首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chen KS  Gould MN 《BioTechniques》2004,37(3):383-388
Recently, we reported the production of the first knockout rats by combining N-ethyl-N-nitrosourea (ENU)-induced mutagenesis with a yeast-based truncation screening method. To make this new knockout technology more applicable for other laboratories and for high-throughput applications, we have developed a universal gap repair vector that is ready for use in screening for gene knockouts without additional engineering. The universal gap repair vector was validated for its application in both cDNA- and genomic DNA-based yeast truncation mutation assays. Breast cancer genes Brca1, Brca2, and Adenomatosis polyposis coli (Apc) genes from N2 rats of Brca1 and Brca2 knockouts and (Atm x ApcMin/+)F1 mice were examined, respectively. The results indicate that the universal gap repair vector we developed, using randomly selected codons as a universal cassette, is equally efficient at identifying truncation mutations as are those gap repair vectors designed specifically for Brca1 and Brca2. The availability of a universal gap repair vector should facilitate the broader screening of knockouts of most genes of many species using the combined approach of ENU-induced mutagenesis and yeast truncation assay.  相似文献   

2.
Half of all familial breast cancers are due to mutation in the BRCA1 gene. However, despite its importance, attempts to model BRCA1-induced disease in the mouse have been disappointing. Heterozygous Brca1 knockout mice do not develop mammary tumors and homozygous knockout mice die during embryogenesis from ill-defined causes. Sequence analysis has shown that the coding region, genomic organization, and regulatory sequences of the human and mouse genes are not well conserved. This has raised the question of whether the mouse can serve as an effective model for functional analysis of the human BRCA1 gene. To address this question we have introduced a bacterial artificial chromosome containing the human BRCA1 gene into the germline of Brca1 knockout mice. Surprisingly, we have found that the embryonic lethality of Brca1 knockout mice is rescued by the human transgene. We also show that expression of human BRCA1 transgene mirrors the endogenous murine gene. Our "humanized" transgenic mice can serve as a model system for functional analyses of the human BRCA1 gene. Published 2001 Wiley-Liss, Inc.  相似文献   

3.
CHK2 (checkpoint kinase 2) and BRCA1 (breast cancer early-onset 1) are tumour-suppressor genes that have been implicated previously in the DNA damage response. Recently, we have identified CHK2 and BRCA1 as genes required for the maintenance of chromosomal stability and have shown that a Chk2-mediated phosphorylation of Brca1 is required for the proper and timely assembly of mitotic spindles. Loss of CHK2, BRCA1 or inhibition of its Chk2-mediated phosphorylation inevitably results in the transient formation of abnormal spindles that facilitate the establishment of faulty microtubule-kinetochore attachments associated with the generation of lagging chromosomes. Importantly, both CHK2 and BRCA1 are lost at very high frequency in aneuploid lung adenocarcinomas that are typically induced in knockout mice exhibiting chromosomal instability. Thus these results suggest novel roles for Chk2 and Brca1 in mitosis that might contribute to their tumour-suppressor functions.  相似文献   

4.
5.
The tumor suppressor BRCA1 contains multiple functional domains that interact with many proteins. After DNA damage, BRCA1 is phosphorylated by CHK2 at serine 988, followed by a change in its intracellular location. To study the functions of CHK2-dependent phosphorylation of BRCA1, we generated a mouse model carrying the mutation S971A (S971 in mouse Brca1 corresponds to S988 in human BRCA1) by gene targeting. Brca1(S971A/S971A) mice were born at the expected ratio without a developmental defect, unlike previously reported Brca1 mutant mice. However, Brca1(S971A/S971A) mice suffered a moderately increased risk of spontaneous tumor formation, with a majority of females developing uterus hyperplasia and ovarian abnormalities by 2 years of age. After treatment with DNA-damaging agents, Brca1(S971A/S971A) mice exhibited several abnormalities, including increased body weight, abnormal hair growth pattern, lymphoma, mammary tumors, and endometrial tumors. In addition, the onset of tumor formation became accelerated, and 80% of the mutant mice had developed tumors by 1 year of age. We demonstrated that the Brca1(S971A/S971A) cells displayed reduced ability to activate the G(2)/M cell cycle checkpoint upon gamma-irradiation and to stabilize p53 following N-methyl-N'-nitro-N-nitrosoguanidine treatment. These observations suggest that Chk2 phosphorylation of S971 is involved in Brca1 function in modulating the DNA damage response and repressing tumor formation.  相似文献   

