首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A rapid and simple method for the analysis of free and conjugated catecholamines in body tissues and fluids is described. The free catecholamines were isolated by standard alumina procedures before and after hydrolysis of the conjugated compounds to free compounds by heating the samples in perchloric acid. Free catecholamines were then separated by high-performance liquid chromatography and detected by electrochemical detection. Conjugated compound was the difference between the total and free amount in each sample. This method was utilized to measure free and conjugated norepinephrine, epinephrine, and dopamine in human urine and rat adrenal gland, and to measure free and conjugated dopamine in rat whole brain and kidney.  相似文献   

2.
Abstract: The occurrence of free and conjugated dopamine was determined by HPLC in human caudate nucleus, hypothalamus, and kidney. Free norepinephrine and dihydroxyphenylacetic acid levels in some tissues were also determined. Conjugated dopamine was found to account for 25% of the total DA in the kidney. Conjugated DA accounted for 2.9% and 5.1% of the total DA in the caudate nucleus and hypothalamus, respectively. These results indicate that conjugated dopamine is not homogenously distributed in human tissue.  相似文献   

3.
We studied the effects of sulfate conjugate of dopamine on the isolated perfused rat heart (Langendorff preparation). In the experimental group, we removed atria from half number of the hearts. In the hearts with intact atria, dopamine 4-sulfate significantly improved the DT (developed tension), +dT/dt max (maximal rate of contraction), -dT/dt max (maximum rate of relaxation) over baseline values. But when atria were removed, dopamine 4-sulfate had no effect on the mechanical functions of heart. We analysed the effluent perfusate for the free and conjugated catecholamines. In the control group (no drug), and when atria were excised, the free catecholamine levels were negligible. But when the atria were kept intact, the effluent contained significant amount of free dopamine (DA), and norepinephrine (NE). These data suggested that dopamine sulfate had no direct effect on the ventricular muscle of rat heart, but was converted within the atrial tissues into free catecholamines which might be responsible for the positive inotropic actions.  相似文献   

4.
We have developed a method for enzymatic hydrolysis of both sulfated and glucuronidated catecholamines in plasma and red blood cell lysate. Hydrolysis occurs in the course of the radioenzymatic assay for catecholamines. In human plasma, catecholamines are conjugated almost entirely with sulfate while, in rat plasma, glucuronides are the main conjugates of epinephrine and dopamine but not norepinephrine. Rat plasma contains less percent conjugated catecholamine than human plasma. Human red blood cell lysate contains less conjugated catecholamine than plasma, whereas free E in lysate exceeds that of plasma and free NE has same level both in plasma and lysate. This method is useful in detecting total (free + sulfated + glucuronidated) catecholamines and the nature of conjugated catecholamines.  相似文献   

5.
We describe an improved immunohistochemical procedure for detecting regions of hypoxia in normal organs and tumors in mice. The method employs a primary fluorescein-conjugated mouse monoclonal antibody directed against pimonidazole protein adducts that are created in hypoxic tissues and a secondary mouse anti-fluorescein antibody that is conjugated to horseradish peroxidase. Using these reagents, we clearly visualized the regions of relative hypoxia in implanted tumors in mice as well as in normal organs such as liver and kidney. Significantly, the resulting tissue sections were remarkably free of the background staining that is characteristically observed when rodent antibodies are used to detect antigens in rodent tissues.  相似文献   

6.
The increasingly large amount of proteomics data in the public domain enables, among other applications, the combined analyses of datasets to create comparative protein expression maps covering different organisms and different biological conditions. Here we have reanalysed public proteomics datasets from mouse and rat tissues (14 and 9 datasets, respectively), to assess baseline protein abundance. Overall, the aggregated dataset contained 23 individual datasets, including a total of 211 samples coming from 34 different tissues across 14 organs, comprising 9 mouse and 3 rat strains, respectively.In all cases, we studied the distribution of canonical proteins between the different organs. The number of canonical proteins per dataset ranged from 273 (tendon) and 9,715 (liver) in mouse, and from 101 (tendon) and 6,130 (kidney) in rat. Then, we studied how protein abundances compared across different datasets and organs for both species. As a key point we carried out a comparative analysis of protein expression between mouse, rat and human tissues. We observed a high level of correlation of protein expression among orthologs between all three species in brain, kidney, heart and liver samples, whereas the correlation of protein expression was generally slightly lower between organs within the same species. Protein expression results have been integrated into the resource Expression Atlas for widespread dissemination.  相似文献   

