首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
INTRODUCTIONGal a(1, 3) Gal (gal epitope) is a carbohydrate epitope, which is produced in large amounton the cells of pigs, mice and New World monkey(monkey of South America) by the glycosylationenzyme G alal 1 ) 4G IcNAc3- a- D- galactosyltransferase[or(1, 3)GT; EC2.4.1.511111. This enzyme is active in the Golgi appaxatus of cells and transfers galactose from the sugandonor uridine diphoSphate galactose (UDP-galactose) to the acceptor Nacetyllactosamine residue (Galaal-4GlcNAc-R…  相似文献   

2.
改造猪的器官移植给人类被认为是解决人类移植器官供不应求的可能方案,但由于猪和人在免疫学上的差异使移植到人体的猪的带血管器官很快被排斥掉,本文综述了近十年来对猪-人之间最重要的差异性抗原表位的研究进展.  相似文献   

3.
在考虑以猪器官作为供体对人进行异种器官移植时,α1,3半乳糖被认为是引起超急性免疫排斥的主要异种抗原.人们建立了各种方法以降低猪α1,3半乳糖水平,但是也有可能筛选得到在自然情况下α1,3半乳糖表达水平比较低的猪.为了研究在正常猪单个核细胞中α1,3半乳糖浓度分布的差异,利用鸡免疫球蛋白Y(ck-IgY)抗体通过流式细胞分析对正常猪的α1,3半乳糖水平的差异进行检测.取3~8周龄猪的全血,用肝素抗凝处理后经密度梯度离心获取外周血单个核细胞(PBMCs),与FITC标记的ck-IgY(10μg/ml)孵育,经流式细胞仪检测α1,3半乳糖水平.结果显示,相同周龄猪的α1,3半乳糖水平可有0.4~2.6倍差异,同一猪的水平在不同周龄有1.3~5.6倍差异.ck-IgY的特异性由棉籽糖和α1,3半乳二糖测定,棉籽糖(100μmol/L)可抑制70%ck-IgY结合,而α1,3半乳二糖(6.25μmol/L)可完全取消ck-IgY的结合,说明ck-IgY与猪单个核细胞是特异性结合.上述发现说明,ck-IgY是检测猪单个核细胞表面α1,3半乳糖的特异试剂,不同猪或是同一猪在不同时间的α1,3半乳糖水平有着明显的差异.  相似文献   

4.
The α-Gal epitope (Galα1-3Galβ1-4GlcNAc-R) in xenotransplantation   总被引:3,自引:0,他引:3  
Galili U 《Biochimie》2001,83(7):557-563
Many patients with failing organs (e.g., heart, liver or kidneys), do not receive the needed organ because of an insufficient number of organ donors. Pig xenografts have been considered as an alternative source of organs for transplantation. The major obstacle currently known to prevent pig to human xenotransplantation is the interaction between the human natural anti-Gal antibody and the alpha-gal epitope (Gal alpha 1-3Gal beta 1-4GlcNAc-R), abundantly expressed on pig cells. This short review describes the characteristics of anti-Gal and of the alpha-gal epitope, their role in inducing xenograft rejection and some experimental approaches for preventing this rejection.  相似文献   

5.
6.
7.
alpha-Heterocyclic alpha-aminoesters were obtained in good yields by reaction of a glycine cation equivalent and different heterocyclic nucleophiles; diastereoselectivity using a carbohydrate (galactopyranose) as N-protecting group was modest.  相似文献   

8.
Abstract.— We examined the phylogeography and history of giant Galàpagos tortoise populations based on mito-chondrial DNA sequence data from 161 individuals from 21 sampling sites representing the 11 currently recognized extant taxa. Molecular clock and geological considerations indicate a founding of the monophyletic Galàpagos lineage around 2–3 million years ago, which would allow for all the diversification to have occurred on extant islands. Founding events generally occurred from geologically older to younger islands with some islands colonized more than once. Six of the 11 named taxa can be associated with monophyletic maternal lineages. One, Geochelone porteri on Santa Cruz Island, consists of two distinct populations connected by the deepest node in the archipelago-wide phylogeny, whereas tortoises in northwest Santa Cruz are closely related to those on adjacent Pinzón Island. Volcan Wolf, the northernmost volcano of Isabela Island, consists of both a unique set of maternal lineages and recent migrants from other islands, indicating multiple colonizations possibly due to human transport or multiple colonization and partial elimination through competition. These genetic findings are consistent with the mixed morphology of tortoises on this volcano. No clear genetic differentiation between two taxa on the two southernmost volcanoes of Isabela was evident. Extinction of crucial populations by human activities confounds whether domed versus saddleback carapaces of different populations are mono- or polyphyletic. Our findings revealed a complex phylogeography and history for this tortoise radiation within an insular environment and have implications for efforts to conserve these endangered biological treasures.  相似文献   