6.
Germline mutations in the breast cancer type 2 susceptibility gene (BRCA2) are linked to familial breast cancer and the progressive bone marrow failure syndrome Fanconi anaemia. Established Brca2 mouse knockout models show embryonic lethality, but those with a truncating mutation at the C-terminus survive to birth and develop thymic lymphoma at an early age. To overcome early lethality and investigate the function of BRCA2, we used T cell-specific conditional Brca2 knockout mice, which were previously shown to develop thymic lymphoma at a low penetrance. In the current study we showed that the number of peripheral T cells, particularly naïve pools, drastically declined with age. This decline was primarily ascribed to improper peripheral maintenance. Furthermore, heterozygous mice with one wild-type Brca2 allele manifested reduced T cell numbers, suggesting that Brca2 haploinsufficiency might also result in T cell loss. Our study reveals molecular events occurring in Brca2-deficient T cells and suggests that both heterozygous and homozygous Brca2 mutation may lead to dysfunction in T cell populations.  相似文献   

7.
Tong C  Huang G  Ashton C  Li P  Ying QL 《Nature protocols》2011,6(6):827-844
We describe here a detailed protocol for generating gene knockout rats by homologous recombination in embryonic stem (ES) cells. This protocol comprises the following procedures: derivation and expansion of rat ES cells, construction of gene-targeting vectors, generation of gene-targeted rat ES cells and, finally, production of gene-targeted rats. The major differences between this protocol and the classical mouse gene-targeting protocol include ES cell culture methods, drug selection scheme, colony picking and screening strategies. This ES cell-based gene-targeting technique allows sophisticated genetic modifications to be performed in the rat, as many laboratories have been doing in the mouse for the past two decades. Recently we used this protocol to generate Tp53 (also known as p53) gene knockout rats. The entire process requires ~1 year to complete, from derivation of ES cells to generation of knockout rats.  相似文献   

8.
MeCP2(Methyl CpG binding protein 2)基因突变可导致Rett综合征(Rett syndrome, RTT)。目前已报道的MeCP2敲除小鼠表型与RTT病人症状存在显著差异。为探索MeCP2在脑发育中的作用及其导致RTT的机制,本研究利用CRISPR/Cas9技术构建了MeCP2基因敲除大鼠模型。通过构建靶向敲除MeCP2基因的载体,体外将Cas9 mRNA和sgRNA显微注射到SD大鼠受精卵中,在MeCP2基因exon2中造成移码突变,从而获得MeCP2基因敲除大鼠。利用测序和Western blotting方法鉴定MeCP2敲除大鼠,并对其表型和行为学特征进行分析,发现MeCP2敲除大鼠体重降低,存在焦虑倾向和认知缺陷。本研究成功构建了MeCP2基因敲除大鼠模型,其表型类似人类RTT患者的症状,为后续MeCP2功能研究提供了更好的动物模型。  相似文献   

9.
Deng CX 《Mutation research》2001,477(1-2):183-189
Germline mutations in Brca1 are responsible for most cases of familial breast and ovarian cancers, but somatic mutations in the gene are rarely detected in sporadic tumors. Moreover, mouse embryos carrying Brca1-null mutations or homozygous deletions of Brca1 exon 11 of (Brca1Delta11/Delta11) die during gestation due to proliferation defects, raising questions about the mechanisms by which Brca1 represses tumor formation. Molecular analysis reveals that these Brca1 mutations cause hypersensitivity to gamma-irradiation and chromosomal abnormalities in embryos and embryonic fibroblast cells (MEFs). Notably, Brca1Delta11/Delta11 MEFs maintain an intact G1-S checkpoint, but are defective in G2-M checkpoint control. They also contain multiple, functional centrosomes, which lead to unequal chromosome segregation and aneuploidy. These data uncover an essential role for Brca1 in maintaining genetic stability through regulation of centrosome duplication and G2-M checkpoint, and provide a molecular basis for its role in tumorigenesis. Finally, we show that conditional mutation of Brca1 in mammary epithelium causes increased apoptosis and abnormal ductal development. Mammary tumor formation in mutant mice occurs after long latency and is associated with p53 mutations. These results are consistent with a model that Brca1 acts as a caretaker gene, whose absence does not directly initiate tumorigenesis, instead, causes genetic instability, which triggers further alterations and ultimately leads to tumor formation.  相似文献   