7.
Binding of [3H]GBR12935 to homogenates of mouse and rat striatum and kidney was studied. [3H]GBR12935 bound to both tissue preparations with high affinity (mouse striatum Kd = 2.4 +/- 0.4 nM, n = 4; mouse kidney Kd = 3.8 +/- 0.9 nM, n = 4), in a saturable (striatal Bmax = 1.5 +/- 0.4 pmol/mg protein; kidney Bmax = 4.9 +/- 0.5 pmol/mg protein) and reversible manner. Saturation experiments revealed the presence of a single class of high affinity binding sites in both tissues of both species. Mouse kidney appeared to possess a greater density of [3H]GBR12935 binding sites than the striatum while the reverse situation prevailed for the rat. Although two dopamine uptake inhibitors, namely GBR12909 and benztropine, displaced [3H]GBR12935 binding from striatal and kidney homogenates with a similar affinity in both tissues of these species, unlabelled mazindol, (+/-)cocaine, nomifensine and amfonelic acid were significantly (P < 0.001-0.02) more potent inhibitors of [3H]GBR12935 binding in the striatum than in the kidney. While the pharmacological profile of [3H]GBR12935 binding in the rodent striatum compared well with that of the dopamine transporter reported previously, the pharmacology in the kidney was considerably different to that in the striatum. GBR12909 (1-30 mg/kg, i.p.), a close analog of GBR12935, induced significant antidiuretic and antinatriuretic effects in spontaneously hypertensive rats. These data suggest that while [3H]GBR12935 labels the dopamine uptake sites in the brain, it does not appear to label similar sites in the kidney. The mechanism of action of GBR12909 on sodium and water excretion remains to be determined.  相似文献   

8.
B Galanti  M Russo  S Nardiello  G Giusti 《Enzyme》1976,21(4):342-348
The activation energy and the optimum pH of guanine deaminase in man, the rat, guinea pig and mouse were studied using 8-azaguanine as a substrate. The serum guanase in man and in all the animal species studied differs in activation energy from the guanase of the liver. In man, moreover, the serum guanase is also different from the brain and kidney enzyme. In the rat and guinea pig the brain enzyme has thermic activation energy different from the liver and kidney enzyme. The guanase of the serum and tissues of the guinea pig differs from the enzyme of the serum and tissues of man, rat and mouse for optimum pH.  相似文献   

9.
Free and conjugated dopamine and N-acetyldopamine concentrations were measured in human urine and kidneys by reversed phase high performance liquid chromatography with single-electrode electrochemical detection. Conjugated N-acetyldopamine was found to occur in urine from six normal humans and in four out of six human kidneys. Unconjugated N-acetyldopamine was detected in only one urine sample and in three of seven kidneys. Urinary excretion of total N-acetyldopamine averaged 0.485 micromoles/day. This compares to a total dopamine excretion of 4.69 micromoles/day in the same subjects. In the kidneys, total N-acetyldopamine concentration averaged 1.46 nanomoles/gram. Total dopamine in the same tissues averaged 5.48 nanomoles/gram. N-acetyldopamine was not detected in human caudate nucleus, mouse whole brain, or liver from Rhesus monkey. When daily urinary excretion rates of N-acetyldopamine were determined in six individuals by both single-and dual-electrode electrochemical detection, the results were highly correlated for both free and total N-acetyldopamine (r>0.97,p<0.001). Using dual-electrode electrochemical detection, conjugated N-acetyldopamine accounted for 96.4% of the total N-acetyldopamine excretion. This value was 95.8% in the same individuals using single-electrode detection.  相似文献   

