首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 196 毫秒
1.
INTRODUCTIONGal a(1, 3) Gal (gal epitope) is a carbohydrate epitope, which is produced in large amounton the cells of pigs, mice and New World monkey(monkey of South America) by the glycosylationenzyme G alal 1 ) 4G IcNAc3- a- D- galactosyltransferase[or(1, 3)GT; EC2.4.1.511111. This enzyme is active in the Golgi appaxatus of cells and transfers galactose from the sugandonor uridine diphoSphate galactose (UDP-galactose) to the acceptor Nacetyllactosamine residue (Galaal-4GlcNAc-R…  相似文献   

2.
人肝癌组织中a(1,3)FuT-Ⅲ,Ⅴ.Ⅵ基因表达的研究//范俊,谢天培,刘彦军,胡匀,顾天爵(上海医科大学基础医学院生化教研室,200032;第二军医大学东方肝胆研究所,200433)关键词PCR;a(1,3)岩藻糖转移酶(FuT);人肝癌;原位杂...  相似文献   

3.
4.
同种异体组织和器官移植物供体来源有限,使得异种移植再度成为移植领域的研究热点。异种移植的主要障碍是人体内存在的天然抗体与移植物表面含有α1,3半乳糖残基[Galα(1,3)Gal,αGal]的抗原结合,激活补体系统和炎症反应,导致超急性移植排斥反应(HAR)的发生,使移植物失活。除人类和旧世纪猴外,其它所有哺乳动物的体内都含有αGal抗原,该抗原是由一组具有Galα(1,3)Gal双糖末端的糖蛋白或糖脂组成的,它的形成依赖于α1,3半乳糖基转移酶(αGT)的催化。目前,针对αGal抗原克服超急性移植排斥反应的方法主要有如下几种:(1)酶处理去除内皮细胞表面的αGal抗原;(2)物理化学方法去除人体血浆中存在的特异性天然抗体;(3)基因工程方法改造表达催化αGal抗原形成的相关酶基因,从而影响该抗原的表达。  相似文献   

5.
6.
7.
This study describes the processing of human tumor cells or cell membranes to express alpha-gal epitopes (Galalpha1-3Gal-beta1-4GlcNAc-R) by the use of New World monkey (marmoset) recombinant alpha1,3galactosyltransferase (ralpha1,3GT), produced in the yeast Pichia pastoris. Such tumor cells and membranes may serve, in cancer patients, as autologous tumor vaccines that are targeted in vivo to antigen-presenting cells by the anti-Gal antibody. This ralpha1,3GT lacks transmembrane and cytoplasmic domains, ensuring its solubility without detergent. It is effectively produced in P. pastoris under constitutive expression of the P(GAP) promoter and is secreted into the culture medium in a soluble, truncated form fused to a (His)(6) tag. This tag enables the simple affinity purification of ralpha1,3GT on a nickel-Sepharose column and elution with imidazole. The purified enzyme appears in SDS-PAGE as two bands with the size of 40 and 41 kDa and displays the same acceptor specificity as the mammalian native enzyme. ralpha1,3GT is very effective in synthesizing alpha-gal epitopes on membrane-bound carbohydrate chains and displays a specific activity of 1.2 nM membrane bound alpha-gal epitopes/min/mg. Incubation of very large amounts of human acute myeloid leukemia cells (1 x 10(9 )cells) with neuraminidase, ralpha1,3GT, and UDP-Gal resulted in the synthesis of approximately 6 x 10(6 )alpha-gal epitopes per cell. Effective synthesis of alpha-gal epitopes could be achieved also with as much as 2 g cell membranes prepared from the tumor of a patient with ovarian carcinoma. These data imply that ralpha1,3GT produced in P. pastoris is suitable for the synthesis of alpha-gal epitopes on bulk amounts of tumor cells or cell membranes required for the preparation of autologous tumor vaccines.  相似文献   