10.
Recent studies have provided evidence that breast cancer susceptibility gene products (Brca1 and Brca2) suppress cancer, at least in part, by participating in DNA damage signaling and DNA repair. Brca1 is hyperphosphorylated in response to DNA damage and co-localizes with Rad51, a protein involved in homologous-recombination, and Nbs1.Mre11.Rad50, a complex required for both homologous-recombination and nonhomologous end joining repair of damaged DNA. Here, we report that there is a qualitative difference in the phosphorylation states of Brca1 between ionizing radiation (IR) and UV radiation. Brca1 is phosphorylated at Ser-1423 and Ser-1524 after IR and UV; however, Ser-1387 is specifically phosphorylated after IR, and Ser-1457 is predominantly phosphorylated after UV. These results suggest that different types of DNA-damaging agents might signal to Brca1 in different ways. We also provide evidence that the rapid phosphorylation of Brca1 at Ser-1423 and Ser-1524 after IR (but not after UV) is largely ataxia telangiectasia mutated (ATM) kinase-dependent. The overexpression of catalytically inactive ATM and Rad3 related (ATR) kinase inhibited the UV-induced phosphorylation of Brca1 at these sites, indicating that ATR controls Brca1 phosphorylation in vivo after the exposure of cells to UV light. Moreover, ATR associates with Brca1; ATR and Brca1 foci co-localize both in cells synchronized in S phase and after exposure of cells to DNA-damaging agents. ATR can itself phosphorylate the region of Brca1 phosphorylated by ATM (Ser-Gln cluster in the C terminus of Brca1, amino acids 1241-1530). However, there are additional uncharacterized ATR phosphorylation site(s) between residues 521 and 757 of Brca1. Taken together, our results support a model in which ATM and ATR act in parallel but somewhat overlapping pathways of DNA damage signaling but respond primarily to different types of DNA lesion.  相似文献   

11.
Tong C  Huang G  Ashton C  Wu H  Yan H  Ying QL 《遗传学报》2012,39(6):275-280
  相似文献   

12.
Thompson LH  Schild D 《Mutation research》2001,477(1-2):131-153
The process of homologous recombinational repair (HRR) is a major DNA repair pathway that acts on double-strand breaks and interstrand crosslinks, and probably to a lesser extent on other kinds of DNA damage. HRR provides a mechanism for the error-free removal of damage present in DNA that has replicated (S and G2 phases). Thus, HRR acts in a critical way, in coordination with the S and G2 checkpoint machinery, to eliminate chromosomal breaks before the cell division occurs. Many of the human HRR genes, including five Rad51 paralogs, have been identified, and knockout mutants for most of these genes are available in chicken DT40 cells. In the mouse, most of the knockout mutations cause embryonic lethality. The Brca1 and Brca2 breast cancer susceptibility genes appear to be intimately involved in HRR, but the mechanistic basis is unknown. Biochemical studies with purified proteins and cell extracts, combined with cytological studies of nuclear foci, have begun to establish an outline of the steps in mammalian HRR. This pathway is subject to complex regulatory controls from the checkpoint machinery and other processes, and there is increasing evidence that loss of HRR gene function can contribute to tumor development. This review article is meant to be an update of our previous review [Biochimie 81 (1999) 87].  相似文献   

13.
BRCA1 is a checkpoint and DNA damage repair gene that secures genome integrity. We have previously shown that mice lacking full-length Brca1 (Brca1(delta11/delta11)) die during embryonic development. Haploid loss of p53 completely rescues embryonic lethality, and adult Brca1(delta11/delta11)p53+/- mice display cancer susceptibility and premature aging. Here, we show that reduced expression and/or the absence of Chk2 allow Brca1(delta11/delta11) mice to escape from embryonic lethality. Compared to Brca1(delta11/delta11)p53+/- mice, lifespan of Brca1(delta11/delta11)Chk2-/- mice was remarkably extended. Analysis of Brca1(delta11/delta11)Chk2-/- mice revealed that p53-dependent apoptosis and growth defect caused by Brca1 deficiency are significantly attenuated in rapidly proliferating organs. However, in later life, Brca1(delta11/delta11)Chk2-/- female mice developed multiple tumors. Furthermore, haploid loss of ATM also rescued Brca1 deficiency-associated embryonic lethality and premature aging. Thus, in response to Brca1 deficiency, the activation of the ATM-Chk2-p53 signaling pathway contributes to the suppression of neoplastic transformation, while leading to compromised organismal homeostasis. Our data highlight how accurate maintenance of genomic integrity is critical for the suppression of both aging and malignancy, and provide a further link between aging and cancer.  相似文献   

