首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
LuxS-Based Signaling Affects Streptococcus mutans Biofilm Formation   总被引:2,自引:0,他引:2       下载免费PDF全文
Streptococcus mutans is implicated as a major etiological agent in human dental caries, and one of the important virulence properties of this organism is its ability to form biofilms (dental plaque) on tooth surfaces. We examined the role of autoinducer-2 (AI-2) on S. mutans biofilm formation by constructing a GS-5 luxS-null mutant. Biofilm formation by the luxS mutant in 0.5% sucrose defined medium was found to be markedly attenuated compared to the wild type. Scanning electron microscopy also revealed that biofilms of the luxS mutant formed larger clumps in sucrose medium compared to the parental strain. Therefore, the expression of glucosyltransferase genes was examined and the gtfB and gtfC genes, but not the gtfD gene, in the luxS mutant were upregulated in the mid-log growth phase. Furthermore, we developed a novel two-compartment system to monitor AI-2 production by oral streptococci and periodontopathic bacteria. The biofilm defect of the luxS mutant was complemented by strains of S. gordonii, S. sobrinus, and S. anginosus; however, it was not complemented by S. oralis, S. salivarius, or S. sanguinis. Biofilm formation by the luxS mutant was also complemented by Porphyromonas gingivalis 381 and Actinobacillus actinomycetemcomitans Y4 but not by a P. gingivalis luxS mutant. These results suggest that the regulation of the glucosyltransferase genes required for sucrose-dependent biofilm formation is regulated by AI-2. Furthermore, these results provide further confirmation of previous proposals that quorum sensing via AI-2 may play a significant role in oral biofilm formation.  相似文献   

2.
Communication based on autoinducer 2 (AI-2) is widespread among gram-negative and gram-positive bacteria, and the AI-2 pathway can control the expression of genes involved in a variety of metabolic pathways and pathogenic mechanisms. In the present study, we identified luxS, a gene responsible for the synthesis of AI-2, in Streptococcus gordonii, a major component of the dental plaque biofilm. S. gordonii conditioned medium induced bioluminescence in an AI-2 reporter strain of Vibrio harveyi. An isogenic mutant of S. gordonii, generated by insertional inactivation of the luxS gene, was unaffected in growth and in its ability to form biofilms on polystyrene surfaces. In contrast, the mutant strain failed to induce bioluminescence in V. harveyi and was unable to form a mixed species biofilm with a LuxS-null strain of the periodontal pathogen Porphyromonas gingivalis. Complementation of the luxS mutation in S. gordonii restored normal biofilm formation with the luxS-deficient P. gingivalis. Differential display PCR demonstrated that the inactivation of S. gordonii luxS downregulated the expression of a number of genes, including gtfG, encoding glucosyltransferase; fruA, encoding extracellular exo-beta-D-fructosidase; and lacD encoding tagatose 1,6-diphosphate aldolase. However, S. gordonii cell surface expression of SspA and SspB proteins, previously implicated in mediating adhesion between S. gordonii and P. gingivalis, was unaffected by inactivation of luxS. The results suggest that S. gordonii produces an AI-2-like signaling molecule that regulates aspects of carbohydrate metabolism in the organism. Furthermore, LuxS-dependent intercellular communication is essential for biofilm formation between nongrowing cells of P. gingivalis and S. gordonii.  相似文献   

3.
We describe an original, short, and convenient chemical synthesis of enantiopure (S)-4,5-dihydroxy-2,3-pentanedione (DPD), starting from commercial methyl (S)-(-)-2,2-dimethyl-1,3-dioxolane-4-carboxylate. DPD is the precursor of autoinducer (AI)-2, the proposed signal for bacterial interspecies communication. AI-2 is synthesized by many bacterial species in three enzymatic steps. The last step, a LuxS-catalyzed reaction, leads to the formation of DPD, which spontaneously cyclizes into AI-2. AI-2-like activity of the synthesized molecule was ascertained by the Vibrio harveyi bioassay. To further validate the biological activity of synthetic DPD and to explore its potential in studying DPD (AI-2)-mediated signaling, a Salmonella typhimurium luxS mutant was constructed. Expression of the AI-2 regulated lsr operon can be rescued in this luxS mutant by addition of synthetic DPD or genetic complementation. Biofilm formation by S. typhimurium has been reported to be defective in a luxS mutant, and this was confirmed in this study to test DPD for chemical complementation. However, biofilm formation of the luxS mutant cannot be restored by addition of DPD. In contrast, introduction of luxS under control of its own promoter complemented biofilm formation. Further results demonstrated that biofilm formation of the luxS mutant cannot be restored with luxS under control of the strong nptII promoter. This indicates that altering the intrinsic promoter activity of luxS affects Salmonella biofilm formation. Conclusively, we synthesized biologically active DPD. Using this chemical compound in combination with genetic approaches opens new avenues in studying AI-2-mediated signaling.  相似文献   

