephrectomy. Before renal artery constriction 4 weeks supplementation with 40 en% linseed oil (53% linolenic acid) increased renal linolenic acid, decreased arachidonic acid, and suppressed synthesis of 6-keto-PGF and PGE2 by renal homogenates (33% and 38% respectively, p<0.01) compared with standard diet. Rats fed on 40 en % sunflower seed oil (63% linoleic acid) increased renal prostaglandin synthesis (p<0.05) compared with linseed oil, but not compared with standard diet. Seven weeks after renal artery constriction renal and aortic 6-keto-PGF and PGE2 were suppressed 30% to 50% (p<0.05) by linseed oil supplements compared with sunflower seed oil and standard diets. In the sunflower seed oil group aortic 6-keto-PGF correlated (r = 0.75, p<0.02) with final systolic blood pressure. Final systolic blood pressures were similar in linseed oil (152.9 mmHg ± se 3.3, sunflower oil (155.1 ± se 6.6) and standard diet group (159.0 ±se 4.2). Thus dietary linseed oil suppressed renal and aortic prostaglandin synthesis but did not accentuate renal hypertension, and linoleic acid supplementation did not protect against 1 kidney 1 clip renal hypertension.  相似文献   

13.
The effects of three catecholamines, dopamine, epinephrine, and dobutamine, on the systemic circulation, especially on systemic vascular capacitance, were studied using cardiopulmonary bypass in dogs anesthetized with pentobarbital. Venous outflow was divided into three compartments: splanchnic, renal, and other; changes in systemic blood volume (SBV) were calculated from the changes in total venous outflow. To examine the contribution of sympathetic discharge to these vascular responses, sympathetic efferent nerve activity (SENA) from the ventral ansa subclavian nerve was recorded simultaneously. Experiments were done under three conditions: control, after baroreceptor deafferentation, and after hexamethonium injection with low and high doses of each catecholamine. During control and after baroreceptor deafferentation, dopamine- and epinephrine-induced changes in SBV were less than those after hexamethonium, and not significant except with low dose epinephrine. After hexamethonium, dopamine (200 micrograms/kg), epinephrine (10 micrograms/kg), and dobutamine (100 micrograms/kg) reduced SBV by 10.6 +/- 3.4, 13.1 +/- 1.7, and 1.9 +/- 0.3 mL/kg, respectively. Splanchnic outflow increased significantly with dopamine and epinephrine after hexamethonium. High dose dopamine and epinephrine significantly suppressed SENA to 38 +/- 9 and 15 +/- 6% of baseline, respectively. Low dose dopamine decreased arterial pressure and SENA. This suppression in SENA was attenuated but still observed after baroreceptor deafferentation. Dobutamine reduced SBV, but had no effect on SENA. These results suggest that dopamine and epinephrine primarily decrease SBV by venoconstriction in the splanchnic region, however, these effects are greatly modified by basal sympathetic discharge and changes in SENA and vascular tone.  相似文献   

14.
Stellate ganglion blockade (SGB) with a local anesthetic increases muscle sympathetic nerve activity in the tibial nerve in humans. However, whether this sympathetic excitation in the tibial nerve is due to a sympathetic blockade in the neck itself, or due to infiltration of a local anesthetic to adjacent nerves including the vagus nerve remains unknown. To rule out one mechanism, we examined the effects of cervical sympathetic trunk transection on renal sympathetic nerve activity (RSNA) in anesthetized rats. Seven rats were anesthetized with intraperitoneal urethane. RSNA together with arterial blood pressure and heart rate were recorded for 15 min before and 30 min after left cervical sympathetic trunk transection. The baroreceptor unloading RSNA obtained by decreasing arterial blood pressure with administration of sodium nitroprusside was also measured. Left cervical sympathetic trunk transection did not have any significant effects on RSNA, baroreceptor unloading RSNA, arterial blood pressure, and heart rate. These data suggest that there was no compensatory increase in RSNA when cervical sympathetic trunk was transected and that the increase in sympathetic nerve activity in the tibial nerve during SGB in humans may result from infiltration of a local anesthetic to adjacent nerves rather than a sympathetic blockade in the neck itself.  相似文献   

15.
We have previously demonstrated that blood pressure elevation by acute blood volume expansion is volume-dependent during the infusion period and resistance-dependent in the post-infusion period in normal anesthetized dogs, and that such an increase in blood pressure is associated with a potentiation of the pressor response to norepinephrine. To evaluate the possible renal contribution to these hemodynamic changes, blood volume expansion was performed for 1 h with dextran dissolved in lactated Ringer's solution (20 ml/kg) in 15 nephrectomized dogs. The mean blood pressure, cardiac output and total peripheral resistance at the end of infusion were 126%, 225% and 60%, respectively; 3 h after volume expansion they were 126%, 151%, and 92% respectively. However, in 4 dogs, there was an increase in mean blood pressure (138%) 3 h after volume expansion. This was thought to result from an increase in the total peripheral resistance (133%) associated with the recovery of cardiac output (106%). The pressor response to norepinephrine (0.5 microgram/kg) was potentiated after volume expansion. These results indicate that the handling of volume by the kidney contributed to the maintenance of an elevated level of cardiac output. However, nephrectomy did not seem to interfere with the hemodynamic switching of the causative factor for blood pressure elevation from increased cardiac output to increased total peripheral resistance. Neither was the potentiation of pressor response to norepinephrine affected.  相似文献   

