首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have studied changes of cerebral monoamine metabolism and water content, during recirculation following global transient ischemia (20 min) using the four-vessel occlusion model in rats. Levels of monoamines and their metabolites were determined in cortex, striatum, hippocampus, and hypothalamus. Water content was evaluated by weight and by the analysis of T1 and T2 relaxation times in 1H-nuclear magnetic resonance. Norepinephine levels decreased; 3,4-dihydroxyphenylethylamine, 3,4-dihydroxyphenylacetic acid, and 5-hydroxytryptamine levels oscillated and levels of the end products homovanillic acid and 5-hydroxyindole-3-acetic acid increased. The regional changes were qualitatively similar but quantitatively different, and were greatest in the hippocampus, illustrating the concept of neuronal selective vulnerability. The changes suggest an initial monoamine depletion and catabolism due to massive release from stores followed by autoregulatory processes. The water content increased moderately, with a maximum at 1 h. The variations of T1 were similar, positively correlated with water content and more pronounced in the cortex than in the white matter. T2 was markedly altered over the entire 24-h period. Those latter parameters are positively correlated with 5-hydroxytryptamine concentration in the hypothalamus consistent with a relationship between 5-hydroxytryptamine and cerebral edema.  相似文献   

2.
Kondo  Yoichi  Asanuma  Masato  Iwata  Emi  Kondo  Fumio  Miyazaki  Ikuko  Ogawa  Norio 《Neurochemical research》1999,24(1):9-13
Recent evidence has suggested that cyclosporin A (CsA), an immunosuppressive agent, has neuroprotective properties. However, its mechanisms associated with this activity remain unclear. We have previously shown that post-ischemic administration of CsA daily for 14 days prevented the decrease of muscarinic acetylcholine receptor binding in the hippocampus in the gerbil model of 5-min transient forebrain ischemia. In the present study, CsA (5 mg/kg, subcutaneously) was administered to each animal just after, 2 and 6 h after ischemia so as not to exert its immunosuppressive effect. Initial CsA treatment significantly restored the declined muscarinic acetylcholine receptor binding of the hippocampus 14 days after ischemia similar to the previous report. However, CsA did not alter reactive changes of astrocytes and microglia in the CA1 area of the hippocampus, which had been suppressed by daily administration. These results indicate that CsA could positively modulate the hippocampal acetylcholine neurotransmission system broken down through the ischemia-induced pyramidal cell death and its action mechanism may have no relation to the immunosuppressive properties.  相似文献   

3.
Abstract: The mechanisms of selective neuronal loss after short-term global ischemia remain undefined, but processes including increased proteolytic activity, impaired protein synthesis, and oxidative damage have been proposed to contribute. A decrease in activity of the pyruvate dehydrogenase complex in the dorsolateral striatum, an ischemia-susceptible region, is one change apparently differentiating this region from ischemia-resistant areas during early recirculation. To provide an insight into processes contributing to postischemic cell damage, the changes in the pyruvate dehydrogenase complex during early recirculation have been further characterized. These studies provide clear confirmation that the activity of the pyruvate dehydrogenase complex is reduced in mitochondria from the dorsolateral striatum by 3 h of recirculation. The decrease in activity was not accompanied by a loss of antigenic sites or by changes in electrophoretic mobility of the components of the complex. A reduction in activity of the E1 component of the complex (39–42% decrease), but not the E2 and E3 components, was observed that was apparently sufficient to explain the decrease in activity of the whole complex. These results indicate that the changes in activity of the pyruvate dehydrogenase complex in the dorsolateral striatum are not due to loss or gross disruption of the constituent proteins but rather most likely reflect a selective inactivation of a specific component of the complex.  相似文献   

4.
Simvastatin is a cholesterol-lowering agent whose functional significance and neuroprotective mechanism in ischemic brain injury is not yet solved. The purpose of this study is to evaluate the effect of simvastatin on ischemic brain injury. We examined the endoplasmic reticulum stress response (UPR/unfolded protein response), by measuring the mRNA and protein levels of specific genes such as ATF6, GRP78, and XBP1 after 15 min 4-VO ischemia and different times of reperfusion (1, 3, and 24 h). The results from the group of naïve ischemic rats were compared with results from the group of pre-treated animals with simvastatin. The results of the experiments showed significant increase in all genes at the mRNA level in ischemic phase (about 43% for XBP1, 58% for GRP78, and 39% for ATF6 more than control). The protein level of XBP1 was decreased in pre-treated animals at ischemic phase and first hour of reperfusion (about 15% less), and did not reach control levels. The protein levels of GRP78 were maximal at third hour of reperfusion in statin group with a small decrease at 24 h of reperfusion in both groups. The levels of ATF6 mRNA in statin-treated animals was higher in comparison to non-statin animals at the ischemic phase and the third hour of reperfusion (about 35% higher), which was also translated into the higher protein level. This could indicate that one of the main proteins targeted to enhance neuroprotective effect to ER during the first two hours of reperfusion was ATF6 protein, the levels of which were 60% higher than in non-treated animals. These data suggest that simvastatin, in addition to the proposed neuroprotective effect, exerts a neuroprotective role in the attenuation of ER stress response after acute ischemic/reperfusion insult.  相似文献   