4.
LuxS-mediated quorum sensing has recently been shown to regulate important physiologic functions and virulence in a variety of bacteria. In this study, the role of luxS of Streptococcus mutans in the regulation of traits crucial to pathogenesis was investigated. Reporter gene fusions showed that inactivation of luxS resulted in a down-regulation of fructanase, a demonstrated virulence determinant, by more than 50%. The LuxS-deficient strain (TW26) showed increased sensitivity to acid killing but could still undergo acid adaptation. Northern hybridization revealed that the expression of RecA, SmnA (AP endonuclease), and Nth (endonuclease) were down-regulated in TW26, especially in early-exponential-phase cells. Other down-regulated genes included ffh (a signal recognition particle subunit) and brpA (biofilm regulatory protein A). Interestingly, the luxS mutant showed an increase in survival rate in the presence of hydrogen peroxide (58.8 mM). The luxS mutant formed less biofilm on hydroxylapatite disks, especially when grown in biofilm medium with sucrose, and the mutant biofilms appeared loose and hive-like, whereas the biofilms of the wild type were smooth and confluent. The mutant phenotypes were complemented by exposure to supernatants from wild-type cultures. Two loci, smu486 and smu487, were identified and predicted to encode a histidine kinase and a response regulator. The phenotypes of the smu486 smu487 mutant were, in almost all cases, similar to those of the luxS mutant, although our results suggest that this is not due to AI-2 signal transduction via Smu486 and Smu487. This study demonstrates that luxS-dependent signaling plays critical roles in modulating key virulence properties of S. mutans.  相似文献   

5.
The luxS gene, present in many bacterial genera, encodes the autoinducer 2 (AI-2) synthase. AI-2 has been implicated in bacterial signaling, and this study investigated its role in biofilm formation by Streptococcus gordonii, an organism that colonizes human tooth enamel within the first few hours after professional cleaning. Northern blotting and primer extension analyses revealed that S. gordonii luxS is monocistronic. AI-2 production was dependent on nutritional conditions, and maximum AI-2 induction was detected when S. gordonii was grown in the presence of serum and carbonate. In planktonic cultures, AI-2 production rose sharply during the transition from exponential to stationary phase, and the AI-2 concentration peaked approximately 4 h into stationary phase. An S. gordonii luxS mutant that did not produce AI-2 was constructed by homologous recombination. Complementation of the mutant by insertion of an intact luxS gene into the chromosome in tandem with the disrupted gene restored AI-2 production to a level similar to that of the wild-type strain. In planktonic culture, no growth differences were observed between the mutant and wild-type strains when five different media were used. However, when grown for 4 h as biofilms in 25% human saliva under flow, the luxS mutant formed tall microcolonies that differed from those formed by the wild-type and complemented mutant strains. Biofilms of the luxS mutant exhibited finger-like projections of cells that extended into the flow cell lumen. Thus, the inability to produce AI-2 is associated with altered microcolony architecture within S. gordonii biofilms formed in saliva during a time frame consistent with initial colonization of freshly cleaned enamel surfaces.  相似文献   

6.
4,5-Dihydroxy-2,3-pentanedione (DPD), a product of the LuxS enzyme in the catabolism of S-ribosylhomocysteine, spontaneously cyclizes to form autoinducer 2 (AI-2). AI-2 is proposed to be a universal signal molecule mediating interspecies communication among bacteria. We show that mutualistic and abundant biofilm growth in flowing saliva of two human oral commensal bacteria, Actinomyces naeslundii T14V and Streptococcus oralis 34, is dependent upon production of AI-2 by S. oralis 34. A luxS mutant of S. oralis 34 was constructed which did not produce AI-2. Unlike wild-type dual-species biofilms, A. naeslundii T14V and an S. oralis 34 luxS mutant did not exhibit mutualism and generated only sparse biofilms which contained a 10-fold lower biomass of each species. Restoration of AI-2 levels by genetic or chemical (synthetic AI-2 in the form of DPD) complementation re-established the mutualistic growth and high biomass characteristic for the wild-type dual-species biofilm. Furthermore, an optimal concentration of DPD was determined, above and below which biofilm formation was suppressed. The optimal concentration was 100-fold lower than the detection limit of the currently accepted AI-2 assay. Thus, AI-2 acts as an interspecies signal and its concentration is critical for mutualism between two species of oral bacteria grown under conditions that are representative of the human oral cavity.  相似文献   

