首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Telomerase is crucial for chromosome stability because it maintains telomere length. Little is known about telomerase in ovarian follicles, where an intense cell division is crucial to sustain estrous cycle and to drive oocyte development. The present research was performed to detect, by immunohistochemistry, the distribution of telomerase catalytic subunit (TERT) during folliculogenesis and to study the effect of TERT expression on telomeres. To this aim, telomere length has been measured on fluorescence in situ hybridization (FISH)-processed sections either in follicular or in germ cells. In primary and preantral follicles, TERT was observed in granulosa and in germ cells, with a typical nuclear location. During antral differentiation, only somatic cells close to the antrum (antral layer) and cumulus cells maintained TERT expression. The relative oocytes located TERT in the ooplasm independent from the process of meiotic maturation. FISH results indicate that a correlation exists between TERT expression and telomere size. In fact, progressively bigger telomeres were observed from preantral to antral follicles where longer structures were recorded in cells of the cumulus oophorus and of the antral layer than those of the basal one. Stable and elongated telomeres were detected in fully grown oocytes that lost the functional TERT distribution within the nucleus.  相似文献   

2.
3.
4.
5.
6.
7.
Amicronucleate cells of Paramecium caudatum, whose micronuclei have been artifically removed by micropipetting, are characterized by the appearance of a deciliated area at the posterior part of the buccal opening. These cells form food vacuoles at a slightly lower rate than micronucleate cells. Their mean interfission time is longer than that in micronucleates. The exconjugants of amicronucleate cells can not form food vacuoles and eventually die witout fission, though conjugation proceeds normally in them as well as in their micronucleate mate. The oral apparatus of amicronucleate exconjugants seems to be shallower than that of micronucleates. The membranellar cilia, therefore, can be seen through the buccal overture by scanning electron microscope. The results obtained from the cross of micronucleate and amicronucleate strains and from the induction of autogamy in amicronucleate strains suggest that the micronucleus has a primary role in developing the normal oral apparatus after nuclear reorganization.  相似文献   

8.
Telomere length homeostasis is achieved by a balance of telomere shortening caused by DNA replication and nucleolytic attack and telomere lengthening by telomerase. The importance of telomere length maintenance to human health is best illustrated by dyskeratosis congenita (DC), a disease of telomere shortening caused by mutations in telomerase subunits. DC patients suffer stem cell depletion and die of bone marrow stem cell failure. Recently a new class of particularly severe DC patients was found to harbor mutations in the shelterin subunit TIN2. The DC-TIN2 mutations were clustered in small domain of unknown function. In a recently published study we showed that the DC mutation cluster in TIN2 harbored a binding site for heterochromatin protein 1 (HP1) and, further, that HP1 binding to TIN2 was required for sister telomere cohesion in S phase and for telomere length maintenance by telomerase. We briefly review and discuss the implications of our findings in this Extra View and present some new data that may shed light on how sister telomere cohesion could influence telomere elongation by telomerase.Key words: telomeres, cohesion, telomerase, TIN2, dyskeratosis congenita  相似文献   

9.
Cell-cycle-dependent telomere elongation by telomerase in budding yeast   总被引:1,自引:0,他引:1  
Li S 《Bioscience reports》2011,31(3):169-177
Telomeres are essential for the stability and complete replication of linear chromosomes. Telomere elongation by telomerase counteracts the telomere shortening due to the incomplete replication of chromosome ends by DNA polymerase. Telomere elongation is cell-cycle-regulated and coupled to DNA replication during S-phase. However, the molecular mechanisms that underlie such cell-cycle-dependent telomere elongation by telomerase remain largely unknown. Several aspects of telomere replication in budding yeast, including the modulation of telomere chromatin structure, telomere end processing, recruitment of telomere-binding proteins and telomerase complex to telomere as well as the coupling of DNA replication to telomere elongation during cell cycle progression will be discussed, and the potential roles of Cdk (cyclin-dependent kinase) in these processes will be illustrated.  相似文献   

10.
Telomere length homeostasis is achieved by a balance of telomere shortening caused by DNA replication and nucleolytic attack and telomere lengthening by telomerase. The importance of telomere length maintenance to human health is best illustrated by dyskeratosis congenita (DC) a disease of telomere shortening caused by mutations in telomerase subunits. DC patients suffer stem cell depletion and die of bone marrow stem cell failure. Recently a new class of particularly severe DC patients was found to harbor mutations in the shelterin subunit TIN2. The DC-TIN2 mutations were clustered in small domain of unknown function. In a recently published study we showed that the DC mutation cluster in TIN2 harbored a binding site for heterochromatin protein 1 (HP1) and further, that HP1 binding to TIN2 was required for sister telomere cohesion in S phase and for telomere length maintenance by telomerase. We briefly review and discuss the implications of our findings in this Extra View, and present some new data that may shed light on how sister telomere cohesion could influence telomere elongation by telomerase.  相似文献   

11.
端粒酶逆转录酶在大鼠肝癌发生中的表达变化   总被引:1,自引:0,他引:1  
  相似文献   

12.
13.
14.
15.
Progressive cis-inhibition of telomerase upon telomere elongation.   总被引:12,自引:0,他引:12       下载免费PDF全文
S Marcand  V Brevet    E Gilson 《The EMBO journal》1999,18(12):3509-3519
In yeast, the constant length of telomeric DNA results from a negative regulation of telomerase by the telomere itself. Here we follow the return to equilibrium of an abnormally shortened telomere. We observe that telomere elongation is restricted to a few base pairs per generation and that its rate decreases progressively with increasing telomere length. In contrast, in the absence of telomerase or in the presence of an over-elongated telomere, the degradation rate linked to the succession of generations appears to be constant, i.e. independent of telomere length. Together, these results indicate that telomerase is gradually inhibited at its site of action by the elongating telomere. The implications of this finding for the dynamics of telomere length regulation are discussed in this study.  相似文献   

16.
17.
RNA binding domain of telomerase reverse transcriptase   总被引:13,自引:0,他引:13       下载免费PDF全文
  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号