5.
Wang GD  Zhuo M 《生理学报》2006,58(6):511-520
谷氨酸是中枢神经系统主要的快速兴奋性递质。AMPA受体和海人藻酸受体主要参与突触传递,而NMDA受体主要参与突触可塑性。基因操作的方法增强NMDA受体的功能,可以增强动物在正常生理状态下的学习能力,及在组织损伤情况下的反应敏感性。NMDA受体参与生理功能的主要机制是长时程增强(long—term potentiation,LTP)。我们的研究表明,NMDA受体不仅参与刺激前扣带皮层的第五层细胞或刺激白质诱导的突触反应,而且参与在胞体施加去极化跃阶电流诱导的动作电位的发放。钙一钙调蛋白敏感的腺苷酸环化酶1(adenylyl cyclase 1,AC1)和cAMP信号通路可能介导了这些反应。由于扣带皮层神经元在伤害性刺激和痛中发挥重要作用,我们的结果为前脑NMDA受体参与突触传递和动作电位发放,以及与前脑相关的行为,如感受伤害性刺激和痛,提供了一个新的机制。  相似文献   

6.
Induction of the mitochondrial permeability transition has been proposed as an important contributor to cell loss in several neurological disorders, but the evidence that this change can develop in cells in the intact mature brain is largely indirect. In this study, we have tested whether an intrastriatal injection of N-methyl-D-aspartate results in increases in inner membrane permeability that can be detected from mitochondrial accumulation of metabolites of 3H-deoxyglucose previously taken up by brain cells. An increase in incorporation of deoxyglucose metabolites was found in mitochondria prepared from the striatum but not from cerebral cortex distant from the injection site. This change developed more than 8 h after treatment with N-methyl-D-aspartate and is consistent with the induction of the permeability transition as a late change in the progression to irreversible neuronal damage in response to this excitotoxic insult. At earlier times, the restricted permeability of the inner mitochondrial membrane was apparently preserved, at least sufficiently to prevent significant diffusion of metabolites between the cytoplasm and the matrix.  相似文献   

7.
Transient global brain ischemia induces dysfunctions of mitochondria including disturbance in mitochondrial protein synthesis and inhibition of respiratory chain complexes. Due to capacity of mitochondria to release apoptogenic proteins, ischemia-induced mitochondrial dysfunction is considered to be a key event coupling cerebral blood flow arrest to neuronal cell death. Ischemic preconditioning (IPC) represents an important phenomenon of adaptation of central nervous system (CNS) to sub-lethal short-term ischemia, which results in increased tolerance of CNS to the lethal ischemia. In this study we have determined the effect of ischemic preconditioning on ischemia/reperfusion-associated inhibition of mitochondrial protein synthesis and activity of mitochondrial respiratory chain complexes I and IV in the hippocampus of rats. Global brain ischemia was induced by 4-vessel occlusion in duration of 15 min. Rats were preconditioned by 5 min of sub-lethal ischemia and 2 days later, 15 min of lethal ischemia was induced. Our results showed that IPC affects ischemia-induced dysfunction of hippocampal mitochondria in two different ways. Repression of mitochondrial translation induced during reperfusion of the ischemic brain is significantly attenuated by IPC. Slight protective effect of IPC was documented for complex IV, but not for complex I. Despite this, protective effect of IPC on ischemia/reperfusion-associated changes in integrity of mitochondrial membrane and membrane proteins were observed. Since IPC exhibited also inhibitory effect on translocation of p53 to mitochondria, our results indicate that IPC affects downstream processes connecting mitochondrial dysfunction to neuronal cell death.  相似文献   

8.

Background

Dietary long-chain n-3 polyunsaturated fatty acid (PUFA) supplementation may be beneficial for chronic brain illnesses, but the issue is not agreed on. We examined effects of dietary n-3 PUFA deprivation or supplementation, compared with an n-3 PUFA adequate diet (containing alpha-linolenic acid [18:3 n-3] but not docosahexaenoic acid [DHA, 22:6n-3]), on brain markers of lipid metabolism and excitotoxicity, in rats treated chronically with NMDA or saline.