7.
Streptococcus mutans, the primary etiological agent of human dental caries, is an obligate biofilm-forming bacterium. The goals of this study were to identify the gene(s) required for biofilm formation by this organism and to elucidate the role(s) that some of the known global regulators of gene expression play in controlling biofilm formation. In S. mutans UA159, the brpA gene (for biofilm regulatory protein) was found to encode a novel protein of 406 amino acid residues. A strain carrying an insertionally inactivated copy of brpA formed longer chains than did the parental strain, aggregated in liquid culture, and was unable to form biofilms as shown by an in vitro biofilm assay. A putative homologue of the enzyme responsible for synthesis of autoinducer II (AI-2) of the bacterial quorum-sensing system was also identified in S. mutans UA159, but insertional inactivation of the gene (luxS(Sm)) did not alter colony or cell morphology or diminish the capacity of S. mutans to form biofilms. We also examined the role of the homologue of the Bacillus subtilis catabolite control protein CcpA in S. mutans in biofilm formation, and the results showed that loss of CcpA resulted in about a 60% decrease in the ability to form biofilms on an abiotic surface. From these data, we conclude that CcpA and BrpA may regulate genes that are required for stable biofilm formation by S. mutans.  相似文献   

8.
Multiple Streptococcus mutans Genes Are Involved in Biofilm Formation   总被引:7,自引:0,他引:7  
Streptococcus mutans has been strongly implicated as the principal etiological agent in dental caries. One of the important virulence properties of these organisms is their ability to form biofilms known as dental plaque on tooth surfaces. Since the roles of sucrose and glucosyltransferases in S. mutans biofilm formation have been well documented, we focused our attention on sucrose-independent factors. We have initially identified several mutants that appear to be defective in biofilm formation on abiotic surfaces by an insertional inactivation mutagenesis strategy applied to S. mutans. A total of 27 biofilm-defective mutants were isolated and analyzed in this study. From these mutants, three genes were identified. One of the mutants was defective in the Bacillus subtilis lytR homologue. Another of the biofilm-defective mutants isolated was a yulF homologue, which encodes a hypothetical protein of B. subtilis whose function in biofilm formation is unknown. The vast majority of the mutants were defective in the comB gene required for competence. We therefore have constructed and examined comACDE null mutants. These mutants were also found to be attenuated in biofilm formation. Biofilm formation by several other regulatory gene mutants were also characterized using an in vitro biofilm-forming assay. These results suggest that competence genes as well as the sgp and dgk genes may play important roles in S. mutans biofilm formation.  相似文献   

9.
The luxS gene of Lactobacillus reuteri 100-23C was amplified by PCR, cloned, and then sequenced. To define a physiological and ecological role for the luxS gene in L. reuteri 100-23C, a luxS mutant was constructed by insertional mutagenesis. The luxS mutant did not produce autoinducers AI-2 or AI-3. Complementation of the luxS mutation by a plasmid construct containing luxS restored AI-2 and AI-3 synthesis. In vitro experiments revealed that neither the growth rate, nor the cell yield, nor cell survival in the stationary phase were compromised in the luxS mutant relative to the wild type and complemented mutant. The ATP content of exponentially growing cells of the luxS mutant was, however, 65% of that of wild-type cells. Biofilms formed by the luxS mutant on plastic surfaces in a bioreactor were thicker than those formed by the wild type. Biofilm thickness was not restored to wild-type values by the addition of purified AI-2 to the culture medium. In vivo experiments, conducted with ex-Lactobacillus-free mice, showed that biofilms formed by the mutant strain on the epithelial surface of the forestomach were approximately twice as thick as those formed by the wild type. The ecological performance of the luxS mutant, when in competition with L. reuteri strain 100-93 in the mouse cecum, was reduced compared to that of a xylA mutant of 100-23C. These results demonstrate that LuxS influences important ecological attributes of L. reuteri 100-23C, the consequences of which are niche specific.  相似文献   

10.
11.
The formation of biofilm communities enhances the persistence of Vibrio cholerae in aquatic environments. Biofilm production is repressed by the quorum-sensing regulator HapR in response to the accumulation of CAI-1 and AI-2. CAI-1 is the strongest input signal activating HapR, whereas the role of AI-2 remains ill-defined. In the present study, we show that a V. cholerae luxS (AI-2-defective) mutant made increased biofilm. Interestingly, cells in the biofilm were more responsive to AI-2 deficiency than cells from the planktonic population.  相似文献   

