首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
H Qin  Z Liu    S F Sui 《Biophysical journal》1995,68(6):2493-2496
Two-dimensional crystals of avidin were obtained on mixed lipid monolayers containing biotinylated lipids (N-biotinyl-dipalmitoyl-L-alpha-phosphatidyl ethanolamine and dioleoyl phosphatidyl choline) by specific interaction. Image analysis of electron micrographs of these crystals revealed p2 symmetry with the unit cell parameters a = 66 +/- 2 A, b = 68 +/- 1 A, and gamma = 121 +/- 4 degrees. The projection map showed, at a resolution of about 27 A, that the four subunits within one avidin molecule are separated into two parts. Comparison between avidin and streptavidin reveals that avidin molecule binds to the lipid monolayer in an orientation similar to that of streptavidin.  相似文献   

2.
Two-dimensional crystals of alpha-latrotoxin from the venom of black widow spider (Latrodectus mactans tredecimguttatus) were studied by the negative staining electron microscopy. Two-dimensional crystals were obtained by adsorption of the protein solution with a high Mg2+ concentration on carbon-coated electron microscopy grids. The crystals were about 0.4 mkm in size, had the unit cell parameters: a = b = 15.55 nm, gamma = 90 degrees, p4 plane group symmetry. The contour map of a stain-excluding region of such crystals was calculated by the Fourier-filtering procedure at about 4 nm resolution. The calculation of molecular weight of the unit cell, with the symmetry p4 taken into account, showed that alpha-latrotoxin particles, revealed by negative staining, consisted of 4 or 8 protomers.  相似文献   

3.
钙离子是磷脂酶A2催化必须的铺因子,以蝮蛇毒酸性磷脂酶A2为材料,采用在晶体培养液中加入EDTA或EGTA螯合剂络合法除去PLA2中可能有的Ca^2+离子和加入CaCl2以确保PLA2能克分结合上钙离子的方法培养充分结合Ca^2+和脱Ca^2+的PLA2晶体。加了螯合剂后长出的晶体为长棒状六方柱,加Ca^2+离子后长出的晶体则为短粗的六方柱。经X射线鉴定两种晶体为同晶型,空间群为P61,晶胞参数很  相似文献   

4.
5.
A calcium binding protein with a molecular mass of 40 kDa (CBP40), the gene product of plasmodial-specific LAV1-2 of Physarum polycephalum, was crystallized in the presence of EDTA. The crystals diffracted X-rays up to a resolution of 3.0 A. They belonged to the trigonal space group, P3221 (or P3121), with unit cell dimensions of a = b = 64.4 A and c = 207.2 A. Ca2+-bound crystals were obtained by soaking in a CaCl2 solution, which gave diffraction data of similar quality. The Ca2+-soaked crystals belonged to the same space group as those crystallized in the presence of EDTA with unit cell dimensions of a = b = 64.4 A and c = 209.4 A.  相似文献   

6.
Large two-dimensional crystals of H+-ATPase, a 100 kDa integral membrane protein, were grown directly onto the carbon surface of an electron microscope grid. This procedure prevented the fragmentation that is normally observed upon transfer of the crystals from the air-water interface to a continuous carbon support film. Crystals grown by this method measure approximately 5 microm across and have a thickness of approximately 240 A. They are of better quality than the monolayers previously obtained at the air-water interface, yielding structure factors to at least 8 A in-plane resolution by electron image processing. Unlike most other two-dimensional crystals of membrane proteins they do not contain a lipid bilayer, but consist of detergent-protein micelles of H+-ATPase hexamers tightly packed on a trigonal lattice. The crystals belong to the two-sided plane group p321 (a=b=165 A), containing two layers of hexamers related by an in-plane axis of 2-fold symmetry. The protein is in contact with the carbon surface through its large, hydrophilic 70 kDa cytoplasmic portion, yet due to the presence of detergent in the crystallizing buffer, the hydrophobicity of the carbon surface does not appear to affect crystal formation. Surface crystallisation may be a useful method for other proteins which form fragile two-dimensional crystals, in particular if conditions for obtaining three-dimensional crystals are known, but their quality or stability is insufficient for X-ray structure determination.  相似文献   