9.
Photo-oxygenation of α-ionone was studied to clarify the relationship between the maturity of aroma and photo-oxygenative change of α-ionone. α-Ionone was converted to oxygenated derivatives which were identified as 2,3-epoxy-β-ionone, 3,4-epoxy-α-ionone, 4-keto-β-ionone (trans- and cis-form), 5-keto-α-ionone and 3,4-dihydroxy-α-ionone.  相似文献   

10.
Cyanide catalyzes the reduction of dioxygen or of ferricytochrome c by dihydroxyacetone phosphate. The rapid initial phase of these reactions, but not the subsequent slow phase, was augmented by incubating the triose phosphate aerobically or anaerobically at pH 9.0 prior to adding the cyanide. The aerobic incubation, which was most effective, was associated with a decline in enediol, whereas the less effective anaerobic incubation was accompanied by an increase in enediol content. This suggested that the α-ketoaldehyde product of autoxidation of the enediol, rather than the enediol itself, was responsible for the rapid phase reaction which followed addition of cyanide. This was confirmed by exploring the cyanide-catalyzed oxidation of the α-ketoaldehyde, phenylglyoxal. The inhibitory effect of the manganese-containing superoxide dismutase indicated that O2 was a kinetically important intermediate of the rapid phase reaction. A reaction mechanism is proposed which is consistent with the results presented.  相似文献   

11.
Deriy L  Chen ZC  Gao GP  Galili U 《Glycobiology》2002,12(2):135-144
Alpha1,3galactosyltransferase (alpha1,3GT) synthesizes alpha-gal epitopes (Gal(alpha)1-3Galbeta1-4GlcNAc-R) on glycoconjugates in nonprimate mammals but not in humans. Transduction of alpha1,3GT gene into human HeLa cells by an adenovirus vector allowed for accurate kinetics studies on the appearance of alpha1,3GT and of its product, the alpha-gal epitope, in the transduced cells. Mouse alpha1,3GT cDNA was inserted into a replication-defective adenovirus vector. This viral vector, designated Ad(alpha)GT, could be propagated in human 293 cells that have the viral E1 complementing gene. Transduction of HeLa cells resulted in immediate penetration of approximately 20 Ad(alpha)GT copies into each cell and the appearance of alpha1,3GT mRNA after 4h. Catalytic activity of alpha1,3GT was first detected in the cells after 6 h. The initial appearance of alpha-gal epitopes (approximately 6 x 10(4)/cell) on cell surface glycoconjugates was detected 10 h posttransduction, whereas 24 h posttransduction each cell expressed 2 x 10(6) epitopes. The activity of alpha1,3GT in cells transduced with approximately two copies of Ad(alpha)GT was eightfold lower than that in cells transduced with approximately 20 Ad(alpha)GT copies; however, the number of alpha-gal epitopes/cell remained closely similar. This implies that increased alpha1,3GT activity above a certain saturation level does not result in a corresponding increase in the carbohydrate product, possibly because of competing glycosyltransferases.  相似文献   

12.
The production of homozygous pigs with a disruption in the GGTA1 gene, which encodes alpha1,3galactosyltransferase (alpha1,3GT), represented a critical step toward the clinical reality of xenotransplantation. Unexpectedly, the predicted complete elimination of the immunogenic Galalpha(1,3)Gal carbohydrate epitope was not observed as Galalpha(1,3)Gal staining was still present in tissues from GGTA1(-/-) animals. This shows that, contrary to previous dogma, alpha1,3GT is not the only enzyme able to synthesize Galalpha(1,3)Gal. As iGb3 synthase (iGb3S) is a candidate glycosyltransferase, we cloned iGb3S cDNA from GGTA1(-/-) mouse thymus and confirmed mRNA expression in both mouse and pig tissues. The mouse iGb3S gene exhibits alternative splicing of exons that results in a markedly different cytoplasmic tail compared with the rat gene. Transfection of iGb3S cDNA resulted in high levels of cell surface Galalpha(1,3)Gal synthesized via the isoglobo series pathway, thus demonstrating that mouse iGb3S is an additional enzyme capable of synthesizing the xenoreactive Galalpha(1,3)Gal epitope. Galalpha(1,3)Gal synthesized by iGb3S, in contrast to alpha1,3GT, was resistant to down-regulation by competition with alpha1,2fucosyltransferase. Moreover, Galalpha(1,3)Gal synthesized by iGb3S was immunogenic and elicited Abs in GGTA1 (-/-) mice. Galalpha(1,3)Gal synthesized by iGb3S may affect survival of pig transplants in humans, and deletion of this gene, or modification of its product, warrants consideration.  相似文献   

