首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined seven strains, comprising five serotypes, of Cryptococcus neoformans to determine what constituents of the organisms are responsible for pathogenicity and virulence in BALB/c mice. C. neoformans strains were divided into three virulence classes by survival rates after intravenous inoculation of 1 X 10(5) or 1 X 10(7) viable cells, and virulence was found not to be correlated with serotype or capsular size. C. neoformans cells resisted phagocytosis in different degrees in the presence of normal serum. Sensitivity of the C. neoformans strains to singlet oxygen ranged from resistance to susceptibility. Histological examination revealed that a weakly encapsulated virulent strain induced inflammatory responses with granuloma formation in the liver, lung, and kidney in addition to formation of cystic foci in the brain. In contrast, although the heavily encapsulated virulent strain produced granulomatous lesions in the liver, this strain preferably produced mucinous cystic foci in the lung, kidney, and brain. Correlation between virulence, and biological, histopathological and physiological evidence suggests that C. neoformans strains are endowed with the implicated multiple pathogenic constituents in various degrees and proportions. The following are suggested as the most important pathogenic constituents: a polysaccharide capsule responsible for resistance to phagocytosis and formation of cystic foci; a cell surface structure for responsible for resistance to intra- or extracellular killing and induction of the granulomatous lesion; a growth rate suitable for interacting with phagocytic elimination.  相似文献   

2.
The human pathogenic fungus Cryptococcus neoformans secretes a phospholipase enzyme that demonstrates phospholipase B (PLB), lysophospholipase hydrolase and lysophospholipase transacylase activities. This enzyme has been postulated to be a cryptococcal virulence factor. We cloned a phospholipase-encoding gene (PLB1) from C. neoformans and constructed plb1 mutants using targeted gene disruption. All three enzyme activities were markedly reduced in the mutants compared with the wild-type parent. The plb1 strains did not have any defects in the known cryptococcal virulence phenotypes of growth at 37 degrees C, capsule formation, laccase activity and urease activity. The plb1 strains were reconstituted using the wild-type locus and this resulted in restoration of all extracellular PLB activities. In vivo testing demonstrated that the plb1 strain was significantly less virulent than the control strains in both the mouse inhalational model and the rabbit meningitis model. We also found that the plb1 strain exhibited a growth defect in a macrophage-like cell line. These data demonstrate that secretory phospholipase is a virulence factor for C. neoformans.  相似文献   

3.
4.
We carried out a screen for Cryptococcus neoformans genes involved in resistance to copper ion toxicity and identified a new hexose transporter (Hxt) gene, HXT1. Hxt1 consists of 520 amino acids and functions to transport hexoses such as glucose. Although Hxt1 conferred copper resistance to Saccharomyces cerevisiae, disruption of the HXT1 gene showed that Hxt1 is not necessary for copper resistance. In virulence tests, an hxt1 mutant strain showed 12% less phenoloxidase activity than the wild-type strain, and no difference in the ability to form melanin was identified. In addition, the hxt1 mutant strain showed virulence similar to that of the wild-type strain in experiments with Caenorhabditis elegans. However, the hxt1 mutant strain generated larger capsules than were generated by the wild-type strain. Thus, Hxt1 appears to be involved in capsule formation.  相似文献   

5.
李东  张笑娇  杨娇  潘皎  朱旭东 《菌物学报》2012,31(2):235-242
新型隐球酵母Cryptococcus neoformans有两个变种(varieties),即grubii和neoformans。目前研究最多的两个菌株H99(血清型A)和JEC21(血清型D)分别代表这两个变种,两者的毒性差别显著,为研究新型隐球酵母菌株间毒性的进化提供了良好模型。我们通过比较JEC21的clc1-突变体Tx1与早先鉴定的H99 clc1-菌株Mlac3发现,JEC21 CLC1同样决定铜离子的吸收。Tx1中丧失的漆酶活力可以通过外源Cu2+的加入得以恢复,而漆酶基因LAC1的转录与野生  相似文献   