7.
The mitochondrial outer membrane contains a protein, called VDAC, that forms large aqueous pores. In Neurospora crassa outer membranes, VDAC forms two-dimensional crystalline arrays whose size and frequency can be greatly augmented by lipase treatment of these membranes (C. Mannella, Science 224, 165, 1984). Fourier filtration and surface reconstruction of freeze-dried/shadowed (45 degrees) arrays produced detailed images of two populations of crystals, whose lattices are mirror images of each other. Most likely, this technique has revealed both surfaces of the same two-dimensional crystal with lattice parameters: a = 12.3 +/- 0.1 nm, b = 11.2 +/- 0.1 nm, and theta = 109 +/- 1 degree. Three-dimensional reconstructions of the surface reliefs on both sides of the crystal show them to be very similar. The majority of the protein forming the channel appears to be at or below the level of the membrane. To address the issue of the number of 30-kDa polypeptides that form a VDAC channel, measurements of mass per unit area were carried out by analyzing scanning transmission electron micrographs of unstained, freeze-dried arrays. The crystal form used for mass analysis contained the same motif of six stain-accumulating centers per unit cell, with p2 symmetry as in the oblique configuration, but it had a different orientation relative to the lattice lines. These data yielded a surface density of 1.9 +/- 0.2 kDa/nm2, indicating that there is a one-to-one ratio between VDAC polypeptides and the channels visualized in filtered electron micrographs, and that VDAC membrane crystals contain 68% protein and 32% lipid by mass.  相似文献   

8.
Two-dimensional crystals of annexin-V bound to lipid layers containing dioleoylphosphatidylserine have been obtained in the presence of Ca2+. The crystals diffract to 20 A resolution and have the symmetry of the plane group p3 (unit cell dimensions: a = b = 94 A, gamma = 120 degrees). Electron image analysis revealed that the crystals are composed of trimers of annexin-V forming triskelion-like motifs. Each annexin-V molecule has a characteristic elongated shape, about 65 A by 20 A, when observed perpendicularly to the crystal plane. It is composed of two staggered domains of similar size, about 40 A by 20 A. Both domains are made of two sub-domains. The present data suggest that the four resolved sub-domains represent the folding units corresponding to the four 70 amino acid repeating segments characteristic of all annexins.  相似文献   

9.
Previous studies have demonstrated that lung-specific proteins are associated with surfactant lipids, particularly the highly surface active subfraction known as tubular myelin. We have isolated a surfactant-associated protein complex with molecular weight components of 36 000, 32 000, and 28 000 and reassembled it with protein-free lung surfactant lipids prepared as small unilamellar liposomes. The effects of divalent cations on the structure and surface activity of this protein-lipid mixture were investigated by following (1) the state of lipid dispersion by changes in turbidity and by electron microscopy and (2) the ability of the surfactant lipids to form a surface film from an aqueous subphase at 37 degrees C. The protein complex markedly increased the rate of Ca2+-induced surfactant-lipid aggregation. Electron microscopy demonstrated transformation of the small unilamellar liposomes (median diameter 440 A) into large aggregates. The threshold Ca2+ concentration required for rapid lipid aggregation was reduced from 13 to 0.5 mM by the protein complex. This protein-facilitated lipid aggregation did not occur if Mg2+ was the only divalent cation present. Similarly, 5 mM Ca2+ but not 5 mM Mg2+ improved the ability of the protein-lipid mixture to form a surface film at 37 degrees C. Extensive aggregation of the surfactant lipids without protein by 20 mM Ca2+ or 20 mM Mg2+ did not promote rapid surface film formation. These results add to the growing evidence that specific Ca2+-protein-lipid interactions are important in determining both the structure and function of extracellular lung surfactant fractions.  相似文献   

10.
The uptake of mannitol in Escherichia coli is controlled by the phosphoenolpyruvate dependent phosphotransferase system. Enzyme II mannitol (EIIMtl) is part of the phosphotransferase system and consists of three covalently bound domains. IICMtl, the integral membrane domain of EIIMtl, is responsible for mannitol transport across the cytoplasmic membrane. In order to understand this molecular process, two-dimensional crystals of IICMtl were grown by reconstitution into lipid bilayers and their structure was investigated by cryo-electron crystallography. The IICMtl crystals obey p22121 symmetry and have a unit cell of 125 Ax65 A, gamma=90 degrees. A projection structure was determined at 5 A resolution using both electron images and electron diffractograms. The unit cell contains two IICMtl dimers with a size of about 40 Ax90 A, which are oriented up and down in the crystal. Each monomer exhibits six domains of high density which most likely correspond to transmembrane alpha-helices and cytoplasmic loops.  相似文献   