Methods

Male rats after weaning were maintained on one of three diets for 15 weeks. After 12 weeks, each diet group was injected i.p. daily with saline (1 ml/kg) or a subconvulsive dose of NMDA (25 mg/kg) for 3 additional weeks. Then, brain fatty acid concentrations and various markers of excitotoxicity and fatty acid metabolism were measured.

Results

Compared to the diet-adequate group, brain DHA concentration was reduced, while n-6 docosapentaenoic acid (DPA, 22:5n-6) concentration was increased in the n-3 deficient group; arachidonic acid (AA, 20:4n-6) concentration was unchanged. These concentrations were unaffected by fish oil supplementation. Chronic NMDA increased brain cPLA2 activity in each of the three groups, but n-3 PUFA deprivation or fish oil did not change cPLA2 activity or protein compared with the adequate group. sPLA2 expression was unchanged in the three conditions, whereas iPLA2 expression was reduced by deprivation but not changed by supplementation. BDNF protein was reduced by NMDA in N-3 PUFA deficient rats, but protein levels of IL-1β, NGF, and GFAP did not differ between groups.

Conclusions

N-3 PUFA deprivation significantly worsened several pathological NMDA-induced changes produced in diet adequate rats, whereas n-3 PUFA supplementation did not affect NMDA induced changes. Supplementation may not be critical for this measured neuropathology once the diet has an adequate n-3 PUFA content.  相似文献   

9.
Acute swim stress (3 min at 32°C) in mice produces increases in the binding of MK-801 to the NMDA subclass of glutamate receptors to forebrain membranes prepared from male mice. Scatchard analyses indicate that the observed increases in the binding of MK-801 in membranes from male mice are the result of changes in the affinity and density of low-affinity binding sites and in the density of high-affinity binding sites. In female mice, any changes in the binding of MK-801 appear to be much less pronounced and restricted to the low-affinity binding sites. These results are in contrast to the situation with binding to GABA receptors where acute swim stress increases GABA binding in forebrain membranes much more in female than in male mice. This indicates significant sex differences in the responses of receptors for the major excitatory and inhibitory transmitters to acute swim stress. These rapid changes in MK-801 binding may result from changes in endogenous modulators as appears to be the case in the acute swim stress-induced changes in GABA binding. As with GABA binding, the endogenous modulators are likely to include steroids, the sex differences reflecting differences in modulation by gonadal steroids and the stress-induced changes reflecting differences in modulation by adrenal steroids. Estradiol, progesterone, and corticosterone treatments have been reported by other workers to influence the properties of glutamate receptors.  相似文献   

10.
Ouabain exerts neurotoxic action and activates the population of NMDA receptors. Herein the effect of ouabain on the expression of NMDA subunits was evaluated. Adult Wistar rats were administered intracerebroventricularly with 0.1, 10 and 100 nmol ouabain or saline solution (control). Two days later, membranes of cerebral cortex and hippocampus were isolated. Western blots with antibodies for the NMDA receptor subunits: NR1; NR2A; NR2B; NR2C and NR2D were carried out. In cerebral cortex, NR2D subunit increased 30% with 10 nmol ouabain dose. With 100 nmol ouabain, NR1 and NR2D subunits enhanced 40 and 20%, respectively. In hippocampus, with the dose of 0.1 nmol ouabain, NR1 subunit enhanced roughly 50% whereas NR2B subunit decreased 30%. After administration of 10 nmol ouabain dose, NR2A, NR2B and NR2C subunits decreased 40, 50 and 30%, respectively. With the dose of 100 nmol of ouabain, NR1, NR2A and NR2B subunits diminished 10–20%. It is concluded that ouabain administration led to a differential regulation in the expression of NMDA subunits. These results may be correlated with the modulatory action of ouabain on NMDA receptor.  相似文献   

11.
12.
Experiments with rats have shown that thermoregulation under normal conditions and in response to stressful factors (immobilization, emotionally significant sound) is different in animals of different age. The effect of these stressful factors leads to more significant temperature changes in the group of young animals, as compared with the adult ones.  相似文献   

13.
Four experiments dealt with circadian variation in the gastric emptying (GE) response to eating, among rats accustomed to eating once (1X) or twice daily (2x). In measuring GE response, a test meal [10 g accustomed diet per (kg body weight)3/4] was fed close to a scheduled eating time or after a delay of up to 24 h. GE response was the fraction of the ingested test meal emptied per hr, up to a known degree of emptying, e.g., 50-58% of the test meal. Animals accustomed to the prescribed eating patterns ate promptly and at similarly rapid rates at all times of day. GE response, as plotted against time of response, fit a 24-h cosine model. Acrophase (time of maximum GE response of the fitted model) was similar, being 1.5 and 2.1 h, respectively, after the starting time of the accustomed dark-span meal for 1X and 2x rats, while amplitude (1/2 the maximum-to-minimum difference) was 41 and 24% of the MESOR (rhythm-adjusted mean). Characteristics of the GE rhythm appeared to be unchanged among 1X rats, severely versus minimally restricted in food intake during a final 9 days.  相似文献   