13.
Susceptibility of porcine endothelial cells to human natural killer (NK) cell lysis was found to reflect surface expression of ligands containing Gal alpha(1,3)Gal beta(1,4)GlcNAc [corrected], the principal antigen on porcine endothelium recognized by xenoreactive human antibodies. Genetically modifying expression of this epitope on porcine endothelium by transfection with the alpha(1,2)-fucosyltransferase gene reduced susceptibility to human NK lysis. These results indicate that surface carbohydrate remodeling profoundly affects target cell susceptibility to NK lysis, and suggest that successful transgenic strategies to limit xenograft rejection by NK cells and xenoreactive antibodies will need to incorporate carbohydrate remodeling.  相似文献   

14.
The Gal alpha 1-3Gal structural determinant has been found to have a unique distribution in mammals. Although this determinant is abundantly expressed by erythrocytes and nucleated cells of many mammals, it has not been detected in human cells. However, our previous studies (Galili, U., Rachmilewitz, E. A., Peleg, A., and Flechner, I. (1984) J. Exp. Med. 160, 1519-1531; Galili, U., Clark, M. R., and Shohet, S. B. (1986) J. Clin. Invest. 77, 27-33) have suggested that this epitope is present in small amounts and may be involved in immune-mediated destruction of senescent human erythrocytes. To have a means for exploring this possibility and for studying the species and tissue distribution of this epitope we have raised a monoclonal antibody (Gal-13) which specifically binds to glycoconjugates with a nonreducing terminal Gal alpha 1-3Gal disaccharide. Mice were immunized with rabbit erythrocytes, which express an abundance of glycoconjugates with Gal alpha 1-3Gal epitopes. Clones were screened with a solid-phase binding assay (enzyme-linked immunosorbent assay) for antibodies which bound to ceramide pentahexoside (Gal alpha 1-3Gal beta 1-4GlcNAc beta 1-3-Gal beta Gal beta 1-4Glc1-1Cer) but not to ceramide trihexoside (Gal alpha 1-4Gal beta 1-4Glc1-1Cer). Gal-13 bound to a number of neutral glycosphingolipids from rabbit and bovine erythrocytes. These glycosphingolipids have previously been shown to be a family of linear and branched polylactosamine structures, which have non-reducing terminal Gal alpha 1-3Gal epitopes. The antibody did not bind to the human blood group B glycolipid, Gal alpha 1-3(Fuc alpha 1-2)Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4Glc1-1Cer, and, therefore, branching at the penultimate galactose blocks Gal-13 binding. However, after removal of the fucose from the B antigen Gal-13 recognized the resulting derivative. Other Gal alpha 1-3Gal glycosphingolipids with an isogloboside or globoside core structure were not recognized by Gal-13 suggesting that the antibody binds to Gal alpha 1-3Gal carried by a lactosamine core structure. Gal-13 has been used to demonstrate that the Gal alpha 1-3Gal ceramide pentahexoside has been evolutionarily conserved in red cells of animals up to the stage of New World monkeys but is not found in Old World monkey red cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
The human embryonic kidney (HEK293) cell line, commonly used for recombinant adenovirus (Ad) propagation, does not express the Ad coreceptor alpha(v)beta3 or alpha(v)beta5 integrins, yet these cells are efficiently infected by Ad vectors. Here we demonstrate that Ad binds to HEK293 cells via the fiber receptor CAR and is subsequently internalized via interaction with integrin alpha(v)beta1. Function-blocking antibodies directed against alpha(v) or beta1, but not beta3, beta5, or alpha5, integrin subunits block Ad infection and viral endocytosis. Therefore, alpha(v)beta1 serves as a coreceptor for Ad infection, and the lack of beta3 and/or beta5 but the relatively high expression of alpha(v)beta1 integrins on certain tumor cell types may explain why these cells are readily transduced by Ad vectors.  相似文献   