16.
The effect of altered tubular sodium reabsorption on renin secretion (RSR) was examined under conditions in which other factors influencing renin release could be controlled or excluded. To do this, isolated canine kidneys were perfused at constant pressure with blood circulating from donor animals. Volume expansion or hemorrhage of the donor dogs produced large changes in the animal's blood pressure, renal function, sodium excretion (UNaV), and RSR, but were without effect on renal hemodynamics, UNaV, or RSR in the perfused kidney. Hemodilution without volume expansion, resulted in hypotension, decreased UNaV and increased RSR in the donor dogs, and increased UNaV and suppressed RSR in the perfused kidney. These effects of hemodilution in the perfused kidney were partially reversed when plasma protein concentration was restored to control levels with hyperoncotic albumin, and, overall, there was a significant inverse relationship between electrolyte excretion and RSR. These results provide new evidence for the hypothesis that the rate at which sodium is delivered to the macula densa is an important determinant of the rate of renin secretion.  相似文献   

17.
In this study we have examined the influence of bilateral carotid occlusion on intrarenal blood flow distribution. Using labeled microspheres to determine intrarenal hemodynamics, bilateral carotid ligation in mannitol or saline expanded dogs resulted in an increase in outer cortical blood flow and a decrease in inner cortical flow. Total renal blood flow and glomerular filtration rate did not change significantly during carotid occlusion whereas the average mean arterial blood pressure rose from 130 to 166 mmHg. Inner cortical flow resistance increased substantially after carotid occlusion; outer cortical resistance was unchanged. These results suggest that bilateral carotid occlusion selectively activates inner cortical renal sympathetic fibers.  相似文献   

18.
The effect of the beta receptor blocker pindolol on survival was investigated in HgCl2 intoxicated dogs. A single injection of 100 microgram/kg b.w. pindolol intravenously (i.v.) caused a significant rise in urinary sodium excretion and a significant decrease of plasma renin activity (PRA) and urinary norepinephrine (NE) and epinephrine (E) excretion in control dogs. A single injection of 3 mg/kg HgCl2 i.v. resulted in death of the animals within 3-5 days. Pretreatment with the above dose of pindolol increased length of survival 4-8 days, two dogs recovering from acute renal failure (ARF). The degree of azotemia was smaller in the pretreated group than in the control dogs given HgCl2 only. Pindolol prevented the HgCl2 induced marked increases of urinary catecholamine excretion and PRA. These findings support the hypothesis that increased activity of the sympathetic nervous system is involved in the pathomechanism of the nephrotoxic model of ARF. Pindolol pretreatment decreases the severity of ARF though it can not prevent it.  相似文献   

19.
Summary We administered the diuretics furosemide and ethacrynic acid to conscious freshwater turtles to assess changes in renal function and plasma renin activity (PRA) in an animal which lacks a loop of Henle. Furosemide (2 and 5 mg/kg) produced no changes in blood pressure, hematocrit, plasma electrolytes, glomerular filtration rate (GFR), or PRA. Furosemide doubled urine volume while sodium excretion increased 20-fold and chloride and potassium excretion increased 12-fold (P<0.05 in each case). Net potassium secretion was observed. Ethacrynic acid (2 and 5 mg/kg) also produced no changes in blood pressure, hematocrit, plasma electrolytes, or PRA. At the lower dose GFR increased by 40% and urine volume nearly doubled (P<0.05 in each case). Sodium, chloride, and potassium excretion increased roughly 10-fold (P<0.05 in each case). At the higher dose, GFR increased by 80% and urine volume more than doubled (P<0.05 in each case). Sodium excretion rose 40-fold, chloride excretion rose 25-fold, and potassium excretion rose 10-fold (P<0.05 in each case). At both doses net potassium secretion occurred. The results demonstrate that both drugs inhibit tubular reabsorption in the turtle, acting primarily on distal segments of the nephron. The failure of either drug to alter PRA suggests that the turtle lacks a tubular mechanism for alterig renin release.Abbreviations GFR glomerular filtration rate - PRA plasma renin activity Supported by the University of Delaware Honors Program, American Heart Association of Delaware, NIH Biomedical Support Program, and USPHS #HL2808401  相似文献   

20.
There is evidence that in cardiac failure, there is defective baroreceptor reflex control of sympathetic nerve activity. Often, cardiac failure is preceded by a state of cardiac hypertrophy in which there may be enhanced performance of the heart. This study investigated whether in two different models of cardiac hypertrophy, there was an increased contribution of nitric oxide (NO) to the low-pressure baroreceptor regulation of renal sympathetic nerve activity (RSNA) and nerve-dependent excretory function. Administration of a volume load, 0.25* body wt/min saline for 30 min, in normal rats decreased RSNA by 40* and increased urine flow by some 9-fold. Following nitro-L-arginine methyl ester (L-NAME) administration, 10 μg·kg(-1)·min(-1) for 60 min, which had no effect on blood pressure, heart rate, or RSNA, the volume load-induced renal sympathoinhibitory and excretory responses were markedly enhanced. In cardiac hypertrophy states induced by 2 wk of isoprenaline/caffeine or 1 wk thyroxine administration, the volume challenge failed to suppress RSNA, and there were blunted increases in urine flow in the innervated kidneys, but following L-NAME infusion, the volume load decreased RSNA by 30-40* and increased urine flow by some 20-fold in the innervated kidneys, roughly to the same extent as observed in normal rats. These findings suggest that the blunted renal sympathoinhibition and nerve-dependent diuresis to the volume load in cardiac hypertrophy are related to a heightened production or activity of NO within either the afferent or central arms of the reflex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号