14.
One of the remarkable achievements in knockout (KO) rat production reported during the period 2008-2010 is the derivation of authentic embryonic stem (ES) cells from rat blastocysts using a novel culture medium containing glycogen synthase kinase 3 and mitogen-activated protein kinase kinase inhibitors (2i medium). Here, we report gene-targeting technology via homologous recombination in rat ES cells, demonstrating its use through production of a protease-activated receptor-2 gene (Par-2) KO rat. We began by generating germline-competent ES cells from Dark Agouti rats using 2i medium. These ES cells, which differentiate into cardiomyocytes in vitro, can produce chimeras with high ES cell contribution when injected into blastocysts. We then introduced a targeting vector with a neomycin-resistant gene driven by the CAG promoter to disrupt Par-2. After a 7-day drug selection, 489 neomycin-resistant colonies were obtained. Following screening by polymerase chain reaction (PCR) genotyping and quantitative PCR analysis, we confirmed three homologous recombinant clones, resulting in chimeras that transmitted the Par-2 targeted allele to offspring. Par-2 KO rats showed a loss of Par-2 messenger RNA expression in their stomach cells and a lack of PAR-2 mediated smooth muscle relaxation in the aorta as indicated by pharmacological testing. Compared with mice, rats offer many advantages in biomedical research, including a larger body size; consequently, they are widely used in scientific investigation. Thus, the establishment of a gene-targeting technology using rat ES cells will be a valuable tool in human disease model production and drug discovery.  相似文献   

15.
The Arabidopsis (Arabidopsis thaliana) orthologs of Brca2, a protein whose mutations are involved in breast cancer in humans, were previously shown to be essential at meiosis. In an attempt to better understand the Brca2-interacting properties, we examined four partners of the two isoforms of Brca2 identified in Arabidopsis (AtRad51, AtDmc1, and two AtDss1 isoforms). The two Brca2 and the two Dss1 isoforms are named AtBrca2(IV), AtBrca2(V), AtDss1(I), and AtDss1(V) after their chromosomal localization. We first show that both AtBrca2 proteins can interact with either AtRad51 or AtDmc1 in vitro, and that the N-terminal region of AtBrca2 is responsible for these interactions. More specifically, the BRC motifs (so called because iterated in the Brca2 protein) in Brca2 are involved in these interactions: BRC motif number 2 (BRC2) alone can interact with AtDmc1, whereas BRC motif number 4 (BRC4) recognizes AtRad51. The human Rad51 and Dmc1 proteins themselves can interact with either the complete (HsRad51) or a shorter version of AtBrca2 (HsRad51 or HsDmc1) that comprises all four BRC motifs. We also identified two Arabidopsis isoforms of Dss1, another known partner of Brca2 in other organisms. Although all four Brca2 and Dss1 proteins are much conserved, AtBrca2(IV) interacts with only one of these AtDss1 proteins, whereas AtBrca2(V) interacts with both of them. Finally, we show for the first time that an AtBrca2 protein could bind two different partners at the same time: AtRad51 and AtDss1(I), or AtDmc1 and AtDss1(I).  相似文献   

16.
Cell cycle arrests in the G(1), S, and G(2) phases occur in mammalian cells after ionizing irradiation and appear to protect cells from permanent genetic damage and transformation. Though Brca1 clearly participates in cellular responses to ionizing radiation (IR), conflicting conclusions have been drawn about whether Brca1 plays a direct role in cell cycle checkpoints. Normal Nbs1 function is required for the IR-induced S-phase checkpoint, but whether Nbs1 has a definitive role in the G(2)/M checkpoint has not been established. Here we show that Atm and Brca1 are required for both the S-phase and G(2) arrests induced by ionizing irradiation while Nbs1 is required only for the S-phase arrest. We also found that mutation of serine 1423 in Brca1, a target for phosphorylation by Atm, abolished the ability of Brca1 to mediate the G(2)/M checkpoint but did not affect its S-phase function. These results clarify the checkpoint roles for each of these three gene products, demonstrate that control of cell cycle arrests must now be included among the important functions of Brca1 in cellular responses to DNA damage, and suggest that Atm phosphorylation of Brca1 is required for the G(2)/M checkpoint.  相似文献   