11.
Large, well-ordered 2-D crystals of the dodecylmaltoside complex of the Neurospora crassa plasma membrane H(+)-ATPase grow rapidly on the surface of a polyethylene glycol-containing mixture similar to that originally developed for growing 3-D crystals of this integral membrane transport protein. Negative stain electron microscopy of the crystals shows that many are single layers. Cryoelectron microscopy of unstained specimens indicates that the crystals have a p6 layer group with unit cell dimensions of a = b = 167 A. Image processing of selected electron micrographs has yielded a projection map at 10.3 A resolution. The repeating unit of the ATPase crystals comprises six 100 kDa ATPase monomers arranged in a symmetrical ring. The individual monomers in projection are shaped like a boot. These results provide the first indications of the molecular structure of the H(+)-ATPase molecule. They also establish the feasibility of precipitant-induced surface growth as a rapid, simple alternative to conventional methods for obtaining 2-D crystals of the integral membrane proteins useful for structure analysis.  相似文献   

12.
Na+,K+-ATPase is a heterodimer of alpha and beta subunits and a member of the P-type ATPase family of ion pumps. Here we present an 11-A structure of the heterodimer determined from electron micrographs of unstained frozen-hydrated tubular crystals. For this reconstruction, the enzyme was isolated from supraorbital glands of salt-adapted ducks and was crystallized within the native membranes. Crystallization conditions fixed Na+,K+-ATPase in the vanadate-inhibited E2 conformation, and the crystals had p1 symmetry. A large number of helical symmetries were observed, so a three-dimensional structure was calculated by averaging both Fourier-Bessel coefficients and real-space structures of data from the different symmetries. The resulting structure clearly reveals cytoplasmic, transmembrane, and extracellular regions of the molecule with densities separately attributable to alpha and beta subunits. The overall shape bears a remarkable resemblance to the E2 structure of rabbit sarcoplasmic reticulum Ca2+-ATPase. After aligning these two structures, atomic coordinates for Ca2+-ATPase were fit to Na+,K+-ATPase, and several flexible surface loops, which fit the map poorly, were associated with sequences that differ in the two pumps. Nevertheless, cytoplasmic domains were very similarly arranged, suggesting that the E2-to-E1 conformational change postulated for Ca2+-ATPase probably applies to Na+,K+-ATPase as well as other P-type ATPases.  相似文献   

13.
OxlT is a bacterial transporter protein with 12 transmembrane segments that belongs to the Major Facilitator Superfamily of transporters. It facilitates the exchange of oxalate and formate across the membrane of the Gram-negative bacterium Oxalobacter formigenes. From an electron crystallographic analysis of two-dimensional, tube-like crystals of OxlT, we have previously determined the three-dimensional structure of this transporter at 6.5 A resolution. Here, we report conditions to obtain crystalline, two-dimensional sheets of OxlT with diameters exceeding 2 microm. Images of the crystalline sheets were recorded at liquid nitrogen temperatures on a transmission electron microscope equipped with a field-emission gun, operated at 300 kV. Computed optical diffraction patterns from the best images display measurable reflections to about 3.4A, and electron diffraction patterns show spots to about 3.2 A resolution in the best cases. As in the case of the tube-like crystals, the new crystalline sheets also belong to the p22(1)2(1) symmetry group. However, the unit cell dimensions of 102.7A x 67.3 A are significantly smaller in one direction than those previously observed with the tube-like crystals that display unit cell dimensions of 100.3A x 79.0 A. Different regions of OxlT are involved in intermolecular contacts in the two types of crystals, and the improved resolution of the sheet crystals appears to be mainly attributable to this tighter packing of the monomers within the unit cell.  相似文献   