6.
The opportunistic yeast Cryptococcus neoformans causes serious disease in humans and expresses a prominent polysaccharide capsule that is required for its virulence. Little is known about how this capsule is synthesized. We previously identified a beta1,2-xylosyltransferase (Cxt1p) with in vitro enzymatic activity appropriate for involvement in capsule synthesis. Here, we investigate C. neoformans strains in which the corresponding gene has been deleted (cxt1Delta). Loss of CXT1 does not affect in vitro growth of the mutant cells or the general morphology of their capsules. However, NMR structural analysis of the two main capsule polysaccharides, glucuronoxylomannan (GXM) and galactoxylomannan (GalXM), showed that both were missing beta1,2-xylose residues. There was an approximately 30% reduction in the abundance of this residue in GXM in mutant compared with wild-type strains, and mutant GalXM was almost completely devoid of beta1,2-linked xylose. The GalXM from the mutant strain was also missing a beta1,3-linked xylose residue. Furthermore, deletion of CXT1 led to attenuation of cryptococcal growth in a mouse model of infection, suggesting that the affected xylose residues are important for normal host-pathogen interactions. Cxt1p is the first glycosyltransferase with a defined role in C. neoformans capsule biosynthesis, and cxt1Delta is the only strain identified to date with structural alterations of the capsule polysaccharide GalXM.  相似文献   

7.
The cell wall of pathogenic fungi such as Cryptococcus neoformans , provides a formidable barrier to secrete virulence factors that produce host cell damage. To study secretion of virulence factors to the cell periphery, sec6 RNAi mutant strains of C. neoformans were tested for virulence factor expression. The studies reported here show that SEC6 RNAi mutant strains were defective in a number of virulence factors including laccase, urease as well as soluble polysaccharide and demonstrated attenuated virulence in mice. Further analysis by transmission electron microscopy detected the production of abundant extracellular exosomes in wild-type strains containing empty plasmid, but a complete absence in the i SEC6 strain. In addition, a green fluorescent protein–laccase fusion protein demonstrated aberrant localization within cytoplasmic vesicles in i SEC6 strains. In contrast, i SEC6 strains retained normal growth at 37°C, as well as substantially normal capsule formation, phospholipase activity and total secreted protein. These results provide the first molecular evidence for the existence of fungal exosomes and associate these vesicles with the virulence of C. neoformans .  相似文献   

8.
The polysaccharidic capsule is the main virulence factor of Cryptococcus neoformans. It primarily comprised of two polysaccharides: glucuronoxylomannan (GXM, 88% of the capsule mass) and galactoxylomannan (GalXM, 7% of the capsule mass). We constructed a large collection of mutant strains in which genes potentially involved in capsule biosynthesis were deleted. We used a new post-genomic approach to study the virulence of the strains. Primers specific for unique tags associated with the disruption cassette were used in a real-time PCR virulence assay to measure the fungal burden of each strain in different organs of mice in multi-infection experiments. With this very sensitive assay, we identified a putative UDP-glucose epimerase (Uge1p) and a putative UDP-galactose transporter (Ugt1p) essential for C. neoformans virulence. The uge1Delta and ugt1Delta strains are temperature sensitive and do not produce GalXM but synthesize a larger capsule. These mutant strains (GalXM negative, GXM positive) are not able to colonize the brain even at the first day of infection whereas GXM-negative strains (GalXM positive) can still colonize the brain, although less efficiently than the wild-type strain.  相似文献   

9.
Cryptococcus neoformans is an opportunistic pathogen and the leading cause of fungal meningitis. To survive within the host, this organism must be able to protect itself from oxidative stress. Cytochrome c peroxidase (Ccp1) is a mitochondrial antioxidant that catalyzes the degradation of hydrogen peroxide. In the present study, we characterized the contribution of the C. neoformans Ccp1 to antioxidant defense and for virulence. Consistent with studies of Ccp1 function in Sacchromyces cerevisiae, we found that Ccp1 contributes to resistance against exogenous oxidative stress in vitro. However, the oxidative stress phenotype does not diminish the virulence of ccp1 mutant strains in a murine model of C. neoformans disease. These results suggest that Ccp1 is involved in a complex system of protection against exogenous oxidative stress and that the elimination of this component of the antioxidant defense system does not diminish the virulence of C. neoformans.  相似文献   

10.
Cryptococcal infections are a global cause of significant morbidity and mortality. Recent studies support the hypothesis that virulence of Cryptococcus neoformans may have evolved via survival selection in environmental hosts, such as amoebae and free-living nematodes. We used killing of the nematode Caenorhabditis elegans by C. neoformans as an assay to screen a library of random C. neoformans insertion mutants. Of 350 mutants tested, seven were identified with attenuated virulence that persisted after crossing the mutation back into a wild-type strain. Genetic analysis of one strain revealed an insertion in a gene homologous to Saccharomyces cerevisiae KIN1, which encodes a serine/threonine protein kinase. C. neoformans kin1 mutants exhibited significant defects in virulence in murine inhalation and haematogenous infection models and displayed increased binding to alveolar and peritoneal macrophages. The kin1 mutant phenotypes were complemented by the wild-type KIN1 gene. These findings show that the C. neoformans Kin1 kinase homologue is required for full virulence in disparate hosts and that C. elegans can be used as a substitute host to identify novel factors involved in fungal pathogenesis in mammals.  相似文献   