10.
To elucidate whether sulfoconjugated catecholamines in plasma, especially dopamine, serve as a source of free catecholamines, we examined the change in afterload on the deconjugating activity of catecholamines in isolated Langendorff perfused rat hearts. Dopamine-sulfate was administered under ordinary or high-work-load conditions. Free dopamine in the effluent was increased by the high-work-load of the hearts, whereas conjugated dopamine showed an apparent decrease. These results indicate the possibility that deconjugation of sulfoconjugated catecholamines is accelerated by a high-work-load. To obtain further evidence in humans, we also examined the changes in the plasma levels of free and sulfoconjugated catecholamines in healthy volunteers before and after marathon running. Free dopamine increased 1.99-fold from the baseline value after exercise, whereas conjugated dopamine decreased by 12%. Similarly, the plasma levels of free noradrenaline and adrenaline increased after exercise to 2.45- and 1.51-fold their respective baseline values, while conjugated noradrenaline and adrenaline both decreased. These clinical results, as well as those of the experimental studies, suggest that the increase in plasma free catecholamines after exercise is due not only to increased release from the sympathoadrenal system but also to accelerated conversion from sulfoconjugated catecholamines in the plasma.  相似文献   

11.
The uptake of [3H]orotate was greater in mouse liver than in hepatoma but the difference was less marked than in the rat. Of the tissues examined, a high uptake of [3H]orotate was restricted to the liver and kidney in rat, mouse and guinea-pig. We confirmed that a high orotate diet greatly increases the ratio of UTP to ATP concentration in rat liver but we observed that there is little change of this nucleotide ratio in kidney. Evidence was obtained for a different pattern of orotate metabolism in rat liver and kidney.  相似文献   

12.
Possible biosynthetic pathways of N-acyldopamines in rat tissues were compared. It was shown that an insignificant amount of the conjugation products was formed during the incubation of arachidonic acid and dopamine, whereas the substitution of tyrosine for dopamine resulted in the productive biosynthesis of N-arachidonoyldopamine. The biosynthesis presumably involves several closely conjugated enzymatic stages, and free fatty acids rather than their CoA esters served as the starting substrates. The decarboxylation stage probably precedes the stage of catechol system formation, because N-acetyltyramine (a probable intermediate) was easily oxidized by monophenol monooxygenase to N-acyldopamine, whereas N-acyltyrosine is hydrolyzed under these conditions. Biosynthesis of N-acyldopamines in a cell-free medium was accompanied by their methylation. The possibility of oxidative metabolism of N-acyldopamines, which could serve as co-substrates or inhibitors of different oxidoreductases, was shown for the first time.  相似文献   

13.
The aim of the present study was to determine the extent to which plasma catecholamines are conjugated in different animals compared to man and how widespread is the presence of dihydroxyphenylalanine (DOPA) and 3-methoxy-4-hydroxyphenylalanine (3-OMD) in plasma among the different animal species. Free and conjugated norepinephrine, epinephrine, and dopamine were measured in plasma in humans and in several animal species (dog, rat, Gunn rat, cat, rabbit, guinea pig, African green monkey, young pig, calf, and one American black bear) using HPLC with electrochemical detection. The same technique was used to measure free and conjugated DOPA and 3-OMD in plasma of man, dog, rat, Gunn rat, calf, and American black bear. Human plasma contains the highest concentration of total (free and conjugated) catecholamines (46.1 pmole/ml), while low concentrations (below 15 pmole/ml) were observed in unstressed rats, calves, cats, and young pigs. In man, 95.3% of total plasma catecholamines were conjugated. The extent to which plasma catecholamines were conjugated varied greatly between animal species. The conjugated fraction expressed as percentages of the total catecholamines is lowest in the young pig (4.7%) and highest in the bear (100%). Conjugated dopamine was present in the plasma of all species, varying between 3% of the total catecholamine pool in young pig to 90% in dog. Conjugated norepinephrine was also present in plasma of all species except in unstressed rats with access to food. Conjugated epinephrine was detected only in cat and rat. Free DOPA and 3-OMD were present in plasma of all tested species with especially high levels of 3-OMD being present in dog. Conjugated DOPA and 3-OMD were not consistently found in any species. Our results indicate that man, dog, bear, and African green monkey are particularly good catecholamine conjugators and that young pig, guinea pig, rabbit, and calf are poor conjugators.  相似文献   