14.
The structure of the Ca2+ transport ATPase from rabbit skeletal muscle sarcoplasmic reticulum has been determined to 25 A resolution by three-dimensional image reconstruction of crystalline membrane tubules induced through exposure to Na3VO4 and preserved for electron microscopy in negative stain. The crystalline arrays have projection symmetry p2 and consist of chains of Ca2+-ATPase dimers arranged in a right-handed helix. The density map shows protein features that project from the membrane surface into the cytoplasm. The luminal side of the membrane tubules is featureless, presumably because very little of the Ca2+-ATPase molecule projects into the luminal space. The cytoplasmic region of the Ca2+-ATPase molecule is pear-shaped, with a lobe oriented nearly parallel to the axis of the dimer ribbons, about 16 A above the surface of the membrane bilayer. The structure seen in the maps has a volume of 71,000 A3, corresponding to a molecular weight of 57,000. The two Ca2+-ATPase profiles that constitute a dimer are connected by a stain-excluding bridge that is oriented parallel with the axis of the tubule at a height of about 42 A above the surface of the bilayer.  相似文献   

15.
钙离子是磷脂酶A2催化必须的辅因子,以蝮蛇毒酸性磷脂酶A2为材料,采用在晶体培养液中加入EDTA或EGTA螯合剂络合法除去PLA2中可能有的Ca2+离子和加入CaCl2以确保PLA2能克分结合上钙离子的方法培养充分结合Ca2+和脱Ca2+的PLA2晶体。加了螯合剂后长出的晶体为长棒状六方柱,加Ca2+离子后长出的晶体则为短粗的六方柱。经X射线鉴定两种晶体为同晶型,空间群为P61,晶胞参数很接近。现已收集到这两种晶体的高分辨率衍射数据。进一步的结构分析和结构比较将有助于详细和清楚地分析Ca2+离子对分子构象的影响。  相似文献   

16.
The determination of the structure of PSII at high resolution is required in order to fully understand its reaction mechanisms. Two-dimensional crystals of purified highly active Synechococcus elongatus PSII dimers were obtained by in vitro reconstitution. Images of these crystals were recorded by electron cryo-microscopy, and their analysis revealed they belong to the two-sided plane group p22(1)2(1), with unit cell parameters a = 121 A, b = 333 A, and alpha = 90 degrees. From these crystals, a projection map was calculated to a resolution of approximately 16 A. The reliability of this projection map is confirmed by its close agreement with the recently presented three-dimensional model of the same complex obtained by X-ray crystallography. Comparison of the projection map of the Synechococcus elongatus PSII complex with data obtained by electron crystallography of the spinach PSII core dimer reveals a similar organization of the main transmembrane subunits. However, some differences in density distribution between the cyanobacterial and higher plant PSII complexes exist, especially in the outer region of the complex between CP43 and cytochrome b(559) and adjacent to the B-helix of the D1 protein. These differences are discussed in terms of the number and organization of some of the PSII low molecular weight subunits.  相似文献   

17.
The interaction of S-100b protein with cardiolipin (CL) vesicles has been studied by electron spin resonance, pyrene fluorescence, and circular dichroism. Electron spin resonance and pyrene fluorescence data indicate that S-100b binds to the polar surface of vesicles Ca2+-independently. In the presence of Ca2+, S-100b potentiates the Ca2+-induced clustering of the polar headgroups of CL molecules and causes a further reduction in the Ca2+-dependent decrease in the lateral mobility of the pyrene inserted into the lipid bilayer, which points to an effect of the protein on the hydrophobic core of the lipid bilayer through a larger perturbation of its polar surface. Circular dichroism analyses indicate that CL vesicles cause a decrease in the alpha-helical content of S-100b, analogous to that produced by Ca2+ and that the effects of CL vesicles and of Ca2+ on the secondary structure of the protein are supra-additive. By this technique, we found that the affinity of Ca2+ for S-100b increases substantially in the presence of CL vesicles, even in the presence of physiologic concentrations of KCl, suggesting that once S-100b had interacted with CL vesicles it assumes a new conformation in which its Ca2+-binding properties are greatly enhanced. These results are discussed in relation to binding of S-100b proteins to natural membranes, and to a possible involvement of S-100b in the regulation of membrane structural organization.  相似文献   