11.
Extracellular phospholipase (PL) activities comprising phospholipase B, lysophospholipase and lysophospholipase transacylase have been identified in culture supernatants of Cryptococcus neoformans and contribute to virulence. We found that PL production was optimal after fungal growth at 30 degrees C and secretion at 37 degrees C for all six C. neoformans isolates studied (four C. neoformans var. neoformans and two C. neoformans var. gattii). No increase in PL activity was found in one strain, NU-2, in low iron or tissue culture media, conditions where upregulation of other virulence factors has been reported. The most virulent strains in an intravenous mouse model of infection were best able to produce PL at growth and secretion temperatures of 37 degrees C, in tissue culture media and under assay conditions of pH 7.0.  相似文献   

12.
The polysaccharide capsule surrounding Cryptococcus neoformans comprises manose, xylose and glucuronic acid, of which mannose is the major constituent. The GDP-mannose biosynthesis pathway is highly conserved in fungi and consists of three key enzymes: phosphomannose isomerase (PMI), phosphomannomutase (PMM) and GDP-mannose pyrophosphorylase (GMP). The MAN1 gene, encoding for the PMI enzyme, was isolated and sequenced from C. neoformans, and a disruption of the MAN1 gene was generated. One MAN1 disruption mutant, man1, which showed poor capsule formation, reduced polysaccharide secretion and morphological abnormalities, was chosen for virulence studies. In both the rabbit and the mouse models of invasive cryptococcosis, man1 was shown to be severely impaired in its virulence, with complete elimination of the yeast from the host. A reconstituted strain of man1 was constructed using gene replacement at the native locus. The wild-type and reconstituted strains were significantly more virulent than the knock-out mutant in both animal models. Our findings reveal that PMI activity is essential for the survival of C. neoformans in the host. The fact that the man1 mutant was not pathogenic suggests that blocking mannose synthesis could be fungicidal in the mammalian host and thus an excellent target for antifungal drug development.  相似文献   

13.
Resistance to fluconazole is a possible event during prolonged suppressive drug therapy for cryptococ-cal meningitis, the most frequently encountered life-threatening manifestation of cryptococcosis. The knowledge of this resistance at the molecular level is important for management of cryptococcosis. In order to identify genes involved in azole resistance in Cryptococcus neoformans, a cDNA subtraction library technique was chosen as a strategy. First, a fluconazole-resistant mutant BPY22.17 was obtained from a susceptible clinical isolate BPY22 by in vitro exposure to the drug. Then, a subtractive hybridization procedure was used to compare gene expression between the obtained strains. We identified a cDNA overexpressed in the fluconazole-resistant strain BPY22.17 that was used as a probe to isolate the entire gene in a C. neoformans genomic library. Sequence analysis of this gene identified an ATP Binding Cassette (ABC) transporter-encoding gene called C. neoformans AntiFungal Resistance 1 (CnAFR1). Disruption of CnAFR1 gene in the resistant isolate (BPY22.17) resulted in an enhanced susceptibility of the knock-out mutant cnafr1 against fluconazole, whereas reintroduction of the gene in cnafr1 resulted in restoration of the resistance phenotype, thus confirming that CnAFR1 is involved in fluconazole resistance of C. neoformans. Our findings therefore reveal that an active drug efflux mechanism can be involved in the development of azole resistance in this important human pathogen.  相似文献   

14.
15.
In previous studies we showed that the replication of Cryptococcus neoformans in the lung environment is controlled by the glucosylceramide (GlcCer) synthase gene (GCS1), which synthesizes the membrane sphingolipid GlcCer from the C9-methyl ceramide. Here, we studied the effect of the mutation of the sphingolipid C9 methyltransferase gene (SMT1), which adds a methyl group to position 9 of the sphingosine backbone of ceramide. The C. neoformans Δsmt1 mutant does not make C9-methyl ceramide and, thus, any methylated GlcCer. However, it accumulates demethylated ceramide and demethylated GlcCer. The Δsmt1 mutant loses more than 80% of its virulence compared with the wild type and the reconstituted strain. Interestingly, growth of C. neoformans Δsmt1 in the lung was decreased and C. neoformans cells were contained in lung granulomas, which significantly reduced the rate of their dissemination to the brain reducing the onset of meningoencephalitis. Thus, using fluorescent spectroscopy and atomic force microscopy we compared the wild type and Δsmt1 mutant and found that the altered membrane composition and GlcCer structure affects fungal membrane rigidity, suggesting that specific sphingolipid structures are required for proper fungal membrane organization and integrity. Therefore, we propose that the physical structure of the plasma membrane imparted by specific classes of sphingolipids represents a critical factor for the ability of the fungus to establish virulence.  相似文献   