16.
Previous studies (Galili, U., Clark, M. R., Shohet, S. B., Buehler, J., and Macher, B. A. (1987) Proc. Natl. Acad. Sci. U. S. A. 84, 1369-1373; Galili, U., Shohet, S. B., Korbrin, E., Stults, C. L. M., and Macher, B. A. (1988) J. Biol. Chem. 263, 17755-17762) have established that there is a unique evolutionary distribution of glycoconjugates carrying the Gal alpha 1-3Gal beta 1-4GlcNAc epitope. These glycoconjugates are expressed by cells from New World monkeys and non-primate mammals, but not by cells from humans, Old World monkeys, or apes. The lack of expression of this epitope in the latter species appears to result from the suppression of gene expression for the enzyme UDP-galactose:nLc4Cer alpha 1-3-galactosyltransferase (alpha 1-3GalT) (Joziasse, D. H., Shaper, J. H., Van den Eijnden, D. H., Van Tunen, A. J., and Shaper, N. L. (1989) J. Biol. Chem. 264, 14290-14297). Although many non-primate species are known to express this carbohydrate epitope, the nature (i.e. glycoprotein or glycosphingolipid) of the glycoconjugate carrying this epitope is only known for a few tissues in a few animal species. Furthermore, it is not known whether all animal species express this epitope in the same tissues. We have investigated these questions by analyzing the glycosphingolipids in kidney from several non-primate animal species. Immunostained thin layer chromatograms of glycosphingolipids from sheep, pig, rabbit, cow, and rat kidney with the Gal alpha 1-3Gal beta 1-4GlcNAc glycosphingolipid-specific monoclonal antibody, Gal-13, demonstrated that kidney from all of these species except rat contained Gal alpha 1-3Gal beta 1-4GlcNAc neutral glycosphingolipids. A lack of expression of Gal alpha 1-3Gal beta 1-4GlcNAc glycosphingolipids in rat may be due to the lack of expression of the enzyme (alpha 1-3GalT) which catalyzes the formation of the Gal alpha 1-3Gal nonreducing terminal sequence of these compounds or to the lack of expression of glycosyltransferases which are necessary for the synthesis of the neolacto core structure of these compounds. These possibilities were evaluated in two ways. First, the three enzymes (UDP-N-acetylglucosamine:LacCer beta 1-3-N-acetyl-glucosaminyltransferase, UDP-galactose:Lc3Cer beta 1-4-galactosyltransferase, and alpha 1-3GalT) involved in the synthesis of the Gal alpha 1-3Gal beta 1-4GlcNAc glycosphingolipids were assayed using an enzyme-linked immunosorbent assay-based assay system and carbohydrate sequence-specific monoclonal antibodies. Second, TLC immunostaining was done to determine if the glycosphingolipid precursors (i.e. Lc3Cer and nLc4Cer) are expressed in rat kidney. Interestingly, rat kidney had a relatively high level of alpha 1-3GalT activity compared with the other animals tested.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Targeted disruption of the alpha1,3-galactosyltransferase gene in cloned pigs   总被引:34,自引:0,他引:34  
Galactose-alpha1,3-galactose (alpha1,3Gal) is the major xenoantigen causing hyperacute rejection in pig-to-human xenotransplantation. Disruption of the gene encoding pig alpha1,3-galactosyltransferase (alpha1,3GT) by homologous recombination is a means to completely remove the alpha1,3Gal epitopes from xenografts. Here we report the disruption of one allele of the pig alpha1,3GT gene in both male and female porcine primary fetal fibroblasts. Targeting was confirmed in 17 colonies by Southern blot analysis, and 7 of them were used for nuclear transfer. Using cells from one colony, we produced six cloned female piglets, of which five were of normal weight and apparently healthy. Southern blot analysis confirmed that these five piglets contain one disrupted pig alpha1,3GT allele.  相似文献   