18.
The ryanodine receptor (RyR) is the largest known membrane protein with a total molecular mass of 2.3 x 10(3) kDa. Well ordered, two-dimensional (2D) crystals are an essential prerequisite to enable RyR structure determination by electron crystallography. Conventionally, the 2D crystallization of membrane proteins is based on a 'trial-and-error' strategy, which is both time-consuming and chance-directed. By adopting a new strategy that utilizes protein sequence information and predicted transmembrane topology, we successfully crystallized the RyR on positively charged lipid membranes. Image processing of negatively stained crystals reveals that they are well ordered, with diffraction spots of IQ < or = 4 extending to approximately 20 angstroms, the resolution attainable in negative stain. The RyR crystals obtained on the charged lipid membrane have characteristics consistent with 2D arrays that have been observed in native sarcoplasmic reticulum of muscle tissues. These crystals provide ideal materials to enable structural analysis of RyR by high-resolution electron crystallography. Moreover, the reconstituted native-like 2D array provides an ideal model system to gain structural insights into the mechanism of RyR-mediated Ca2+ signaling processes, in which the intrinsic ability of RyR oligomers to organize into a 2D array plays a crucial role.  相似文献   

19.
We have investigated the structure of two-dimensional crystals from preparations of NADH:ubiquinone oxidoreductase from beef-heart mitochondria. The crystal structure of these crystals was previously determined to be equivalent with two native enzyme molecules per unit cell, i.e. a p2 symmetry [Boekema, E. J., Van Heel, M. G. & Van Bruggen, E. F. J. (1984) Biochim. Biophys. Acta 787, 19-26]. However, the optical diffraction patterns of the crystals displayed a clear fourfold symmetry. A Fourier analysis carried out on the calculated diffraction pattern proved unambiguously that the crystal symmetry was p42(1)2. Following crystallographic rules the unit cell therefore contained eight identical molecules. As a consequence, only a subcomplex of the enzyme rather than the intact enzyme formed the crystal. Electron microscopy of isolated, single molecules of the iron-sulphur protein, a dissociation product of complex I, revealed the presence of square complexes with sides of approximately 15 nm. Since these complexes were indistinguishable from the building blocks (unit cells) of the two-dimensional crystals, the crystals could be composed of Fe-S protein fragments only. The nature of the fragments in the unit cell was probed by immuno-labelling with monovalent antibodies (Fab's), raised against the 75-kDa subunit from the Fe-S protein, followed by image analysis. We found at least four binding sites for the anti-(75-kDa subunit) Fab per unit cell, indicating the presence of at least four copies of the antigen. In order to account for these observations we postulate the hypothesis that the two-dimensional crystals obtained from complex I are composed of iron-sulphur protein molecules in an octameric arrangement.  相似文献   

20.
We have recently shown that S-100b protein interacts with the polar surface of cardiolipin vesicles [6]. This interaction produces changes in the secondary structure of S-100b as well as changes in the structural organization of cardiolipin vesicles. We report here on the effects of S-100b on cardiolipin vesicles as investigated by turbidity, terbium-dipicolinate fluorescence and freeze-fracture. Experiments were carried out in the absence and in the presence of Ca2+. In the absence of Ca2+ (0.1 mM EDTA), S-100b favors the aggregation and fusion of vesicles to some extent. Under these conditions, electron microscope analyses reveal the presence of fused vesicles along with particles similar to those observed in protein reconstituted systems or to lipid particles observed during fusional processes. In the presence of Ca2+, S-100b counteracts the Ca2(+)-dependent tendency of vesicles to aggregate and fuse. Under these conditions, bilayer phases along with hexagonal phases can be observed by electron microscopy. The latter effects of S-100b are not due to chelation of Ca2+ because of the relative concentrations of S-100b and Ca2+ under our experimental conditions and since much larger concentrations of EDTA are required to produce the S-100b effects. We propose that the dimeric nature of S-100b plays a major role in these events. In the absence of Ca2+, the S-100b molecules probably cross-link adjacent vesicles, one subunit contacting one vesicle and the other subunit contacting another vesicle through electrostatic bonds. In the presence of Ca2+, due to the large changes occurring in the conformation of the protein (which loses about 52% of its alpha-helical content), S-100b associates strongly with the polar surface of individual vesicles, thus generating some kind of physical barrier to aggregation and fusion of vesicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号