14.
15.
16.
17.
In a recent report, it was claimed that azuki beans (Vigna angularis) do not synthesize phytochelatins (PCs) upon exposure to cadmium, although glutathione (GSH), the substrate for PC synthesis, is present in this plant. This legume species thus would be the first exception in the plant kingdom that would fail to complex heavy metals by PCs. Here, we report that not GSH, but only homoglutathione can be detected in this plant and that homo-phytochelatins are formed when azuki beans are challenged with heavy metals such as cadmium. We also show that the 5,5'-dithiobis(2-nitrobenzoic acid)-oxidized GSH reductase recycling assay, used for GSH quantification in the recent study of heavy metal tolerance in azuki beans, reacts both with GSH and homoglutathione and therefore cannot be used when biological samples should be analyzed exclusively for GSH.  相似文献   

18.
Neurochemical Research - Chronic dietary long-chain polyunsaturated fatty acids (PUFAs) deficiency may lead to changes in cortex and hippocampus neuronal membrane phospholipids, and may be linked...  相似文献   

19.
Methamphetamine (MA) is the most commonly used psychostimulant drug, the chronic abuse of which leads to neurodegenerative changes in the brain. The global use of MA is increasing, including in pregnant women. Since MA can cross both placental and haematoencephalic barriers and is also present in maternal milk, children of chronically abused mothers are exposed prenatally as well as postnatally. Women seem to be more vulnerable to some aspects of MA abuse than men. MA is thought to exert its effects among others via direct interactions with dopamine transporters (DATs) in the brain tissue. Sexual dimorphism of the DAT system could be a base of sex-dependent actions of MA observed in behavioural and neurochemical studies. Possible sex differences in the DATs of preadolescent offspring exposed to MA prenatally and/or postnatally have not yet been evaluated. We examined the striatal synaptosomal DATs (the activity and density of surface expressed DATs and total DAT expression) in preadolescent male and female Wistar rats (31–35-day old animals) exposed prenatally and/or postnatally to MA (daily 5 mg/kg, s.c. to mothers during pregnancy and lactation). To distinguish between specific and nonspecific effects of MA on DATs, we also evaluated the in vitro effects of lipophilic MA on the fluidity of striatal membranes isolated from preadolescent and young adult rats of both sexes. We observed similar changes in the DATs of preadolescent rats exposed prenatally or postnatally (MA-mediated drop in the reserve pool but no alterations in surface-expressed DATs). However, prenatal exposure evoked significant changes in males and postnatal exposure in females. A significant decrease in the activity of surface-expressed DATs was found only in postnatally exposed females sensitized to MA via prenatal exposure. MA applied in vitro increased the fluidity of striatal membranes of preadolescent female but not male rats. In summary, DATs of preadolescent males are more sensitive to prenatal MA exposure via changes in the reserve pool and those of preadolescent females to postnatal MA exposure via the same mechanism. The combination of prenatal and postnatal MA exposure increases the risk of dopaminergic deficits via alterations in the activity of surface-expressed DATs especially in preadolescent females. MA-mediated changes in DATs of preadolescent females could be still enhanced via nonspecific disordering actions of MA on striatal membranes.  相似文献   

20.
Using histochemical methods offering high topographical resolution for evaluation of changes in the ischemic focus and the penumbra, the mitochondrial electron transport chain (ETC) complexes I, II, and IV were examined in rats subjected to 2 h of proximal occlusion of the middle cerebral artery (MCAO) followed by no reperfusion, 1 h reperfusion, 4 h reperfusion, or 4 h reperfusion plus treatment with the free radical scavenger -PBN. Serial brain cryosections were histochemically stained to visualize activity of complexes I, II, and IV, and the volumes of tissue with reduced activity in the ipsilateral cortex and caudate putamen were measured by densitometric image analysis. Reductions in complex I, II, and IV activity were restricted to areas in the ischemic foci in cortex and caudate putamen, which microscopically displayed signs of early morphological damage. In cortex, the tissue volume with reduced activity did not change significantly during reperfusion but progressively increased in the caudate putamen, possibly reflecting a faster maturation of morphological damage in this region. Treatment with -PBN did not affect the observed reductions in activities. We deduce that inhibition of mitochondrial ETC complex activity does not play a critical role for recruitment of the penumbra in the infarction process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号