8.
Sequence information obtained by NH2-terminal sequence analysis of two molecular weight forms (45 and 48 kDa) of the porcine Gal beta 1,3GalNAc alpha 2,3-sialyltransferase was used to clone a full-length cDNA of the enzyme. The cDNA sequence revealed an open reading frame coding for 343 amino acids and a putative domain structure consisting of a short NH2-terminal cytoplasmic domain, a signal-anchor sequence, and a large COOH-terminal catalytic domain. This domain structure was confirmed by construction of a recombinant sialyltransferase in which the cytoplasmic domain and signal-anchor sequence of the enzyme was replaced with the cDNA of insulin signal sequence. Expression of the resulting construct in COS-1 cells produced an active sialyltransferase which was secreted into the medium in soluble form. Comparison of the cDNA sequence of the sialyltransferase with GenBank produced no significant homologies except with the previously described Gal beta 1,4GlcNAc alpha 2,6-sialyltransferase. Although the cDNA sequences of these two enzymes were largely nonhomologous, there was a 45-amino acid sequence which exhibited 65% identity. This observation suggests that the two sialyltransferases were derived, in part, from a common gene.  相似文献   

9.
The production of homozygous pigs with a disruption in the GGTA1 gene, which encodes alpha1,3galactosyltransferase (alpha1,3GT), represented a critical step toward the clinical reality of xenotransplantation. Unexpectedly, the predicted complete elimination of the immunogenic Galalpha(1,3)Gal carbohydrate epitope was not observed as Galalpha(1,3)Gal staining was still present in tissues from GGTA1(-/-) animals. This shows that, contrary to previous dogma, alpha1,3GT is not the only enzyme able to synthesize Galalpha(1,3)Gal. As iGb3 synthase (iGb3S) is a candidate glycosyltransferase, we cloned iGb3S cDNA from GGTA1(-/-) mouse thymus and confirmed mRNA expression in both mouse and pig tissues. The mouse iGb3S gene exhibits alternative splicing of exons that results in a markedly different cytoplasmic tail compared with the rat gene. Transfection of iGb3S cDNA resulted in high levels of cell surface Galalpha(1,3)Gal synthesized via the isoglobo series pathway, thus demonstrating that mouse iGb3S is an additional enzyme capable of synthesizing the xenoreactive Galalpha(1,3)Gal epitope. Galalpha(1,3)Gal synthesized by iGb3S, in contrast to alpha1,3GT, was resistant to down-regulation by competition with alpha1,2fucosyltransferase. Moreover, Galalpha(1,3)Gal synthesized by iGb3S was immunogenic and elicited Abs in GGTA1 (-/-) mice. Galalpha(1,3)Gal synthesized by iGb3S may affect survival of pig transplants in humans, and deletion of this gene, or modification of its product, warrants consideration.  相似文献   

10.
Yu L  Miao H  Guo L 《DNA and cell biology》2005,24(4):235-243
Xenotransplantation from pigs to human beings is viewed as a potential solution for the acute organ shortage. However, consequent xenorejection induced by Gal alpha 1,3 Gal (a Gal, Gal antigen) prevents xenotransplantation from clinical application. Thus, the most attracting attempt to prevent xenorejection is the elimination of Gal. Our study suggested that compared with the human alpha 1,2 fucosyltransferase (FT) gene and the porcine antisense alpha 1,3 galactosyltransferase gene, sequence-specific siRNA targeting Gal was capable of suppressing Gal expression markedly, and therefore, significantly inhibiting xenoreactivity and the complement activation with human serum in PIEC cells. We also demonstrated the concordant inhibitory effect of siRNA and the human FT gene on Gal and corresponding functions, which implied a practical significance of combined transgenic strategy. The successful application of vector-based dsRNA-GT may extend the list of available modalities in the abrogation of xenorejection in xenotransplantation.  相似文献   