18.
One of the monoclonal (AH-6) antibodies prepared by hybridoma technique against human gastric cancer cell line MKN74 was found to react with a series of glycolipids having the Y determinant (Fuc alpha 1 leads to 2Gal beta 1 leads to 4[Fuc alpha 1 leads to 3]GlcNAc). The structure of one such glycolipid isolated from human colonic cancer and from dog intestine was identified as lactodifucohexaosyl-ceramide (Fuc alpha 1 leads to 2Gal beta 1 leads to 4[Fuc alpha 1 leads to 3]GlcNAc beta 1 leads to 3Gal beta 1 leads to 4Glc beta 1 leads to 1-ceramide; IV3,III3Fuc2nLc4Cer). The hapten glycolipid did not react with monoclonal antibodies directed to Lea, Leb, and X-hapten structures, and the AH-6 antibody did not react with the X-hapten ceramide pentasaccharide (Gal beta 1 leads to 4[Fuc alpha 1 leads to 3]GlcNAc beta 1 leads to 3Gal beta 1 leads to 4Glc beta 1 leads to 1-ceramide), H1 glycolipid (Fuc alpha 1 leads to 2Gal beta 1 leads to 4GlcNAc beta 1 leads to 3Gal beta 1 leads to 4Glc beta 1 leads to 1-ceramide), nor with glycolipids having the Leb (Fuc alpha 1 leads to 2Gal beta 1 leads to 3[Fuc alpha 1 leads 4]GlcNAc beta 1 leads to R) determinant. The antibody reacted with blood group O erythrocytes, but not with A erythrocytes. Immunostaining of thin layer chromatography with the monoclonal antibody AH-6 indicated that a series of glycolipids with the Y determinant is present in tumors and in O erythrocytes.  相似文献   

19.
Human anomalous killer (AK) cells lyse freshly isolated human melanoma cells which are insensitive to human natural killer cell-mediated lysis. Monoclonal antibody Leo Mel 3, an IgM (k), produced by a hybridoma obtained from a mouse immunized with human melanoma cells, binds to melanoma cells and inhibits their conjugate formation with AK cells as well as their AK cell-mediated lysis. Other IgM antibodies from the same fusion that bind melanoma cells do not inhibit (Werkmeister, J. A., Triglia, T., Andrews, P., and Burns, G. F. (1985) J. Immunol. 135, 689-695). Leo Mel 3 binds several different gangliosides from melanoma cells, as determined by immunostaining thin layer chromatograms. Binding is abolished by treatment of the gangliosides with neuraminidase. In solid-phase radioimmunoassay, Leo Mel 3 binds strongly to ganglioside GD2 and less strongly to gangliosides GT3, GD3, and GQ1b. It does not bind to other gangliosides including GM1, GM2, GM3, GD1a, GD1b, and GT1b. Thus, the epitope recognized by antibody Leo Mel 3 is found in the sugar sequence of ganglioside GD2, GalNAc beta 1-4[NeuAc alpha 2-8NeuAc alpha 2-3]Gal beta 1-4Glc beta 1 .... This sequence may contain a target in melanoma cells recognized by AK cells.  相似文献   

20.
Four kinds of anti-GD3 monoclonal antibodies, DSG-1, -2, -3, and -4, of the IgM class were obtained by the immunization of BALB/c mice with enzootic bovine leukosis tumor tissue-derived ganglioside GD3 inserted into liposomes with Salmonella minnesota R595 lipopolysaccharides. The specificities of the monoclonal antibodies obtained were defined by complement-dependent liposome immune lysis assay and by enzyme immunostaining on thin-layer chromatography. The reactivities of the monoclonal antibodies obtained to four ganglioside GD3 variants [GD3(NeuAc-NeuAc), GD3(NeuAc-NeuGc), GD3(NeuGc-NeuAc), and GD3(NeuGc-NeuGc)] were tested. All of the monoclonal antibodies were found to react with GD3(NeuAc-NeuAc) and GD3(NeuAc-NeuGc) but not with GD3(NeuGc-NeuAc) or GD3(NeuGc-NeuGc). Furthermore, various purified glycosphingolipids were used to determine the specificity of these monoclonal antibodies. All 4 antibodies reacted only with ganglioside GD3 [GD3(NeuAc-NeuAc) and GD3(NeuAc-NeuGc)], but not with several gangliosides linking the GalNAc, Gal beta 1-3GalNAc, NeuAc alpha 2-3Gal beta 1-3GalNAc, or NeuAc alpha 2-8NeuAc alpha 2-3Gal beta 1-3GalNAc residue to the Gal moiety of ganglioside GD3 (GD2, GD1b, GT1b, or GQ1b, respectively), ganglioside GT1a having the same terminal NeuAc alpha 2-8NeuAc alpha 2-3Gal residue as ganglioside GD3, other gangliosides, and neutral glycosphingolipids. These findings suggest that the 4 monoclonal antibodies obtained may be specific for the epitope of NeuAc-alpha 2-8Sia alpha 2-3Gal beta 1-4Glc residue of ganglioside GD3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号