12.
13.
14.
Streptococcus mutans produces a fructosyltransferase (FTF) enzyme, which synthesizes fructan polymers from sucrose. Fructans contribute to the virulence of the biofilm by acting as binding sites for S. mutans adhesion and as extracellular nutrition reservoir for the oral bacteria. Antibodies raised against a recombinant S. mutans FTF were used to test the effect of glucose, fructose, and sucrose on FTF expression in S. mutans GS-5 biofilms. Biofilms formed in the presence of fructose and glucose showed a higher ratio of FTF compared to biofilms formed in the presence of sucrose. Confocal laser scanning microscopy images of S. mutans biofilms indicated a carbohydrate-dependent FTF distribution. The layer adjacent to the surface and those at the liquid interface displayed high amounts cell-free FTF with limited amount of bacteria while the in-between layers demonstrated both cell-free FTF and cells expressing cell-surface FTF. Biofilm of S. mutans grown on hydroxyapatite surfaces expressed several FTF bands with molecular masses of 160, 125, 120, 100, and 50 kDa, as detected by using FTF specific antibodies. The results show that FTF expression and distribution in S. mutans GS-5 biofilms is carbohydrate regulated.  相似文献   

15.
The oral microbial flora consists of many beneficial species of bacteria that are associated with a healthy condition and control the progression of oral disease. Cooperative interactions between oral streptococci and the pathogens play important roles in the development of dental biofilms in the oral cavity. To determine the roles of oral streptococci in multispecies biofilm development and the effects of the streptococci in biofilm formation, the active substances inhibiting Streptococcus mutans biofilm formation were purified from Streptococcus salivarius ATCC 9759 and HT9R culture supernatants using ion exchange and gel filtration chromatography. Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry analysis was performed, and the results were compared to databases. The S. salivarius HT9R genome sequence was determined and used to indentify candidate proteins for inhibition. The candidates inhibiting biofilms were identified as S. salivarius fructosyltransferase (FTF) and exo-beta-d-fructosidase (FruA). The activity of the inhibitors was elevated in the presence of sucrose, and the inhibitory effects were dependent on the sucrose concentration in the biofilm formation assay medium. Purified and commercial FruA from Aspergillus niger (31.6% identity and 59.6% similarity to the amino acid sequence of FruA from S. salivarius HT9R) completely inhibited S. mutans GS-5 biofilm formation on saliva-coated polystyrene and hydroxyapatite surfaces. Inhibition was induced by decreasing polysaccharide production, which is dependent on sucrose digestion rather than fructan digestion. The data indicate that S. salivarius produces large quantities of FruA and that FruA alone may play an important role in multispecies microbial interactions for sucrose-dependent biofilm formation in the oral cavity.  相似文献   

16.
Khan AU  Islam B  Khan SN  Akram M 《Bioinformation》2011,5(10):440-445
Biofilm formation by Streptococcus mutans is considered as its principal virulence factor, causing dental caries. Mutants of S. mutans defective in biofilm formation were generated and analyzed to study the collective role of proteins in its formation. Mutants were characterized on the basis of adherence to saliva-coated surface, and biofilm formation. The confocal laser microscopy and scanning electron microscopy images showed that the control biofilms had cluster of cells covered by layer of exo-polysaccharide while the biofilms of mutants were thin and spaced. Two-dimensional protein electrophoresis data analysis identified 57 proteins that are either up (44 proteins) or down (13 proteins) regulated. These data points to the importance of up and down regulated proteins in the formation of biofilm in Streptococcus mutans.  相似文献   

17.
18.
19.
AIMS: To determine the expediency of a microtitre assay system for establishing, quantifying and antimicrobial testing of two representative oral pathogens. METHODS AND RESULTS: Streptococcus mutans and Porphyromonas gingivalis were used. Morphological characteristics of the attached population were evaluated. Biofilm growth was evaluated spectrophotometrically (undisturbed and 1 N NaOH dissipated biofilm). The minimum concentration of chlorhexidine gluconate that inhibited biofilm growth was determined. Growth of the biofilms was successfully monitored by direct optical density measurements or those re-suspended in 1 N NaOH. The latter was necessary when glucans were present in Strep. mutans biofilms. The minimum concentration of chlorhexidine gluconate that inhibited biofilm growth was 1.25 microg ml(-1) for both species. The attached bacteria exhibited common biofilm characteristics. SIGNIFICANCE AND IMPACT OF THE STUDY: The assay system developed was especially useful for monitoring the growth of adherent Strep. mutans in the presence of glucans, which is particularly significant for the study of anti-plaque chemicals.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号