14.
We have studied the induction of helical polysomes by aflatoxin B1 in liver and kidney cells from rat and mouse. We succeeded in giving to reticulocyte polysomes a shape resembling helices after in vitro treatment with O-methylthreonine which is used as an inhibitor of polypeptide chain termination. From this and knowing the site of action of aflatoxin B1 on rat liver polysomes, we hypothesize that the induction of helical polysomes in tissues from adult animals treated by chemicals or carcinogens is due to the inhibition of release of ribosomes from the messenger RNA (mRNA). Theoretical studies of protein synthesis inhibition are in agreement with this new hypothesis.  相似文献   

15.
Low concentrations (0.5-6 nmol/g) of homocysteine (Hcy) have recently been demonstrated in acid extracts of various tissues of the mouse and rat (Ueland, P.M., Helland, S., Broch, O.-J., and Schanche, J.-S. (1984) J. Biol. Chem. 259, 2360-2364). This is referred to as free Hcy in tissues. This paper describes a method for the determination of protein-bound Hcy, which involves precipitation and washing of tissue protein with ammonium sulfate, release of Hcy from native proteins in the presence of dithioerythritol, and determination of free Hcy by a sensitive radioenzymic assay. Both free and bound Hcy decreased markedly in rat tissues within a few seconds following death of the animal. The amount of protein-bound Hcy was highest in liver, somewhat lower in kidney, brain, heart, lung, and spleen. The ratio between free and bound Hcy was between 1 and 2 in most tissues, except in cerebellum, containing a large excess of free Hcy (free/bound ratio of 18). Free Hcy was almost exclusively localized to the soluble fraction of rat liver, whereas protein-bound Hcy was about equally distributed between this fraction and the microsomes. Isolated rat hepatocytes contained free and protein-bound Hcy in proportions observed in whole liver, but a large amount of Hcy was exported into the extracellular medium. The half-lives, as determined from pulse-chase experiments with [35S] methionine, were 53 s for S-adenosylmethionine, 2 s for S-adenosylhomocysteine and 3 s for Hcy (free and bound regarded as a single pool). Furthermore, isotope equilibrium between these metabolites and between free and bound Hcy throughout the rapid chase period suggests the turnover rates of S-adenosylhomocysteine and Hcy to be production rate limited, and the dissociation rate of the Hcy-protein complex may greatly exceed the turnover rate of Hcy. Thus, the half-lives of Hcy are such that participation of both free and bound Hcy in metabolic regulation is feasible.  相似文献   

16.
本文采用P-tyr-BSA为免疫原免疫家无得抗血清。将纯化的IgG与HRP偶联,建立了P-tyr-Pr的ELISA法,并测定了正常大鼠肾脏等组织中P-tyr-Pr含量,其分布规律如下:上清中P-tyr-Pr含量高者,其颗粒部分则低,反之亦然;其中肾脏上清中含量远比其它组织(脾、肺、肝等)高。在此基础上,又研究了膜性肾炎大鼠肾脏P-tyr-Pr含量,发现其上清中的含量远远高于正常大鼠肾脏中的含量。  相似文献   