17.
The breast tumor associated gene-1 (BRCA1) and poly(ADP-ribose) polymerase-1 (PARP1) are both involved in DNA-damage response and DNA-damage repair. Recent investigations have suggested that inhibition of PARP1 represents a promising chemopreventive/therapeutic approach for specifically treating BRCA1- and BRCA2-associated breast cancer. However, studies in mouse models reveal that Parp1-null mutation results in genetic instability and mammary tumor formation, casting significant doubt on the safety of PARP1 inhibition as a therapy for the breast cancer. To study the genetic interactions between Brca1 and Parp1, we interbred mice carrying a heterozygous deletion of full-length Brca1 (Brca1(+/Delta11)) with Parp1-null mice. We show that Brca1(Delta11/Delta11);Parp1(-/-) embryos die before embryonic (E) day 6.5, whereas Brca1(Delta11/Delta11) embryos die after E12.5, indicating that absence of Parp1 dramatically accelerates lethality caused by Brca1 deficiency. Surprisingly, haploinsufficiency of Parp1 in Brca1(Delta11/Delta11) embryos induces a severe chromosome aberrations, centrosome amplification, and telomere dysfunction, leading to apoptosis and accelerated embryonic lethality. Notably, telomere shortening in Brca1(Delta11/Delta11);Parp1(+/-) MEFs was correlated with decreased expression of Ku70, which plays an important role in telomere maintenance. Thus, haploid loss of Parp1 is sufficient to induce lethality of Brca1-deficient cells, suggesting that partial inhibition of PARP1 may represent a practical chemopreventive/therapeutic approach for BRCA1-associated breast cancer.  相似文献   

18.
19.
Nrf2可调节多种抗氧化酶的表达,Nrf2的缺失可能影响机体的运动能力,而低氧可提高机体的抗氧化能力并改善运动能力。为了考察低氧运动对Nrf2基因敲除大鼠运动能力和氧化应激的影响,本研究分别在常氧和低氧环境(12%氧浓度)中对野生型大鼠和Nrf2敲除大鼠进行4周的跑台运动。研究显示,低氧运动可提高野生型大鼠的跑台运动力竭时间,Nrf2敲除可缩短大鼠的力竭时间;低氧运动可上调大鼠的Nrf2 m RNA表达量;Nrf2敲除明显抑制HIF-1α蛋白表达,而低氧运动可上调野生型和Nrf2敲除大鼠的HIF-1α蛋白表达;Nrf2敲除大鼠的骨骼肌ROS水平明显升高,并且低氧均可降低野生型和Nrf2敲除大鼠骨骼肌ROS水平。低氧运动可上调Nrf2敲除大鼠的CAT和GSH-PX蛋白表达。苏木精和伊红(HE)染色显示,Nrf2敲除大鼠在力竭跑台运动完成后出现更严重的骨骼肌病理改变,而低氧运动可减轻骨骼肌损伤。本研究认为,Nrf2敲除导致了大鼠骨骼肌中抗氧化酶的抑制及ROS的过量累积,从而造成了骨骼肌损伤并降低了运动能力。此外,低氧可通过上调Nrf2的表达,进而激活HIF-1α及抗氧化酶活性,从而提高运动能力,并防止骨骼肌损伤。  相似文献   

20.
Mutations in the disrupted in schizophrenia-1 (DISC1) gene are associated with an increased risk of developing psychological disorders including schizophrenia, bipolar disorder, and depression. Assessing the impact of knocking out genes, like DISC1, in animal models provides valuable insights into the relationship between the gene and behavioral outcomes. Previous research has relied on mouse models to assess these impacts, however these may not yield as reliable or rich a behavioral analysis as can be obtained using rats. Thus, the goal of the present study was to characterize the behavioral effects of a biallelic functional deletion of the DISC1 gene in the Sprague Dawley rat. Female and male wild type and DISC1 knockout rats were assessed beginning just prior to weaning and during the post-weaning periadolescent period. The primary outcomes evaluated were activity, anxiety, responses to novel objects and conspecifics, and prepulse inhibition. These behaviors were selected as analogous indices of psychological dysfunction in humans. The DISC1 knockout had significant effects on behavior, although the kind and magnitude of deficits was different for females and males: in females, effects included hyperactivity, aversion to novelty, and a modest prepulse inhibition deficit; in males, effects in anxiety and neophobia were mild but their prepulse inhibition deficit was large. These data confirm that the DISC1 knockout rat model is an excellent way to reproduce and study symptoms of psychological disorders and provides compelling evidence for differential consequences of its dysfunction for females and males in the progression and emergence of specific behavioral deficits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号