16.
In fungi, glycoinositolphosphoryl ceramide (GIPC) biosynthetic pathway produces essential molecules for growth, viability, and virulence. In previous studies, we demonstrated that the opportunistic fungus Cryptococcus neoformans synthesizes a complex family of xylose-(Xyl) branched GIPCs, all of which have not been previously reported in fungi. As an effort to understand the biosynthesis of these sphingolipids, we have now characterized the structures of GIPCs from C. neoformans wild-type (KN99alpha) and mutant strains that lack UDP-Xyl, by disruption of either UDP-glucose dehydrogenase (NE321) or UDP-glucuronic acid decarboxylase (NE178). The structures of GIPCs were determined by a combination of nuclear magnetic resonance (NMR) spectroscopy, tandem mass spectrometry (MS), and gas chromatography-MS. The main and largest GIPC from wild-type strain was identified as an alpha-Manp(1 --> 6)alpha-Manp(1 --> 3)alpha-Manp[beta-Xylp(1 --> 2)]alpha-Manp(1 --> 4)beta-Galp(1 --> 6)alpha-Manp(1 --> 2) Ins-1-P-Ceramide, whereas the most abundant GIPC from both mutant strains was found to be an alpha-Manp(1 --> 3)alpha-Manp(1 --> 4)beta-Galp(1 --> 6)alpha-Manp(1 --> 2)Ins-1-P-Ceramide. The ceramide moieties of C. neoformans wild-type and mutant strains were composed of a C(18) phytosphingosine, which was N-acylated with 2-hydroxy tetra-, or hexacosanoic acid, and 2,3-dihydroxy-tetracosanoic acid. Our structural analysis results indicate that the C. neoformans mutant strains are unable to complete the assembly of the GIPC-oligosaccharide moiety due the absence of Xyl side chain.  相似文献   

17.
The capsule of Cryptococcus neoformans is the most obvious virulence factor of this pathogenic yeast. The main capsule constituents are glucuronoxylomannans (GXM). Although several studies have focused on GXM composition and structure, very little is known about their genetics. To elucidate the relationship between the capsule structure and the pathophysiology of the cryptococcosis, genetic screening for mutant strains producing a structurally modified capsule was set up. Using monoclonal antibodies specific for different capsule sugar epitopes, we isolated strains with different mutated capsule structures (Cas mutants). According to their reactivities with various monoclonal antibodies, the mutants were classified into six groups (Cas1 to Cas6). One Cas2 mutant was used to clone the corresponding gene by complementation. This gene (USX1) encodes the previously identified UDP-xylose synthase. We demonstrated that it is necessary for both capsule xylosylation and C. neoformans virulence.  相似文献   

18.
The mitogen-activated protein kinase (MAPK) pathways control diverse cellular functions in pathogenic fungi, including sexual differentiation, stress response, and maintenance of cell wall integrity. Here we characterized a Cryptococcus neoformans gene, which is homologous to the yeast Ste50 that is known to play an important role in mating pheromone response and stress response as an adaptor protein to the Ste11 MAPK kinase kinase in Saccharomyces cerevisiae. The C. neoformans Ste50 was not involved in any of the stress responses or virulence factor production (capsule and melanin) that are controlled by the HOG and Ras/cAMP signaling pathways. However, Ste50 was required for mating in both serotype A and serotype D C. neoformans strains. The ste50Δ mutant was completely defective in cell-cell fusion and mating pheromone production. Double mutation of the STE50 gene blocked increased production of pheromone and the hyper-filamentation phenotype of cells deleted of the CRG1 gene, which encodes the RGS protein that negatively regulates pheromone responsive G-protein signaling via the MAPK pathway. Regardless of the presence of the basidiomycota-specific SH3 domains of Ste50 that are known to be required for full virulence of Ustilago maydis, Ste50 was dispensable for virulence of C. neoformans in a murine model of cryptococcosis. In conclusion, the Ste50 adaptor protein controls sexual differentiation of C. neoformans via the pheromone-responsive MAPK pathway but is not required for virulence.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号