17.
Dopamine production by the isolated perfused rat kidney   总被引:1,自引:0,他引:1  
We used isolated perfused rat kidneys to examine dopamine (DA) production and its relation to renal function. Both innervated and chronically surgically denervated kidneys perfused with a solution containing neither albumin nor tyrosine, excreted 0.2 +/- 0.1 ng DA X min-1 X g wet weight-1 during the 10-min collection period between 30 and 40 min after starting perfusion. When perfused with 6.7% albumin, without tyrosine, innervated kidneys excreted 1.0 +/- 0.06 ng DA X min-1 X g-1 and denervated kidneys excreted 1.0 +/- 0.07 DA X min-1 X g-1. When 0.03 mM tyrosine was included in the albumin perfusate, innervated kidneys excreted 1.2 +/- 0.1 ng DA X min-1 X g-1 (p less than 0.1). Under these conditions DA excretion continued for at least 100 min at which time it was 0.6 ng X min-1 X g-1 and 86 ng/g kidney weight had been excreted. Denervated kidneys perfused with albumin + tyrosine excreted 0.9 +/- 0.13 ng DA X min-1 X g-1. Renal stores of free DA, conjugated DA, and dihydroxyphenylalanine (DOPA) could have provided at the most 30 ng/g of DA. Carbidopa inhibited DA excretion completely. DA excretion did not correlate with renal vascular resistance, inulin clearance, or fractional sodium excretion. In summary, nonneural tissue in isolated perfused kidneys produced DA at the same rate as denervated kidneys in vivo. Less than one-third of the DA produced by isolated kidneys could have come from intrarenal stores of DOPA, free DA, and conjugated DA; the rest was synthesized from unknown precursors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The ubiquitin-proteasome pathway fulfills major biological functions, but its physiologic tissue distribution and the interrelationship between pathway component activities and ubiquitin pools are unknown. Therefore, we analyzed free and conjugated ubiquitin, ubiquitin-protein ligation rates (UbPL) and chymotryptic- and tryptic-like proteasome peptidase activities in porcine skeletal muscle, heart, lung, liver, spleen and kidney (n=5 each). There were considerable differences between tissues (p<0.05 for all parameters). Lung and spleen showed high levels of free and conjugated ubiquitin and high UbPL. Proteasome activities were highest in kidney and heart. There were linear relationships between tryptic-like and chymotryptic-like proteasome peptidase activities (r(2) = 0.624, p<0.001) and between free and conjugated ubiquitin tissue levels (r(2) = 0.623, p<0.001). Tissue levels of free and conjugated ubiquitin correlated linear with UbPL (p<0.005), but they were not correlated with proteasome peptidase activities. The results suggest that tissue ubiquitin pools are tightly regulated and indicate a constant proportion of conjugated ubiquitin. They further support the hypothesis that ubiquitin-protein ligase systems, and probably deubiquitylating enzymes, are key regulators of ubiquitin homeostasis. The detected differences are suggestive of tissue-specific roles of ubiquitin-proteasome pathway components. Besides the known importance of the ubiquitin proteasome pathway in heart, kidney and the immune system, the results suggest the lung as another organ in which ubiquitin proteasome pathway components may also significantly contribute to disease processes.  相似文献   

19.
The formation and excretion of conjugated catecholamines (CA) was studied in conscious rats after sympathetic stimulation by hypoxia (5.5-6% O2, 4 h). Hypoxia induced a rapid and intense increase of free epinephrine (E, X 12) and norepinephrine (NE, X 6) but only a limited enhancement of free dopamine (DA, X 2). Sulfate conjugates of E and NE had kinetics similar to the free forms, while glucuronides were only moderately and lately altered. In contrast to free and sulfated DA, DA glucuronide, the major plasma conjugate, was decreased (-25%). This result suggests that DA glucuronide, unlike other CA conjugates, is not related to detoxication but might supply a CA precursor. Urinary conjugates badly reflected plasma conjugates. In normoxic controls, CA conjugates prevailed in the plasma, whereas the free amines prevailed in the urine. Hypoxia increased mainly the excretion of E and NE glucuronide but not of the free amines. Urinary DA, free or conjugated, was decreased (-25%), a result in keeping with plasma DA glucuronide only. The poor relations between plasma and urine catecholamines pinpoint the importance of the kidney in CA handling.  相似文献   

20.
Bone-marrow macrophages from both rat and mouse release deoxycytidine derived from phagocytosed nuclei. Mouse plasma contains no detectable deoxycytidine (less than 0.1 microM), whereas the concentration in rat plasma is 18 microM. Enzyme assays of tissue extracts show that both mouse and rat spleen contain high deoxycytidine kinase activity. Mouse organs, including kidney, liver and lung, also have deoxycytidine deaminase activity. In contrast, rat tissues have virtually no deoxycytidine deaminase activity. Lack of deaminase provides an explanation for the presence of deoxycytidine in rat plasma. Cytotoxicity assays show that cultured mouse lymphoid cells grown in undialysed rat serum are more resistant to cytotoxic effects of deoxyadenosine than are those cells grown in dialysed rat serum. The results suggest that a major difference in deoxycytidine metabolism between mouse and rat may account for discrepancies in the pharmacological response of the two animals to certain nucleoside compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号