11.
Yu L  Miao H  Guo L 《DNA and cell biology》2005,24(3):180-188
Xenotransplantation from pig to human being is viewed as a potential solution for the acute organ shortage. However, consequent xenorejection induced by Gal alpha 1,3 Gal (Gal, Gal antigen) prevents xenotransplantation from clinical application. Thus, the most attracting attempt to prevent xenorejection is the elimination of Gal. Our study suggested that compared with the human alpha 1,2 fucosyltransferase (FT) gene and porcine antisense alpha 1,3 galactosyltransferase gene, sequence-specific siRNA targeting Gal were capable of suppressing Gal expression markedly, and therefore, significantly inhibiting xenoreactivity and the complement activation with human serum in PIEC cells. We also demonstrated the concordant inhibitory effect of siRNA and human FT gene on Gal and corresponding functions, which implied a practical significance of combined transgenic strategy. The successful application of vector-based dsRNA-GT may extend the list of available modalities in the abrogation of xenorejection in xenotransplantation.  相似文献   

12.
Previous studies (Galili, U., Clark, M. R., Shohet, S. B., Buehler, J., and Macher, B. A. (1987) Proc. Natl. Acad. Sci. U. S. A. 84, 1369-1373; Galili, U., Shohet, S. B., Korbrin, E., Stults, C. L. M., and Macher, B. A. (1988) J. Biol. Chem. 263, 17755-17762) have established that there is a unique evolutionary distribution of glycoconjugates carrying the Gal alpha 1-3Gal beta 1-4GlcNAc epitope. These glycoconjugates are expressed by cells from New World monkeys and non-primate mammals, but not by cells from humans, Old World monkeys, or apes. The lack of expression of this epitope in the latter species appears to result from the suppression of gene expression for the enzyme UDP-galactose:nLc4Cer alpha 1-3-galactosyltransferase (alpha 1-3GalT) (Joziasse, D. H., Shaper, J. H., Van den Eijnden, D. H., Van Tunen, A. J., and Shaper, N. L. (1989) J. Biol. Chem. 264, 14290-14297). Although many non-primate species are known to express this carbohydrate epitope, the nature (i.e. glycoprotein or glycosphingolipid) of the glycoconjugate carrying this epitope is only known for a few tissues in a few animal species. Furthermore, it is not known whether all animal species express this epitope in the same tissues. We have investigated these questions by analyzing the glycosphingolipids in kidney from several non-primate animal species. Immunostained thin layer chromatograms of glycosphingolipids from sheep, pig, rabbit, cow, and rat kidney with the Gal alpha 1-3Gal beta 1-4GlcNAc glycosphingolipid-specific monoclonal antibody, Gal-13, demonstrated that kidney from all of these species except rat contained Gal alpha 1-3Gal beta 1-4GlcNAc neutral glycosphingolipids. A lack of expression of Gal alpha 1-3Gal beta 1-4GlcNAc glycosphingolipids in rat may be due to the lack of expression of the enzyme (alpha 1-3GalT) which catalyzes the formation of the Gal alpha 1-3Gal nonreducing terminal sequence of these compounds or to the lack of expression of glycosyltransferases which are necessary for the synthesis of the neolacto core structure of these compounds. These possibilities were evaluated in two ways. First, the three enzymes (UDP-N-acetylglucosamine:LacCer beta 1-3-N-acetyl-glucosaminyltransferase, UDP-galactose:Lc3Cer beta 1-4-galactosyltransferase, and alpha 1-3GalT) involved in the synthesis of the Gal alpha 1-3Gal beta 1-4GlcNAc glycosphingolipids were assayed using an enzyme-linked immunosorbent assay-based assay system and carbohydrate sequence-specific monoclonal antibodies. Second, TLC immunostaining was done to determine if the glycosphingolipid precursors (i.e. Lc3Cer and nLc4Cer) are expressed in rat kidney. Interestingly, rat kidney had a relatively high level of alpha 1-3GalT activity compared with the other animals tested.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号